organic compounds
Bis[3-(dihydroxyboryl)anilinium] sulfate
aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Mexico
*Correspondence e-mail: hhopfl@uaem.mx
In the title compound, 2C6H9BNO2+·SO42−, the dihydroxyboryl group of one of the two independent boronic acid molecules participates in (B)O—H⋯OB and N—H⋯OB hydrogen bonds, while the second is involved mainly in the formation of the charge-assisted heterodimeric synthon –B(OH)2⋯−O2SO2−. These aggregates are further connected through N—H⋯Osulfate interactions, forming a complex three-dimensional hydrogen-bonded network.
Related literature
For related salts, see: Braga et al. (2003); Kara et al. (2006); Rogowska et al. (2006); Melendez et al. (1996); Plaut et al. (2000); SeethaLekshmi et al. (2006). For the use of in crystal engineering, see: Aakeröy et al. (2005); Filthaus et al. (2008); Fournier et al. (2003); Pedireddi et al. (2004); Rodríguez-Cuamatzi et al. (2004a,b, 2005, 2009); Shimpi et al. (2007); Zhang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus NT (Bruker, 2001); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810012092/tk2649sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012092/tk2649Isup2.hkl
The title compound is a commercially available product that has been crystallized from methanol. M.p. > 300 °C.
H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C)]. Hydrogen atoms bonded to O (H1', H2', H31' and H32') and N (H1A, H1B, H1C, H31A, H31B and H31C) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.840±0.001 Å, N—H = 0.860 ±0.001 Å and [Uiso(H)= 1.5 Ueq(O, N)].
Boronic acids, RB(OH)2, are capable of forming strong hydrogen bonds with different functional groups such as carboxylic acid and pyridine derivatives (Aakeröy et al., 2005; Pedireddi et al., 2004; Rodríguez-Cuamatzi et al., 2009) and have been employed not only for the formation of neutral homo- and heterodimeric synthons, e.g. RB(OH)2···(HO)2BR and RB(OH)2···HOOCR (Filthaus et al., 2008; Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004a,b; Shimpi et al., 2007; Zhang et al., 2007), but also for the generation of charge-assisted synthons such as RB(OH)2···-OOCR and RB(OH)2···-OSCR (Kara et al., 2006; Rodríguez-Cuamatzi et al., 2005; Rogowska et al., 2006; SeethaLekshmi et al., 2006).
A search of the CSD (Allen, 2002; version 5.30) revealed that aside from the above-mentioned adducts with organic and inorganic carboxylate derivatives, there are only two further entries for charged motifs of the composition RB(OH)2···-O2E, in which the anions are sulfate and nitrate, respectively (Braga et al., 2003).
The title compound, (I), represents a further example for the –B(OH)2···-O2SO2- heterodimeric synthon.
The
of I contains two independent protonated 3-aminophenylboronic acid (3-apba) molecules and one sulfate anion as counterion (Fig. 1). Due to the presence of a large number of hydrogen-bonding functions (BOH, NH3+ and SO42-) a complex 3D hydrogen bonded network is formed, in which the sulfate counterions play the role of the central building block within the Each sulfate is hydrogen bonded to four neighboring [3-apbaH]+ entities through a total of five (B)OH···Osulfate and N—H···Osulfate interactions, and serves as four-connected node (Fig. 2).Motif II is formed between the –B(OH)2 group of one of the two [3-apbaH]+ molecules and the sulfate counterion, and corresponds to the charged heterodimeric motif –B(OH)2···-O2SO2- [graph set R22 (8)] (Bernstein et al. 1995). In motif III [R44 (12)] two sulfate groups are hydrogen bridged by two NH3+ functions. Structurally related hydrogen-bonded rings have been reported previously for secondary ammonium carboxylates (Melendez et al., 1996; Plaut et al., 2000). In motif IV [R44(12)] three BOH, one sulfate and one NH3+ group are connected through (B)OH···Osulfate, (B)OH···OB, N—H···Osulfate and N—H···OB hydrogen bonds , while in motif V [R33(11)] two BOH, one sulfate and one NH3+ moiety are connected through (B)OH···Osulfate, (B)OH···OB and N—H···Osulfate hydrogen bonds. Motifs II-V give rise to 2D undulated layers (Fig. 2, Table 1), which are connected through three additional N—H···Osulfate interactions to give an overall 3D hydrogen-bonded network.
