metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,3-benzo­thia­zole-2-thiol­ato)[(Z)-methyl 2-(2-amino-1,3-thia­zol-4-yl)-2-(meth­oxy­imino)acetate]nickel(II)

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr

(Received 14 April 2010; accepted 24 April 2010; online 30 April 2010)

In the title compound, [Ni(C7H4NS2)2(C7H9N3O3S)], the NiII ion is in a slightly distorted N4S2 octa­hedral coordination environment. The two benzothia­zole-2-thiol­ate ligands chelate via their thia­zole N and thiol­ate S atoms while the methyl 2-(2-amino­thia­zol-4-yl)-2-(methoxy­imino)acetate also acts as a chelate ligand binding through the thia­zole and imino N atoms. Intra­molecular N—H⋯N, C—H⋯N and C—H⋯O inter­actions contribute to the mol­ecular conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds produce R12(6) rings and generate chains along the c axis. An extensive one-dimensional supra­molecular network of N—H⋯O hydrogen bonds and C—H⋯π inter­actions is responsible for the crystal structure stabilization.

Related literature

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Batı et al. (2006[Batı, H., Yüksektepe, Ç., Çalıskan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313-m2315.]); Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m598-m600.]); Liu & Xu (2004[Liu, J.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m403-m405.]); Sharif et al. (2009[Sharif, S., Khan, I. U., Arshad, M. N., Sheikh, T. A. & Qureshi, M. Z. (2009). Acta Cryst. E65, o1805.]); Song et al. (2005[Song, R.-F., Liu, J.-H., Qian, H. & Zhao, K.-Y. (2005). Acta Cryst. E61, m2142-m2144.]); Tashpulatov et al. (1957[Tashpulatov, Yu., Zvonkova, Z. V. & Zhdanov, G. S. (1957). Kristallografiya, 2, 33. ]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4NS2)2(C7H9N3O3S)]

  • Mr = 606.41

  • Monoclinic, P 21 /c

  • a = 17.8387 (11) Å

  • b = 7.8701 (5) Å

  • c = 17.9861 (10) Å

  • β = 98.639 (2)°

  • V = 2496.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 296 K

  • 0.42 × 0.37 × 0.34 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 26981 measured reflections

  • 6164 independent reflections

  • 3512 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.03

  • 6164 reflections

  • 324 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ni1 2.103 (3)
N2—Ni1 2.108 (2)
N3—Ni1 2.042 (3)
N4—Ni1 2.153 (3)
S2—Ni1 2.5410 (11)
S4—Ni1 2.5123 (10)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N2 0.85 (2) 2.25 (3) 3.036 (5) 154 (4)
N5—H5B⋯O2i 0.86 (2) 2.24 (3) 3.025 (5) 150 (4)
N5—H5B⋯O1i 0.86 (2) 2.38 (3) 3.036 (4) 133 (3)
C16—H16⋯O3 0.93 2.40 2.898 (4) 114
C21—H21B⋯N1 0.96 2.41 3.282 (5) 151
C4—H4⋯Cg2ii 0.93 2.93 3.588 (6) 129
C9—H9⋯Cg1i 0.93 2.99 3.636 (4) 128
C21—H21ACg2iii 0.96 2.76 3.556 (4) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+2; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This work was performed to explore the ligand properties of (2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate (Sharif et al., 2009), one of the precursors of S-1,3-Benzothiazol-2-yl(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2- (methoxyimino)-ethanethioate (MAEM). A study of the ligand behaviour of a second MAEM component 2-mercapto-benzothiazole has also been reported (Tashpulatov et al., 1957). We report here the structure of the title compound, (I), in which hydrogen bonds and C—H···π interactions lead to a one-dimensional supramolecular network.