For related salts, see: Braga et al. (2003); Kara et al. (2006); Rogowska et al. (2006); Melendez et al. (1996); Plaut et al. (2000); SeethaLekshmi et al. (2006). For the use of
in crystal engineering, see: Aakeröy et al. (2005); Filthaus et al. (2008); Fournier et al. (2003); Pedireddi et al. (2004); Rodríguez-Cuamatzi et al. (2004a,b, 2005, 2009); Shimpi et al. (2007); Zhang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).Data collection: SMART (Bruker, 2000); cell
SAINT-Plus NT (Bruker, 2001); data reduction: SAINT-Plus NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. Perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. Fragment of the 2D hydrogen-bonded layer in the crystal structure of the title compound, showing motifs II-V. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres ofarbitrary radii. Symmetry operators: (i) -x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z. |
2C6H9BNO2+·SO42− | F(000) = 776 |
Mr = 371.96 | Dx = 1.463 Mg m−3 |
Monoclinic, P21/c | Melting point > 573 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3589 (9) Å | Cell parameters from 1721 reflections |
b = 15.695 (3) Å | θ = 2.6–20.0° |
c = 20.489 (3) Å | µ = 0.24 mm−1 |
β = 101.423 (3)° | T = 173 K |
V = 1689.1 (5) Å3 | Rectangular prism, colourless |
Z = 4 | 0.41 × 0.18 × 0.09 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3675 independent reflections |
Radiation source: fine-focus sealed tube | 2642 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 8.3 pixels mm-1 | θmax = 27.0°, θmin = 1.7° |
phi and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −19→20 |
Tmin = 0.83, Tmax = 1.00 | l = −26→26 |
18634 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0357P)2 + 2.0612P] where P = (Fo2 + 2Fc2)/3 |
3675 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.36 e Å−3 |
10 restraints | Δρmin = −0.37 e Å−3 |
2C6H9BNO2+·SO42− | V = 1689.1 (5) Å3 |
Mr = 371.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.3589 (9) Å | µ = 0.24 mm−1 |
b = 15.695 (3) Å | T = 173 K |
c = 20.489 (3) Å | 0.41 × 0.18 × 0.09 mm |
β = 101.423 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 3675 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2642 reflections with I > 2σ(I) |
Tmin = 0.83, Tmax = 1.00 | Rint = 0.096 |
18634 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | 10 restraints |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.36 e Å−3 |