The molecular structure of (I) and atom-labelling scheme are shown in Fig. 1. The NiII ion is coordinated by two S atoms (S2 and S4) and four N atoms (N1, N2, N3 and N4). The geometry around the NiIIion is that of a slightly distorted octahedron. The title compound (I) has got two chelate ring types. In the first of these, atoms N3 and N4 are bonded to Ni1, thus generating five-membered chelate ring (C17/N3/Ni1/N4/C18). The other type, atoms N1, N2, S2 and S4 are bonded to Ni1 to form four-membered chelate rings (N1/Ni1/S2/C7) and (N2/Ni1/S4/C14). The two Ni—S distances are 2.5123 (10) and 2.5410 (11) Å. The Ni—Nthiazol distance of 2.042 (3)Å in (I) is almost equal to that in [Ni(NCS)(C6H6N4S2)(CH4O)]Cl (Liu and Xu, 2004). The Ni—Nbenzothiazol distances in (I) are longer than the equivalent Pd—N bond distance (Song et al., 2005), Co—N bond distances (Batı et al., 2006) and Cu—N bond distance (Sieroń, 2007). The N1—C7 and N2—C14 bond lengths are indicative of significant double-bond character. These values are comparable with those found for similar compounds (Batı et al., 2006; Sieroń, 2007). The N4C18 and C19O2 bond lengths are 1.281 (4) and 1.194 (4) Å, respectively, and agree with the corresponding distances in S-1,3-Benzothiazol-2-yl-(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)- ethanethioate [1.281 (3) and 1.190 (3) Å, respectively; Sharif et al., 2009]. The C15—N3 bond is somewhat shorter than the C17—N3 bond, as a result of pronounced delocalization in the -N—CN- fragment of the 2-aminothiazole ring. Each benzothiazole ligand is planar; the angles between the mean planes through the five-and six-membered rings of each ligand being 2.18 (14)° and 1.37 (20)°.

The molecules of (I) are linked by intermolecular hydrogen bonding, and we employ graph-set notation (Bernstein et al., 1995) to describe the patterns of hydrogen bonding. Molecules of (I) are linked into sheets by a combination of N—H···O hydrogen bonds (Table 2). Within the selected asymmetric unit, intramolecular N—H···N, C—H···N and C—H···O hydrogen bonds define S(6) motifs (Fig. 1). Amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O1 in the molecule at (x, 1/2-y, z-1/2), so forming a C(7) chain running parallel to the [00-1] direction. Similarly, amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O2 in the molecule at (x, 1/2-y, z-1/2), so forming a C(8) chain running parallel to the [00-1] direction. The combination of C(7) and C(8) chains generates a chain of edge-fused R12(6) rings running parallel to the [001] direction (Fig. 2).

Compound (I) also contains three intermolecular C—H···π interactions. In the first, atom C21 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (x, 1/2-y, 1/2+z), so forming a C(8) chain running parallel to the [001] direction. The combination of N—H···O hydrogen bonds and C—H···π interactions produce R22(11) rings (Fig. 2). In the second, atom C4 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (-x, -y, 2-z), so forming a centrosymmetric R22(20) rings centred at (0, 0, n+1) (n = zero or integer) (Fig. 3). Finally, atom C9 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C1—C6 benzene ring in the molecule at (x, 1/2-y, z-1/2), so forming a C(9) chain running parallel to the [00-1] direction. Details of these interactions are given in Table 2. The combination of C—H···π interactions generates a chain of edge-fused R22(20) and R66(30) rings running parallel to the [001] direction (Fig. 3).

Related literature top

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For related structures, see: Batı et al. (2006); Sieroń (2007); Liu & Xu (2004); Sharif et al. (2009); Song et al. (2005); Tashpulatov et al. (1957).

Experimental top

MAEM (0.25 g, 0.71 mmol) was dissolved in 20 ml methanol and refluxed for 10 minutes. A solution of nickel acetate (0.25 g, 0.18 mmol) previously prepared in 5 ml methanol was added dropwise, the mixture was refluxed further for one hour. The resulting solution was filtered. The filtrate was kept for slow evaporation, after three days light yellow crystals suitable for crystallography were obtained.

Refinement top

All H-atoms bound to C were refined using a riding model with d(C—H) = 0.93Å (Uiso=1.2Ueq of the parent atom) for aromatic carbon atoms and d(C—H) = 0.96Å (Uiso=1.5Ueq of the parent atom) for methyl carbon atoms. Amino H atoms were located in difference maps and refined subject to the DFIX restraint N—H = 0.87 (2) Å.

Structure description top

This work was performed to explore the ligand properties of (2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate (Sharif et al., 2009), one of the precursors of S-1,3-Benzothiazol-2-yl(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2- (methoxyimino)-ethanethioate (MAEM). A study of the ligand behaviour of a second MAEM component 2-mercapto-benzothiazole has also been reported (Tashpulatov et al., 1957). We report here the structure of the title compound, (I), in which hydrogen bonds and C—H···π interactions lead to a one-dimensional supramolecular network.

The molecular structure of (I) and atom-labelling scheme are shown in Fig. 1. The NiII ion is coordinated by two S atoms (S2 and S4) and four N atoms (N1, N2, N3 and N4). The geometry around the NiIIion is that of a slightly distorted octahedron. The title compound (I) has got two chelate ring types. In the first of these, atoms N3 and N4 are bonded to Ni1, thus generating five-membered chelate ring (C17/N3/Ni1/N4/C18). The other type, atoms N1, N2, S2 and S4 are bonded to Ni1 to form four-membered chelate rings (N1/Ni1/S2/C7) and (N2/Ni1/S4/C14). The two Ni—S distances are 2.5123 (10) and 2.5410 (11) Å. The Ni—Nthiazol distance of 2.042 (3)Å in (I) is almost equal to that in [Ni(NCS)(C6H6N4S2)(CH4O)]Cl (Liu and Xu, 2004). The Ni—Nbenzothiazol distances in (I) are longer than the equivalent Pd—N bond distance (Song et al., 2005), Co—N bond distances (Batı et al., 2006) and Cu—N bond distance (Sieroń, 2007). The N1—C7 and N2—C14 bond lengths are indicative of significant double-bond character. These values are comparable with those found for similar compounds (Batı et al., 2006; Sieroń, 2007). The N4C18 and C19O2 bond lengths are 1.281 (4) and 1.194 (4) Å, respectively, and agree with the corresponding distances in S-1,3-Benzothiazol-2-yl-(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)- ethanethioate [1.281 (3) and 1.190 (3) Å, respectively; Sharif et al., 2009]. The C15—N3 bond is somewhat shorter than the C17—N3 bond, as a result of pronounced delocalization in the -N—CN- fragment of the 2-aminothiazole ring. Each benzothiazole ligand is planar; the angles between the mean planes through the five-and six-membered rings of each ligand being 2.18 (14)° and 1.37 (20)°.

The molecules of (I) are linked by intermolecular hydrogen bonding, and we employ graph-set notation (Bernstein et al., 1995) to describe the patterns of hydrogen bonding. Molecules of (I) are linked into sheets by a combination of N—H···O hydrogen bonds (Table 2). Within the selected asymmetric unit, intramolecular N—H···N, C—H···N and C—H···O hydrogen bonds define S(6) motifs (Fig. 1). Amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O1 in the molecule at (x, 1/2-y, z-1/2), so forming a C(7) chain running parallel to the [00-1] direction. Similarly, amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O2 in the molecule at (x, 1/2-y, z-1/2), so forming a C(8) chain running parallel to the [00-1] direction. The combination of C(7) and C(8) chains generates a chain of edge-fused R12(6) rings running parallel to the [001] direction (Fig. 2).

Compound (I) also contains three intermolecular C—H···π interactions. In the first, atom C21 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (x, 1/2-y, 1/2+z), so forming a C(8) chain running parallel to the [001] direction. The combination of N—H···O hydrogen bonds and C—H···π interactions produce R22(11) rings (Fig. 2). In the second, atom C4 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (-x, -y, 2-z), so forming a centrosymmetric R22(20) rings centred at (0, 0, n+1) (n = zero or integer) (Fig. 3). Finally, atom C9 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C1—C6 benzene ring in the molecule at (x, 1/2-y, z-1/2), so forming a C(9) chain running parallel to the [00-1] direction. Details of these interactions are given in Table 2. The combination of C—H···π interactions generates a chain of edge-fused R22(20) and R66(30) rings running parallel to the [001] direction (Fig. 3).