3675 reflections | Δρmin = −0.37 e Å−3 |
256 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.5330 (8) | 0.8900 (3) | 0.3774 (2) | 0.0287 (10) | |
N1 | 0.3567 (8) | 0.6073 (2) | 0.47243 (17) | 0.0409 (9) | |
H1A | 0.475 (6) | 0.594 (3) | 0.451 (2) | 0.061* | |
H1B | 0.230 (6) | 0.578 (3) | 0.451 (2) | 0.061* | |
H1C | 0.381 (9) | 0.588 (3) | 0.5125 (8) | 0.061* | |
O1 | 0.5531 (6) | 0.97477 (16) | 0.38584 (13) | 0.0415 (8) | |
H1' | 0.602 (9) | 1.000 (3) | 0.3546 (16) | 0.062* | |
O2 | 0.6184 (5) | 0.85326 (15) | 0.32467 (12) | 0.0271 (6) | |
H2' | 0.586 (7) | 0.8010 (6) | 0.320 (2) | 0.041* | |
C1 | 0.4023 (7) | 0.8355 (2) | 0.42509 (17) | 0.0277 (9) | |
C2 | 0.4458 (7) | 0.7479 (2) | 0.43246 (17) | 0.0259 (8) | |
H2 | 0.5704 | 0.7219 | 0.4119 | 0.031* | |
C3 | 0.3110 (7) | 0.6988 (2) | 0.46910 (18) | 0.0274 (9) | |
C4 | 0.1327 (7) | 0.7344 (3) | 0.50092 (19) | 0.0350 (10) | |
H4 | 0.0392 | 0.7000 | 0.5258 | 0.042* | |
C5 | 0.0930 (8) | 0.8213 (3) | 0.4958 (2) | 0.0433 (11) | |
H5 | −0.0273 | 0.8470 | 0.5181 | 0.052* | |
C6 | 0.2248 (8) | 0.8711 (3) | 0.45906 (19) | 0.0379 (10) | |
H6 | 0.1951 | 0.9308 | 0.4566 | 0.045* | |
B31 | 1.3528 (8) | 0.6344 (3) | 0.2462 (2) | 0.0234 (9) | |
N31 | 0.7762 (6) | 0.88966 (19) | 0.20148 (15) | 0.0218 (6) | |
H31A | 0.664 (5) | 0.910 (2) | 0.1691 (12) | 0.033* | |
H31B | 0.911 (4) | 0.920 (2) | 0.2040 (19) | 0.033* | |
H31C | 0.714 (6) | 0.894 (2) | 0.2370 (10) | 0.033* | |
O31 | 1.3885 (5) | 0.55072 (15) | 0.23406 (12) | 0.0259 (6) | |
H31' | 1.522 (4) | 0.530 (2) | 0.2572 (17) | 0.039* | |
O32 | 1.5200 (5) | 0.68048 (15) | 0.29159 (12) | 0.0272 (6) | |
H32' | 1.633 (5) | 0.649 (2) | 0.3138 (17) | 0.041* | |
C31 | 1.1043 (7) | 0.6786 (2) | 0.20739 (16) | 0.0221 (8) | |
C32 | 1.0514 (6) | 0.7641 (2) | 0.21890 (17) | 0.0220 (8) | |
H32 | 1.1704 | 0.7966 | 0.2495 | 0.026* | |
C33 | 0.8294 (6) | 0.8014 (2) | 0.18643 (16) | 0.0201 (7) | |
C34 | 0.6537 (7) | 0.7561 (2) | 0.14105 (17) | 0.0254 (8) | |
H34 | 0.5010 | 0.7825 | 0.1188 | 0.030* | |
C35 | 0.7032 (7) | 0.6721 (2) | 0.12854 (18) | 0.0285 (9) | |
H35 | 0.5845 | 0.6405 | 0.0971 | 0.034* | |
C36 | 0.9239 (7) | 0.6335 (2) | 0.16143 (17) | 0.0251 (8) | |
H36 | 0.9541 | 0.5753 | 0.1527 | 0.030* | |
S51 | 0.18611 (16) | 0.99469 (6) | 0.11838 (4) | 0.0218 (2) | |
O51 | −0.0477 (5) | 0.95998 (18) | 0.08028 (13) | 0.0375 (7) | |