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For related structures, see: Batı et al. (2006); Sieroń (2007); Liu & Xu (2004); Sharif et al. (2009); Song et al. (2005); Tashpulatov et al. (1957).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R12(6) and R22(11) rings. N—H···O hydrogen bonds and C—H···π interactions are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2.)
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a chain along [001] generated by the C—H···π interactions (dashed lines; see Table 2). For the sake of clarity, H atoms not involved in the motif shown have been omitted. (Symmetry codes as in Table 2.)
Bis(1,3-benzothiazole-2-thiolato)[(Z)-methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetate]nickel(II) top
Crystal data top
[Ni(C7H4NS2)2(C7H9N3O3S)]F(000) = 1240
Mr = 606.41Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4277 reflections
a = 17.8387 (11) Åθ = 2.3–23.3°
b = 7.8701 (5) ŵ = 1.23 mm1
c = 17.9861 (10) ÅT = 296 K
β = 98.639 (2)°Needle, colourless
V = 2496.5 (3) Å30.42 × 0.37 × 0.34 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3512 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 28.3°, θmin = 1.2°
φ and ω scansh = 2323
26981 measured reflectionsk = 1010
6164 independent reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
6164 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C7H4NS2)2(C7H9N3O3S)]V = 2496.5 (3) Å3
Mr = 606.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.8387 (11) ŵ = 1.23 mm1
b = 7.8701 (5) ÅT = 296 K
c = 17.9861 (10) Å0.42 × 0.37 × 0.34 mm
β = 98.639 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3512 reflections with I > 2σ(I)
26981 measured reflectionsRint = 0.056
6164 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
6164 reflectionsΔρmin = 0.32 e Å3
324 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1273 (2)0.1742 (5)1.06227 (18)0.0477 (9)
C20.0859 (2)0.3229 (6)1.0511 (2)0.0597 (11)
H20.10780.42251.03670.072*
C30.0109 (3)0.3189 (8)1.0620 (3)0.0794 (15)
H30.01820.41711.05400.095*
C40.0216 (3)0.1725 (9)1.0845 (3)0.0903 (18)
H40.07220.17411.09160.108*
C50.0185 (3)0.0264 (8)1.0963 (3)0.0841 (16)
H50.00400.07171.11150.101*
C60.0942 (2)0.0261 (6)1.0853 (2)0.0607 (11)
C70.2253 (2)0.0043 (5)1.06449 (18)0.0443 (9)
C80.1283 (2)0.1743 (5)0.80170 (18)0.0440 (9)
C90.0844 (2)0.0802 (6)0.7465 (2)0.0593 (11)
H90.04460.13010.71460.071*
C100.1009 (2)0.0861 (6)0.7403 (2)0.0646 (12)
H100.07200.15080.70320.078*
C110.1593 (3)0.1627 (5)0.7872 (2)0.0602 (11)
H110.16930.27740.78100.072*
C120.2033 (2)0.0723 (5)0.8431 (2)0.0474 (9)
H120.24200.12480.87530.057*
C130.18813 (18)0.0992 (4)0.84986 (16)0.0342 (7)
C140.20073 (18)0.3672 (4)0.89389 (18)0.0396 (8)
C150.4252 (2)0.2366 (5)0.90876 (18)0.0449 (9)
C160.5309 (2)0.2658 (5)1.01051 (19)0.0511 (10)
H160.57640.27401.04310.061*
C170.46199 (18)0.2752 (4)1.03122 (17)0.0395 (8)
C180.44057 (19)0.3070 (5)1.10545 (17)0.0400 (8)
C190.4991 (2)0.3044 (5)1.17575 (19)0.0480 (10)
C200.6241 (2)0.3713 (7)1.2288 (2)0.0851 (16)
H20A0.66770.42881.21560.128*
H20B0.63670.25491.24070.128*
H20C0.60850.42571.27180.128*
C210.2788 (2)0.4476 (6)1.1692 (2)0.0766 (14)
H21A0.26680.47291.21830.115*
H21B0.24070.37341.14340.115*
H21C0.28010.55111.14120.115*
N10.20268 (14)0.1531 (4)1.05239 (14)0.0379 (7)
N20.22816 (14)0.2105 (3)0.90121 (14)0.0341 (6)
N30.40088 (14)0.2583 (4)0.97356 (14)0.0390 (7)
N40.36948 (16)0.3292 (4)1.10589 (14)0.0421 (7)
N50.3796 (2)0.2109 (6)0.84349 (18)0.0689 (11)
H5A0.3330 (13)0.195 (6)0.846 (3)0.099 (18)*
H5B0.400 (2)0.197 (5)0.8034 (15)0.075 (14)*
O10.35067 (14)0.3667 (4)1.17628 (12)0.0565 (7)
O20.48854 (16)0.2341 (4)1.23206 (15)0.0793 (10)
O30.56225 (14)0.3783 (4)1.16549 (13)0.0603 (7)
S10.15776 (7)0.14012 (16)1.09195 (7)0.0752 (4)
S20.31353 (5)0.06091 (13)1.04963 (6)0.0561 (3)
S30.12298 (6)0.38890 (12)0.82287 (6)0.0565 (3)
S40.24041 (6)0.52105 (12)0.95328 (5)0.0520 (3)
S50.52295 (5)0.23624 (15)0.91477 (5)0.0567 (3)
Ni10.29632 (2)0.24588 (5)1.00641 (2)0.03629 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.077 (3)0.0312 (18)0.0005 (19)0.0061 (15)0.0008 (18)
C20.038 (2)0.086 (3)0.055 (2)0.015 (2)0.0075 (18)0.003 (2)
C30.042 (3)0.134 (5)0.065 (3)0.022 (3)0.018 (2)0.010 (3)
C40.035 (3)0.180 (6)0.059 (3)0.001 (3)0.022 (2)0.014 (3)
C50.049 (3)0.143 (5)0.067 (3)0.024 (3)0.028 (2)0.000 (3)
C60.045 (2)0.095 (3)0.045 (2)0.013 (2)0.0139 (18)0.002 (2)
C70.041 (2)0.057 (2)0.0363 (18)0.0005 (17)0.0095 (15)0.0108 (16)
C80.043 (2)0.052 (2)0.0368 (19)0.0017 (17)0.0051 (16)0.0007 (16)
C90.051 (2)0.079 (3)0.045 (2)0.006 (2)0.0011 (18)0.004 (2)
C100.069 (3)0.074 (3)0.051 (2)0.021 (2)0.011 (2)0.019 (2)
C110.080 (3)0.045 (2)0.061 (3)0.016 (2)0.031 (2)0.009 (2)
C120.055 (2)0.043 (2)0.047 (2)0.0021 (18)0.0171 (18)0.0041 (17)
C130.0340 (18)0.042 (2)0.0288 (16)0.0045 (15)0.0114 (13)0.0041 (14)
C140.0390 (19)0.042 (2)0.0379 (18)0.0000 (16)0.0066 (14)0.0059 (15)
C150.0353 (19)0.070 (3)0.0310 (17)0.0007 (17)0.0116 (14)0.0010 (17)
C160.035 (2)0.084 (3)0.0359 (18)0.0064 (19)0.0094 (15)0.0042 (18)
C170.0318 (18)0.058 (2)0.0298 (16)0.0000 (15)0.0078 (13)0.0029 (15)
C180.0311 (18)0.063 (2)0.0272 (16)0.0015 (16)0.0076 (13)0.0020 (15)
C190.035 (2)0.081 (3)0.0286 (19)0.0021 (18)0.0049 (15)0.0021 (17)
C200.041 (2)0.140 (5)0.067 (3)0.006 (3)0.019 (2)0.011 (3)
C210.047 (3)0.131 (4)0.054 (2)0.021 (3)0.014 (2)0.028 (3)
N10.0304 (15)0.0493 (18)0.0359 (15)0.0019 (13)0.0111 (11)0.0052 (13)
N20.0316 (15)0.0374 (16)0.0335 (14)0.0010 (12)0.0052 (11)0.0032 (12)
N30.0300 (15)0.062 (2)0.0258 (13)0.0044 (13)0.0061 (11)0.0009 (13)
N40.0345 (16)0.067 (2)0.0276 (14)0.0020 (14)0.0120 (12)0.0021 (13)