O52 | 0.4070 (5) | 0.9546 (2) | 0.09827 (13) | 0.0452 (8) | |
O53 | 0.2071 (5) | 0.97849 (15) | 0.19058 (11) | 0.0274 (6) | |
O54 | 0.1982 (6) | 1.08633 (17) | 0.10711 (14) | 0.0470 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.032 (2) | 0.033 (3) | 0.020 (2) | 0.007 (2) | 0.0024 (18) | 0.0038 (18) |
N1 | 0.066 (3) | 0.033 (2) | 0.0265 (19) | −0.0244 (19) | 0.0168 (19) | −0.0051 (16) |
O1 | 0.077 (2) | 0.0217 (15) | 0.0305 (16) | 0.0007 (14) | 0.0210 (15) | 0.0008 (12) |
O2 | 0.0406 (16) | 0.0190 (13) | 0.0232 (13) | −0.0056 (12) | 0.0098 (12) | 0.0010 (11) |
C1 | 0.031 (2) | 0.035 (2) | 0.0169 (18) | 0.0012 (17) | 0.0029 (16) | 0.0030 (15) |
C2 | 0.028 (2) | 0.032 (2) | 0.0184 (18) | −0.0022 (16) | 0.0060 (15) | −0.0012 (15) |
C3 | 0.028 (2) | 0.033 (2) | 0.0207 (19) | −0.0066 (17) | 0.0039 (16) | −0.0012 (16) |
C4 | 0.023 (2) | 0.057 (3) | 0.026 (2) | −0.0051 (19) | 0.0057 (17) | 0.0067 (19) |
C5 | 0.033 (2) | 0.065 (3) | 0.034 (2) | 0.019 (2) | 0.0135 (19) | 0.007 (2) |
C6 | 0.041 (2) | 0.046 (3) | 0.026 (2) | 0.014 (2) | 0.0045 (18) | 0.0082 (19) |
B31 | 0.031 (2) | 0.022 (2) | 0.020 (2) | 0.0009 (18) | 0.0101 (18) | 0.0015 (17) |
N31 | 0.0212 (16) | 0.0228 (16) | 0.0224 (16) | 0.0006 (13) | 0.0065 (13) | 0.0024 (13) |
O31 | 0.0284 (15) | 0.0223 (14) | 0.0254 (14) | 0.0043 (11) | 0.0013 (11) | −0.0028 (11) |
O32 | 0.0331 (15) | 0.0181 (13) | 0.0270 (14) | 0.0037 (11) | −0.0022 (12) | −0.0040 (11) |
C31 | 0.0243 (19) | 0.0234 (19) | 0.0192 (17) | −0.0002 (15) | 0.0059 (15) | 0.0007 (15) |
C32 | 0.0206 (19) | 0.026 (2) | 0.0186 (18) | −0.0023 (15) | 0.0019 (14) | −0.0002 (14) |
C33 | 0.0231 (19) | 0.0196 (18) | 0.0195 (17) | −0.0019 (14) | 0.0091 (15) | 0.0025 (14) |
C34 | 0.025 (2) | 0.028 (2) | 0.0224 (19) | −0.0011 (16) | 0.0021 (15) | 0.0038 (15) |
C35 | 0.031 (2) | 0.027 (2) | 0.026 (2) | −0.0054 (17) | 0.0014 (17) | 0.0007 (16) |
C36 | 0.034 (2) | 0.0183 (19) | 0.0233 (19) | −0.0013 (16) | 0.0067 (16) | −0.0033 (14) |
S51 | 0.0197 (4) | 0.0264 (5) | 0.0190 (4) | 0.0009 (4) | 0.0035 (3) | 0.0033 (4) |
O51 | 0.0253 (15) | 0.0582 (19) | 0.0267 (15) | −0.0102 (13) | −0.0002 (12) | 0.0024 (13) |
O52 | 0.0317 (16) | 0.079 (2) | 0.0254 (15) | 0.0252 (15) | 0.0063 (12) | −0.0004 (14) |
O53 | 0.0279 (14) | 0.0339 (15) | 0.0205 (13) | −0.0081 (11) | 0.0049 (11) | 0.0021 (11) |