N50.043 (2)0.136 (4)0.0301 (17)0.014 (2)0.0131 (15)0.0117 (19)
O10.0418 (15)0.102 (2)0.0273 (12)0.0106 (14)0.0117 (10)0.0078 (13)
O20.0513 (18)0.146 (3)0.0385 (16)0.0071 (17)0.0009 (13)0.0277 (17)
O30.0345 (15)0.099 (2)0.0440 (14)0.0096 (14)0.0039 (11)0.0060 (14)
S10.0697 (8)0.0732 (8)0.0864 (8)0.0135 (6)0.0235 (6)0.0291 (7)
S20.0450 (6)0.0578 (6)0.0653 (6)0.0135 (5)0.0076 (5)0.0124 (5)
S30.0585 (7)0.0500 (6)0.0549 (6)0.0118 (5)0.0118 (5)0.0046 (5)
S40.0647 (7)0.0398 (5)0.0495 (5)0.0027 (5)0.0023 (5)0.0028 (4)
S50.0347 (5)0.1025 (9)0.0359 (5)0.0064 (5)0.0150 (4)0.0007 (5)
Ni10.0291 (2)0.0506 (3)0.0298 (2)0.0005 (2)0.00674 (16)0.00160 (19)
Geometric parameters (Å, º) top
C1—C21.382 (6)C15—N31.315 (4)
C1—N11.392 (4)C15—N51.340 (4)
C1—C61.398 (5)C15—S51.730 (4)
C2—C31.380 (6)C16—C171.339 (5)
C2—H20.9300C16—S51.722 (4)
C3—C41.378 (8)C16—H160.9300
C3—H30.9300C17—N31.394 (4)
C4—C51.354 (7)C17—C181.464 (5)
C4—H40.9300C18—N41.281 (4)
C5—C61.394 (6)C18—C191.514 (4)
C5—H50.9300C19—O21.194 (4)
C6—S11.724 (5)C19—O31.305 (4)
C7—N11.311 (4)C20—O31.463 (4)
C7—S21.695 (4)C20—H20A0.9600
C7—S11.737 (4)C20—H20B0.9600
C8—C91.383 (5)C20—H20C0.9600
C8—C131.401 (4)C21—O11.421 (4)
C8—S31.737 (4)C21—H21A0.9600
C9—C101.350 (6)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—C111.377 (6)N1—Ni12.103 (3)
C10—H100.9300N2—Ni12.108 (2)
C11—C121.376 (5)N3—Ni12.042 (3)
C11—H110.9300N4—O11.389 (3)
C12—C131.385 (5)N4—Ni12.153 (3)
C12—H120.9300N5—H5A0.848 (19)
C13—N21.390 (4)N5—H5B0.863 (19)
C14—N21.326 (4)S2—Ni12.5410 (11)
C14—S41.697 (3)S4—Ni12.5123 (10)
C14—S31.747 (3)
C2—C1—N1126.0 (4)C17—C18—C19121.1 (3)
C2—C1—C6120.5 (4)O2—C19—O3125.2 (3)
N1—C1—C6113.4 (4)O2—C19—C18122.5 (3)
C3—C2—C1117.9 (5)O3—C19—C18112.2 (3)
C3—C2—H2121.0O3—C20—H20A109.5
C1—C2—H2121.0O3—C20—H20B109.5
C4—C3—C2121.4 (5)H20A—C20—H20B109.5
C4—C3—H3119.3O3—C20—H20C109.5
C2—C3—H3119.3H20A—C20—H20C109.5
C5—C4—C3121.3 (5)H20B—C20—H20C109.5
C5—C4—H4119.3O1—C21—H21A109.5
C3—C4—H4119.3O1—C21—H21B109.5
C4—C5—C6118.7 (5)H21A—C21—H21B109.5
C4—C5—H5120.7O1—C21—H21C109.5
C6—C5—H5120.7H21A—C21—H21C109.5
C5—C6—C1120.2 (4)H21B—C21—H21C109.5
C5—C6—S1129.3 (4)C7—N1—C1111.8 (3)
C1—C6—S1110.5 (3)C7—N1—Ni198.7 (2)
N1—C7—S2119.5 (3)C1—N1—Ni1148.0 (2)
N1—C7—S1114.8 (3)C14—N2—C13112.0 (3)
S2—C7—S1125.7 (2)C14—N2—Ni196.95 (19)
C9—C8—C13120.9 (4)C13—N2—Ni1148.1 (2)
C9—C8—S3129.4 (3)C15—N3—C17110.3 (3)
C13—C8—S3109.6 (2)C15—N3—Ni1133.5 (2)
C10—C9—C8118.2 (4)C17—N3—Ni1115.8 (2)
C10—C9—H9120.9C18—N4—O1114.2 (3)
C8—C9—H9120.9C18—N4—Ni1115.5 (2)
C9—C10—C11121.8 (4)O1—N4—Ni1128.5 (2)
C9—C10—H10119.1C15—N5—H5A116 (3)
C11—C10—H10119.1C15—N5—H5B118 (3)
C12—C11—C10121.1 (4)H5A—N5—H5B125 (4)
C12—C11—H11119.4N4—O1—C21110.6 (2)
C10—C11—H11119.4C19—O3—C20116.0 (3)
C11—C12—C13118.1 (3)C6—S1—C789.47 (19)
C11—C12—H12121.0C7—S2—Ni174.11 (13)