O54 | 0.071 (2) | 0.0271 (16) | 0.0368 (17) | −0.0020 (15) | −0.0049 (15) | 0.0082 (13) |
B1—O1 | 1.344 (5) | B31—C31 | 1.571 (5) |
B1—O2 | 1.380 (5) | N31—C33 | 1.460 (4) |
B1—C1 | 1.565 (6) | N31—H31A | 0.86 (3) |
N1—C3 | 1.456 (5) | N31—H31B | 0.86 (3) |
N1—H1A | 0.87 (4) | N31—H31C | 0.86 (2) |
N1—H1B | 0.86 (4) | O31—H31' | 0.84 (3) |
N1—H1C | 0.86 (2) | O32—H32' | 0.84 (3) |
O1—H1' | 0.84 (4) | C31—C32 | 1.400 (5) |
O2—H2' | 0.840 (12) | C31—C36 | 1.401 (5) |
C1—C2 | 1.397 (5) | C32—C33 | 1.374 (5) |
C1—C6 | 1.401 (5) | C32—H32 | 0.9500 |
C2—C3 | 1.376 (5) | C33—C34 | 1.381 (5) |
C2—H2 | 0.9500 | C34—C35 | 1.380 (5) |
C3—C4 | 1.378 (5) | C34—H34 | 0.9500 |
C4—C5 | 1.381 (6) | C35—C36 | 1.380 (5) |
C4—H4 | 0.9500 | C35—H35 | 0.9500 |
C5—C6 | 1.374 (6) | C36—H36 | 0.9500 |
C5—H5 | 0.9500 | S51—O51 | 1.445 (3) |
C6—H6 | 0.9500 | S51—O54 | 1.460 (3) |
B31—O31 | 1.358 (5) | S51—O52 | 1.470 (3) |
B31—O32 | 1.364 (5) | S51—O53 | 1.483 (2) |
O1—B1—O2 | 119.0 (4) | C33—N31—H31A | 108 (3) |
O1—B1—C1 | 119.7 (4) | C33—N31—H31B | 110 (3) |
O2—B1—C1 | 121.3 (4) | H31A—N31—H31B | 107 (3) |
C3—N1—H1A | 110 (3) | C33—N31—H31C | 112 (3) |
C3—N1—H1B | 113 (3) | H31A—N31—H31C | 107 (4) |
H1A—N1—H1B | 102 (4) | H31B—N31—H31C | 111 (4) |
C3—N1—H1C | 113 (3) | B31—O31—H31' | 114 (3) |
H1A—N1—H1C | 114 (5) | B31—O32—H32' | 111 (3) |
H1B—N1—H1C | 104 (4) | C32—C31—C36 | 117.5 (3) |
B1—O1—H1' | 114 (3) | C32—C31—B31 | 121.2 (3) |
B1—O2—H2' | 114 (3) | C36—C31—B31 | 121.3 (3) |
C2—C1—C6 | 117.0 (4) | C33—C32—C31 | 120.8 (3) |
C2—C1—B1 | 121.3 (3) | C33—C32—H32 | 119.6 |
C6—C1—B1 | 121.6 (4) | C31—C32—H32 | 119.6 |
C3—C2—C1 | 121.0 (4) | C32—C33—C34 | 121.1 (3) |
C3—C2—H2 | 119.5 | C32—C33—N31 | 119.3 (3) |
C1—C2—H2 | 119.5 | C34—C33—N31 | 119.6 (3) |
C2—C3—C4 | 121.3 (4) | C35—C34—C33 | 119.1 (3) |
C2—C3—N1 | 118.5 (3) | C35—C34—H34 | 120.4 |
C4—C3—N1 | 120.2 (3) | C33—C34—H34 | 120.4 |
C3—C4—C5 | 118.4 (4) | C36—C35—C34 | 120.4 (3) |
C3—C4—H4 | 120.8 | C36—C35—H35 | 119.8 |
C5—C4—H4 | 120.8 | C34—C35—H35 | 119.8 |
C6—C5—C4 | 121.0 (4) | C35—C36—C31 | 121.1 (3) |
C6—C5—H5 | 119.5 | C35—C36—H36 | 119.4 |
C4—C5—H5 | 119.5 | C31—C36—H36 | 119.4 |
C5—C6—C1 | 121.3 (4) | O51—S51—O54 | 110.29 (17) |
C5—C6—H6 | 119.4 | O51—S51—O52 | 110.33 (17) |
C1—C6—H6 | 119.4 | O54—S51—O52 | 108.31 (19) |
O31—B31—O32 | 122.7 (3) | O51—S51—O53 | 111.12 (15) |
O31—B31—C31 | 118.1 (3) | O54—S51—O53 | 109.24 (16) |