C13—C12—H12121.0C8—S3—C1490.12 (16)
C12—C13—N2125.8 (3)C14—S4—Ni174.26 (11)
C12—C13—C8119.8 (3)C16—S5—C1589.61 (17)
N2—C13—C8114.4 (3)N3—Ni1—N1160.83 (11)
N2—C14—S4119.2 (2)N3—Ni1—N2100.11 (10)
N2—C14—S3113.8 (2)N1—Ni1—N285.53 (10)
S4—C14—S3126.9 (2)N3—Ni1—N476.10 (10)
N3—C15—N5123.9 (3)N1—Ni1—N4101.37 (10)
N3—C15—S5114.1 (2)N2—Ni1—N4169.15 (11)
N5—C15—S5121.9 (3)N3—Ni1—S4100.16 (8)
C17—C16—S5110.2 (3)N1—Ni1—S498.95 (8)
C17—C16—H16124.9N2—Ni1—S468.27 (7)
S5—C16—H16124.9N4—Ni1—S4102.12 (8)
C16—C17—N3115.8 (3)N3—Ni1—S293.47 (8)
C16—C17—C18129.7 (3)N1—Ni1—S267.44 (8)
N3—C17—C18114.4 (3)N2—Ni1—S2100.15 (7)
N4—C18—C17115.0 (3)N4—Ni1—S290.28 (9)
N4—C18—C19123.8 (3)S4—Ni1—S2163.39 (4)
N1—C1—C2—C3178.5 (3)C1—C6—S1—C70.4 (3)
C6—C1—C2—C31.3 (5)N1—C7—S1—C60.9 (3)
C1—C2—C3—C41.0 (6)S2—C7—S1—C6176.7 (3)
C2—C3—C4—C50.4 (7)N1—C7—S2—Ni15.0 (2)
C3—C4—C5—C60.0 (7)S1—C7—S2—Ni1172.4 (2)
C4—C5—C6—C10.2 (6)C9—C8—S3—C14178.4 (4)
C4—C5—C6—S1177.0 (4)C13—C8—S3—C140.4 (3)
C2—C1—C6—C50.9 (6)N2—C14—S3—C80.3 (3)
N1—C1—C6—C5178.9 (3)S4—C14—S3—C8178.2 (3)
C2—C1—C6—S1178.2 (3)N2—C14—S4—Ni110.3 (2)
N1—C1—C6—S11.6 (4)S3—C14—S4—Ni1167.6 (3)
C13—C8—C9—C100.1 (6)C17—C16—S5—C150.5 (3)
S3—C8—C9—C10178.6 (3)N3—C15—S5—C160.4 (3)
C8—C9—C10—C110.3 (6)N5—C15—S5—C16177.5 (4)
C9—C10—C11—C120.4 (6)C15—N3—Ni1—N1100.0 (4)
C10—C11—C12—C131.4 (6)C17—N3—Ni1—N171.8 (4)
C11—C12—C13—N2177.8 (3)C15—N3—Ni1—N25.8 (4)
C11—C12—C13—C81.6 (5)C17—N3—Ni1—N2177.5 (2)
C9—C8—C13—C120.9 (5)C15—N3—Ni1—N4175.4 (4)
S3—C8—C13—C12179.8 (3)C17—N3—Ni1—N412.9 (2)
C9—C8—C13—N2178.5 (3)C15—N3—Ni1—S475.3 (3)
S3—C8—C13—N20.4 (4)C17—N3—Ni1—S4113.0 (2)
S5—C16—C17—N30.5 (4)C15—N3—Ni1—S295.2 (3)
S5—C16—C17—C18176.9 (3)C17—N3—Ni1—S276.6 (2)
C16—C17—C18—N4171.8 (4)C7—N1—Ni1—N38.9 (4)
N3—C17—C18—N45.7 (5)C1—N1—Ni1—N3170.9 (4)
C16—C17—C18—C1911.0 (6)C7—N1—Ni1—N299.2 (2)
N3—C17—C18—C19171.5 (3)C1—N1—Ni1—N262.8 (4)
N4—C18—C19—O241.7 (6)C7—N1—Ni1—N489.2 (2)
C17—C18—C19—O2135.2 (4)C1—N1—Ni1—N4108.7 (4)
N4—C18—C19—O3141.9 (4)C7—N1—Ni1—S4166.38 (19)
C17—C18—C19—O341.1 (5)C1—N1—Ni1—S44.3 (4)
S2—C7—N1—C1175.8 (2)C7—N1—Ni1—S23.72 (18)
S1—C7—N1—C11.9 (4)C1—N1—Ni1—S2165.8 (4)
S2—C7—N1—Ni15.9 (3)C14—N2—Ni1—N3104.5 (2)
S1—C7—N1—Ni1171.79 (17)C13—N2—Ni1—N399.9 (4)
C2—C1—N1—C7177.5 (3)C14—N2—Ni1—N194.0 (2)
C6—C1—N1—C72.3 (4)C13—N2—Ni1—N161.6 (4)
C2—C1—N1—Ni116.7 (6)C14—N2—Ni1—N436.0 (6)
C6—C1—N1—Ni1163.1 (3)C13—N2—Ni1—N4168.4 (5)
S4—C14—N2—C13178.3 (2)C14—N2—Ni1—S47.52 (18)
S3—C14—N2—C130.1 (4)C13—N2—Ni1—S4163.1 (4)
S4—C14—N2—Ni111.9 (3)C14—N2—Ni1—S2160.08 (19)
S3—C14—N2—Ni1166.23 (18)C13—N2—Ni1—S24.5 (4)
C12—C13—N2—C14179.5 (3)C18—N4—Ni1—N316.6 (3)
C8—C13—N2—C140.1 (4)O1—N4—Ni1—N3179.9 (3)
C12—C13—N2—Ni126.7 (6)C18—N4—Ni1—N1144.0 (3)
C8—C13—N2—Ni1153.9 (3)O1—N4—Ni1—N119.6 (3)
N5—C15—N3—C17177.6 (4)C18—N4—Ni1—N287.2 (6)
S5—C15—N3—C170.2 (4)O1—N4—Ni1—N2109.2 (6)