O32—B31—C31 | 119.2 (3) | O52—S51—O53 | 107.46 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O31—H31′···O53i | 0.84 (3) | 1.81 (3) | 2.653 (4) | 175 (3) |
O32—H32′···O54i | 0.84 (3) | 1.96 (3) | 2.744 (4) | 155 (3) |
N1—H1A···O54ii | 0.87 (4) | 2.31 (4) | 3.161 (5) | 169 (4) |
N1—H1C···O52iii | 0.86 (2) | 1.86 (2) | 2.718 (4) | 176 (5) |
O1—H1′···O31iv | 0.84 (4) | 1.99 (4) | 2.803 (4) | 163 (4) |
N31—H31A···O52 | 0.86 (3) | 1.92 (3) | 2.787 (4) | 179 (3) |
N31—H31C···O2 | 0.86 (2) | 2.07 (2) | 2.874 (4) | 156 (3) |
O2—H2′···O32v | 0.84 (1) | 1.99 (2) | 2.820 (3) | 169 (4) |
N1—H1B···O51vi | 0.86 (4) | 2.13 (4) | 2.923 (5) | 152 (4) |
N1—H1B···O54vi | 0.86 (4) | 2.37 (4) | 3.112 (5) | 144 (4) |
N31—H31B···O53vii | 0.86 (3) | 1.90 (3) | 2.744 (4) | 168 (4) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x−1, y, z; (vi) −x, y−1/2, −z+1/2; (vii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2C6H9BNO2+·SO42− |
Mr | 371.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 5.3589 (9), 15.695 (3), 20.489 (3) |
β (°) | 101.423 (3) |
V (Å3) | 1689.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.41 × 0.18 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.83, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18634, 3675, 2642 |
Rint | 0.096 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.145, 1.12 |
No. of reflections | 3675 |
No. of parameters | 256 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.37 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O31—H31'···O53i | 0.84 (3) | 1.81 (3) | 2.653 (4) | 175 (3) |
O32—H32'···O54i | 0.84 (3) | 1.96 (3) | 2.744 (4) | 155 (3) |
N1—H1A···O54ii | 0.87 (4) | 2.31 (4) | 3.161 (5) | 169 (4) |
N1—H1C···O52iii | 0.86 (2) | 1.86 (2) | 2.718 (4) | 176 (5) |
O1—H1'···O31iv | 0.84 (4) | 1.99 (4) | 2.803 (4) | 163 (4) |
N31—H31A···O52 | 0.86 (3) | 1.92 (3) | 2.787 (4) | 179 (3) |
N31—H31C···O2 | 0.86 (2) | 2.07 (2) | 2.874 (4) | 156 (3) |
O2—H2'···O32v | 0.840 (12) | 1.990 (16) | 2.820 (3) | 169 (4) |
N1—H1B···O51vi | 0.86 (4) | 2.13 (4) | 2.923 (5) | 152 (4) |
N1—H1B···O54vi | 0.86 (4) | 2.37 (4) | 3.112 (5) | 144 (4) |
N31—H31B···O53vii | 0.86 (3) | 1.90 (3) | 2.744 (4) | 168 (4) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x−1, y, z; (vi) −x, y−1/2, −z+1/2; (vii) x+1, y, z. |
Acknowledgements
This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).
References
Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Braga, D., Polito, M., Bi, M., D-Addario, D., Tagliavini, E. & Sturba, L. (2003). Organometallics, 22, 2142–2150. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kara, H., Adams, C. J., Orpen, A. G. & Podesta, T. J. (2006). New. J. Chem. 30, 1461–1469. Web of Science CSD CrossRef CAS Google Scholar
Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215. CSD CrossRef CAS Web of Science Google Scholar
Pedireddi, V. R. & SeethaLekshmi, N. (2004). Tetrahedron Lett. 45, 1903–1906. Web of Science CSD CrossRef CAS Google Scholar
Plaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769–770. Web of Science CSD CrossRef Google Scholar
Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175. Google Scholar
Rodríguez-Cuamatzi, P., Luna-García, R., Torres-Huerta, A., Bernal-Uruchurtu, M. I., Barba, V. & Höpfl, H. (2009). Cryst. Growth Des. 9, 1575–1583. Google Scholar
Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004a). Angew. Chem. Int. Ed. 43, 3041–3044. Google Scholar
Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004b). Acta Cryst. E60, o1316–o1318. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rogowska, P., Cyranski, M. K., Sporzynski, A. & Ciesielski, A. (2006). Tetrahedron Lett. 47, 1389–1393. Web of Science CSD CrossRef CAS Google Scholar
SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400–2402. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Zhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287–3292. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Boronic acids, RB(OH)2, are capable of forming strong hydrogen bonds with different functional groups such as carboxylic acid and pyridine derivatives (Aakeröy et al., 2005; Pedireddi et al., 2004; Rodríguez-Cuamatzi et al., 2009) and have been employed not only for the formation of neutral homo- and heterodimeric synthons, e.g. RB(OH)2···(HO)2BR and RB(OH)2···HOOCR (Filthaus et al., 2008; Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004a,b; Shimpi et al., 2007; Zhang et al., 2007), but also for the generation of charge-assisted synthons such as RB(OH)2···-OOCR and RB(OH)2···-OSCR (Kara et al., 2006; Rodríguez-Cuamatzi et al., 2005; Rogowska et al., 2006; SeethaLekshmi et al., 2006).
A search of the CSD (Allen, 2002; version 5.30) revealed that aside from the above-mentioned adducts with organic and inorganic carboxylate derivatives, there are only two further entries for charged motifs of the composition RB(OH)2···-O2E, in which the anions are sulfate and nitrate, respectively (Braga et al., 2003).
The title compound, (I), represents a further example for the –B(OH)2···-O2SO2- heterodimeric synthon.
The asymmetric unit of I contains two independent protonated 3-aminophenylboronic acid (3-apba) molecules and one sulfate anion as counterion (Fig. 1). Due to the presence of a large number of hydrogen-bonding functions (BOH, NH3+ and SO42-) a complex 3D hydrogen bonded network is formed, in which the sulfate counterions play the role of the central building block within the crystal structure. Each sulfate is hydrogen bonded to four neighboring [3-apbaH]+ entities through a total of five (B)OH···Osulfate and N—H···Osulfate interactions, and serves as four-connected node (Fig. 2).
Motif II is formed between the –B(OH)2 group of one of the two [3-apbaH]+ molecules and the sulfate counterion, and corresponds to the charged heterodimeric motif –B(OH)2···-O2SO2- [graph set R22 (8)] (Bernstein et al. 1995). In motif III [R44 (12)] two sulfate groups are hydrogen bridged by two NH3+ functions. Structurally related hydrogen-bonded rings have been reported previously for secondary ammonium carboxylates (Melendez et al., 1996; Plaut et al., 2000). In motif IV [R44(12)] three BOH, one sulfate and one NH3+ group are connected through (B)OH···Osulfate, (B)OH···OB, N—H···Osulfate and N—H···OB hydrogen bonds , while in motif V [R33(11)] two BOH, one sulfate and one NH3+ moiety are connected through (B)OH···Osulfate, (B)OH···OB and N—H···Osulfate hydrogen bonds. Motifs II-V give rise to 2D undulated layers (Fig. 2, Table 1), which are connected through three additional N—H···Osulfate interactions to give an overall 3D hydrogen-bonded network.