N5—C15—N3—Ni15.6 (6)C18—N4—Ni1—S4114.2 (3)
S5—C15—N3—Ni1172.25 (18)O1—N4—Ni1—S482.2 (3)
C16—C17—N3—C150.2 (5)C18—N4—Ni1—S276.9 (3)
C18—C17—N3—C15177.6 (3)O1—N4—Ni1—S286.6 (3)
C16—C17—N3—Ni1173.4 (3)C14—S4—Ni1—N3102.97 (14)
C18—C17—N3—Ni18.8 (4)C14—S4—Ni1—N175.46 (14)
C17—C18—N4—O1177.3 (3)C14—S4—Ni1—N26.05 (15)
C19—C18—N4—O15.6 (5)C14—S4—Ni1—N4179.22 (15)
C17—C18—N4—Ni116.7 (4)C14—S4—Ni1—S241.67 (19)
C19—C18—N4—Ni1160.4 (3)C7—S2—Ni1—N3178.75 (14)
C18—N4—O1—C21159.1 (3)C7—S2—Ni1—N12.95 (14)
Ni1—N4—O1—C2137.2 (4)C7—S2—Ni1—N277.83 (14)
O2—C19—O3—C200.5 (6)C7—S2—Ni1—N4105.16 (14)
C18—C19—O3—C20175.8 (4)C7—S2—Ni1—S433.55 (19)
C5—C6—S1—C7177.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5A···N20.85 (2)2.25 (3)3.036 (5)154 (4)
N5—H5B···O2i0.86 (2)2.24 (3)3.025 (5)150 (4)
N5—H5B···O1i0.86 (2)2.38 (3)3.036 (4)133 (3)
C16—H16···O30.932.402.898 (4)114
C21—H21B···N10.962.413.282 (5)151
C4—H4···Cg2ii0.932.933.588 (6)129
C9—H9···Cg1i0.932.993.636 (4)128
C21—H21A···Cg2iii0.962.763.556 (4)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H4NS2)2(C7H9N3O3S)]
Mr606.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.8387 (11), 7.8701 (5), 17.9861 (10)
β (°) 98.639 (2)
V3)2496.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.42 × 0.37 × 0.34
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26981, 6164, 3512
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.03
No. of reflections6164
No. of parameters324
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—Ni12.103 (3)N4—Ni12.153 (3)
N2—Ni12.108 (2)S2—Ni12.5410 (11)
N3—Ni12.042 (3)S4—Ni12.5123 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5A···N20.848 (19)2.25 (3)3.036 (5)154 (4)
N5—H5B···O2i0.863 (19)2.24 (3)3.025 (5)150 (4)
N5—H5B···O1i0.863 (19)2.38 (3)3.036 (4)133 (3)
C16—H16···O30.932.402.898 (4)113.6
C21—H21B···N10.962.413.282 (5)150.7
C4—H4···Cg2ii0.932.933.588 (6)129
C9—H9···Cg1i0.932.993.636 (4)128
C21—H21A···Cg2iii0.962.763.556 (4)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project `Strengthening of the Materials Chemistry Laboratory' at GCUL.

References

First citationBatı, H., Yüksektepe, Ç., Çalıskan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313-m2315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m403–m405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, S., Khan, I. U., Arshad, M. N., Sheikh, T. A. & Qureshi, M. Z. (2009). Acta Cryst. E65, o1805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m598–m600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, R.-F., Liu, J.-H., Qian, H. & Zhao, K.-Y. (2005). Acta Cryst. E61, m2142–m2144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTashpulatov, Yu., Zvonkova, Z. V. & Zhdanov, G. S. (1957). Kristallografiya, 2, 33.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds