organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-(di­hydroxy­boryl)anilinium] sulfate

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Mexico
*Correspondence e-mail: hhopfl@uaem.mx

(Received 23 March 2010; accepted 30 March 2010; online 10 April 2010)

In the title compound, 2C6H9BNO2+·SO42−, the dihydroxy­boryl group of one of the two independent boronic acid mol­ecules participates in (B)O—H⋯OB and N—H⋯OB hydrogen bonds, while the second is involved mainly in the formation of the charge-assisted heterodimeric synthon –B(OH)2O2SO2. These aggregates are further connected through N—H⋯Osulfate inter­actions, forming a complex three-dimensional hydrogen-bonded network.

Related literature

For related salts, see: Braga et al. (2003[Braga, D., Polito, M., Bi, M., D-Addario, D., Tagliavini, E. & Sturba, L. (2003). Organometallics, 22, 2142-2150.]); Kara et al. (2006[Kara, H., Adams, C. J., Orpen, A. G. & Podesta, T. J. (2006). New. J. Chem. 30, 1461-1469.]); Rogowska et al. (2006[Rogowska, P., Cyranski, M. K., Sporzynski, A. & Ciesielski, A. (2006). Tetrahedron Lett. 47, 1389-1393.]); Melendez et al. (1996[Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213-2215.]); Plaut et al. (2000[Plaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769-770.]); SeethaLekshmi et al. (2006[SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400-2402.]). For the use of boronic acids in crystal engineering, see: Aakeröy et al. (2005[Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102-107.]); Filthaus et al. (2008[Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.]); Fournier et al. (2003[Fournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002-1006.]); Pedireddi et al. (2004[Pedireddi, V. R. & SeethaLekshmi, N. (2004). Tetrahedron Lett. 45, 1903-1906.]); Rodríguez-Cuamatzi et al. (2004a[Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004a). Angew. Chem. Int. Ed. 43, 3041-3044.],b[Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004b). Acta Cryst. E60, o1316-o1318.], 2005[Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167-175.], 2009[Rodríguez-Cuamatzi, P., Luna-García, R., Torres-Huerta, A., Bernal-Uruchurtu, M. I., Barba, V. & Höpfl, H. (2009). Cryst. Growth Des. 9, 1575-1583.]); Shimpi et al. (2007[Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958-1963.]); Zhang et al. (2007[Zhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287-3292.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H9BNO2+·SO42−

  • Mr = 371.96

  • Monoclinic, P 21 /c

  • a = 5.3589 (9) Å

  • b = 15.695 (3) Å

  • c = 20.489 (3) Å

  • β = 101.423 (3)°

  • V = 1689.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.41 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.83, Tmax = 1.00

  • 18634 measured reflections

  • 3675 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.145

  • S = 1.12

  • 3675 reflections

  • 256 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31′⋯O53i 0.84 (3) 1.81 (3) 2.653 (4) 175 (3)
O32—H32′⋯O54i 0.84 (3) 1.96 (3) 2.744 (4) 155 (3)
N1—H1A⋯O54ii 0.87 (4) 2.31 (4) 3.161 (5) 169 (4)
N1—H1C⋯O52iii 0.86 (2) 1.86 (2) 2.718 (4) 176 (5)
O1—H1′⋯O31iv 0.84 (4) 1.99 (4) 2.803 (4) 163 (4)
N31—H31A⋯O52 0.86 (3) 1.92 (3) 2.787 (4) 179 (3)
N31—H31C⋯O2 0.86 (2) 2.07 (2) 2.874 (4) 156 (3)
O2—H2′⋯O32v 0.84 (1) 1.99 (2) 2.820 (3) 169 (4)
N1—H1B⋯O51vi 0.86 (4) 2.13 (4) 2.923 (5) 152 (4)
N1—H1B⋯O54vi 0.86 (4) 2.37 (4) 3.112 (5) 144 (4)
N31—H31B⋯O53vii 0.86 (3) 1.90 (3) 2.744 (4) 168 (4)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus NT (Bruker, 2001[Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Boronic acids, RB(OH)2, are capable of forming strong hydrogen bonds with different functional groups such as carboxylic acid and pyridine derivatives (Aakeröy et al., 2005; Pedireddi et al., 2004; Rodríguez-Cuamatzi et al., 2009) and have been employed not only for the formation of neutral homo- and heterodimeric synthons, e.g. RB(OH)2···(HO)2BR and RB(OH)2···HOOCR (Filthaus et al., 2008; Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004a,b; Shimpi et al., 2007; Zhang et al., 2007), but also for the generation of charge-assisted synthons such as RB(OH)2···-OOCR and RB(OH)2···-OSCR (Kara et al., 2006; Rodríguez-Cuamatzi et al., 2005; Rogowska et al., 2006; SeethaLekshmi et al., 2006).

A search of the CSD (Allen, 2002; version 5.30) revealed that aside from the above-mentioned adducts with organic and inorganic carboxylate derivatives, there are only two further entries for charged motifs of the composition RB(OH)2···-O2E, in which the anions are sulfate and nitrate, respectively (Braga et al., 2003).

The title compound, (I), represents a further example for the –B(OH)2···-O2SO2- heterodimeric synthon.

The asymmetric unit of I contains two independent protonated 3-aminophenylboronic acid (3-apba) molecules and one sulfate anion as counterion (Fig. 1). Due to the presence of a large number of hydrogen-bonding functions (BOH, NH3+ and SO42-) a complex 3D hydrogen bonded network is formed, in which the sulfate counterions play the role of the central building block within the crystal structure. Each sulfate is hydrogen bonded to four neighboring [3-apbaH]+ entities through a total of five (B)OH···Osulfate and NH···Osulfate interactions, and serves as four-connected node (Fig. 2).

Motif II is formed between the –B(OH)2 group of one of the two [3-apbaH]+ molecules and the sulfate counterion, and corresponds to the charged heterodimeric motif –B(OH)2···-O2SO2- [graph set R22 (8)] (Bernstein et al. 1995). In motif III [R44 (12)] two sulfate groups are hydrogen bridged by two NH3+ functions. Structurally related hydrogen-bonded rings have been reported previously for secondary ammonium carboxylates (Melendez et al., 1996; Plaut et al., 2000). In motif IV [R44(12)] three BOH, one sulfate and one NH3+ group are connected through (B)OH···Osulfate, (B)OH···OB, NH···Osulfate and N—H···OB hydrogen bonds , while in motif V [R33(11)] two BOH, one sulfate and one NH3+ moiety are connected through (B)OH···Osulfate, (B)OH···OB and NH···Osulfate hydrogen bonds. Motifs II-V give rise to 2D undulated layers (Fig. 2, Table 1), which are connected through three additional NH···Osulfate interactions to give an overall 3D hydrogen-bonded network.

Related literature top

For related salts, see: Braga et al. (2003); Kara et al. (2006); Rogowska et al. (2006); Melendez et al. (1996); Plaut et al. (2000); SeethaLekshmi et al. (2006). For the use of boronic acids in crystal engineering, see: Aakeröy et al. (2005); Filthaus et al. (2008); Fournier et al. (2003); Pedireddi et al. (2004); Rodríguez-Cuamatzi et al. (2004a,b, 2005, 2009); Shimpi et al. (2007); Zhang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound is a commercially available product that has been crystallized from methanol. M.p. > 300 °C.

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C)]. Hydrogen atoms bonded to O (H1', H2', H31' and H32') and N (H1A, H1B, H1C, H31A, H31B and H31C) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.840±0.001 Å, N—H = 0.860 ±0.001 Å and [Uiso(H)= 1.5 Ueq(O, N)].

Structure description top

Boronic acids, RB(OH)2, are capable of forming strong hydrogen bonds with different functional groups such as carboxylic acid and pyridine derivatives (Aakeröy et al., 2005; Pedireddi et al., 2004; Rodríguez-Cuamatzi et al., 2009) and have been employed not only for the formation of neutral homo- and heterodimeric synthons, e.g. RB(OH)2···(HO)2BR and RB(OH)2···HOOCR (Filthaus et al., 2008; Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004a,b; Shimpi et al., 2007; Zhang et al., 2007), but also for the generation of charge-assisted synthons such as RB(OH)2···-OOCR and RB(OH)2···-OSCR (Kara et al., 2006; Rodríguez-Cuamatzi et al., 2005; Rogowska et al., 2006; SeethaLekshmi et al., 2006).

A search of the CSD (Allen, 2002; version 5.30) revealed that aside from the above-mentioned adducts with organic and inorganic carboxylate derivatives, there are only two further entries for charged motifs of the composition RB(OH)2···-O2E, in which the anions are sulfate and nitrate, respectively (Braga et al., 2003).

The title compound, (I), represents a further example for the –B(OH)2···-O2SO2- heterodimeric synthon.

The asymmetric unit of I contains two independent protonated 3-aminophenylboronic acid (3-apba) molecules and one sulfate anion as counterion (Fig. 1). Due to the presence of a large number of hydrogen-bonding functions (BOH, NH3+ and SO42-) a complex 3D hydrogen bonded network is formed, in which the sulfate counterions play the role of the central building block within the crystal structure. Each sulfate is hydrogen bonded to four neighboring [3-apbaH]+ entities through a total of five (B)OH···Osulfate and NH···Osulfate interactions, and serves as four-connected node (Fig. 2).

Motif II is formed between the –B(OH)2 group of one of the two [3-apbaH]+ molecules and the sulfate counterion, and corresponds to the charged heterodimeric motif –B(OH)2···-O2SO2- [graph set R22 (8)] (Bernstein et al. 1995). In motif III [R44 (12)] two sulfate groups are hydrogen bridged by two NH3+ functions. Structurally related hydrogen-bonded rings have been reported previously for secondary ammonium carboxylates (Melendez et al., 1996; Plaut et al., 2000). In motif IV [R44(12)] three BOH, one sulfate and one NH3+ group are connected through (B)OH···Osulfate, (B)OH···OB, NH···Osulfate and N—H···OB hydrogen bonds , while in motif V [R33(11)] two BOH, one sulfate and one NH3+ moiety are connected through (B)OH···Osulfate, (B)OH···OB and NH···Osulfate hydrogen bonds. Motifs II-V give rise to 2D undulated layers (Fig. 2, Table 1), which are connected through three additional NH···Osulfate interactions to give an overall 3D hydrogen-bonded network.

For related salts, see: Braga et al. (2003); Kara et al. (2006); Rogowska et al. (2006); Melendez et al. (1996); Plaut et al. (2000); SeethaLekshmi et al. (2006). For the use of boronic acids in crystal engineering, see: Aakeröy et al. (2005); Filthaus et al. (2008); Fournier et al. (2003); Pedireddi et al. (2004); Rodríguez-Cuamatzi et al. (2004a,b, 2005, 2009); Shimpi et al. (2007); Zhang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus NT (Bruker, 2001); data reduction: SAINT-Plus NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Fragment of the 2D hydrogen-bonded layer in the crystal structure of the title compound, showing motifs II-V. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres ofarbitrary radii. Symmetry operators: (i) -x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z.
3-(Dihydroxyboryl)anilinium hemisulfate top
Crystal data top
2C6H9BNO2+·SO42F(000) = 776
Mr = 371.96Dx = 1.463 Mg m3
Monoclinic, P21/cMelting point > 573 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.3589 (9) ÅCell parameters from 1721 reflections
b = 15.695 (3) Åθ = 2.6–20.0°
c = 20.489 (3) ŵ = 0.24 mm1
β = 101.423 (3)°T = 173 K
V = 1689.1 (5) Å3Rectangular prism, colourless
Z = 40.41 × 0.18 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3675 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 8.3 pixels mm-1θmax = 27.0°, θmin = 1.7°
phi and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1920
Tmin = 0.83, Tmax = 1.00l = 2626
18634 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.0612P]
where P = (Fo2 + 2Fc2)/3
3675 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.36 e Å3
10 restraintsΔρmin = 0.37 e Å3
Crystal data top
2C6H9BNO2+·SO42V = 1689.1 (5) Å3
Mr = 371.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3589 (9) ŵ = 0.24 mm1
b = 15.695 (3) ÅT = 173 K
c = 20.489 (3) Å0.41 × 0.18 × 0.09 mm
β = 101.423 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2642 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 1.00Rint = 0.096
18634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07810 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.36 e Å3
3675 reflectionsΔρmin = 0.37 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.5330 (8)0.8900 (3)0.3774 (2)0.0287 (10)
N10.3567 (8)0.6073 (2)0.47243 (17)0.0409 (9)
H1A0.475 (6)0.594 (3)0.451 (2)0.061*
H1B0.230 (6)0.578 (3)0.451 (2)0.061*
H1C0.381 (9)0.588 (3)0.5125 (8)0.061*
O10.5531 (6)0.97477 (16)0.38584 (13)0.0415 (8)
H1'0.602 (9)1.000 (3)0.3546 (16)0.062*
O20.6184 (5)0.85326 (15)0.32467 (12)0.0271 (6)
H2'0.586 (7)0.8010 (6)0.320 (2)0.041*
C10.4023 (7)0.8355 (2)0.42509 (17)0.0277 (9)
C20.4458 (7)0.7479 (2)0.43246 (17)0.0259 (8)
H20.57040.72190.41190.031*
C30.3110 (7)0.6988 (2)0.46910 (18)0.0274 (9)
C40.1327 (7)0.7344 (3)0.50092 (19)0.0350 (10)
H40.03920.70000.52580.042*
C50.0930 (8)0.8213 (3)0.4958 (2)0.0433 (11)
H50.02730.84700.51810.052*
C60.2248 (8)0.8711 (3)0.45906 (19)0.0379 (10)
H60.19510.93080.45660.045*
B311.3528 (8)0.6344 (3)0.2462 (2)0.0234 (9)
N310.7762 (6)0.88966 (19)0.20148 (15)0.0218 (6)
H31A0.664 (5)0.910 (2)0.1691 (12)0.033*
H31B0.911 (4)0.920 (2)0.2040 (19)0.033*
H31C0.714 (6)0.894 (2)0.2370 (10)0.033*
O311.3885 (5)0.55072 (15)0.23406 (12)0.0259 (6)
H31'1.522 (4)0.530 (2)0.2572 (17)0.039*
O321.5200 (5)0.68048 (15)0.29159 (12)0.0272 (6)
H32'1.633 (5)0.649 (2)0.3138 (17)0.041*
C311.1043 (7)0.6786 (2)0.20739 (16)0.0221 (8)
C321.0514 (6)0.7641 (2)0.21890 (17)0.0220 (8)
H321.17040.79660.24950.026*
C330.8294 (6)0.8014 (2)0.18643 (16)0.0201 (7)
C340.6537 (7)0.7561 (2)0.14105 (17)0.0254 (8)
H340.50100.78250.11880.030*
C350.7032 (7)0.6721 (2)0.12854 (18)0.0285 (9)
H350.58450.64050.09710.034*
C360.9239 (7)0.6335 (2)0.16143 (17)0.0251 (8)
H360.95410.57530.15270.030*
S510.18611 (16)0.99469 (6)0.11838 (4)0.0218 (2)
O510.0477 (5)0.95998 (18)0.08028 (13)0.0375 (7)
O520.4070 (5)0.9546 (2)0.09827 (13)0.0452 (8)
O530.2071 (5)0.97849 (15)0.19058 (11)0.0274 (6)
O540.1982 (6)1.08633 (17)0.10711 (14)0.0470 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.032 (2)0.033 (3)0.020 (2)0.007 (2)0.0024 (18)0.0038 (18)
N10.066 (3)0.033 (2)0.0265 (19)0.0244 (19)0.0168 (19)0.0051 (16)
O10.077 (2)0.0217 (15)0.0305 (16)0.0007 (14)0.0210 (15)0.0008 (12)
O20.0406 (16)0.0190 (13)0.0232 (13)0.0056 (12)0.0098 (12)0.0010 (11)
C10.031 (2)0.035 (2)0.0169 (18)0.0012 (17)0.0029 (16)0.0030 (15)
C20.028 (2)0.032 (2)0.0184 (18)0.0022 (16)0.0060 (15)0.0012 (15)
C30.028 (2)0.033 (2)0.0207 (19)0.0066 (17)0.0039 (16)0.0012 (16)
C40.023 (2)0.057 (3)0.026 (2)0.0051 (19)0.0057 (17)0.0067 (19)
C50.033 (2)0.065 (3)0.034 (2)0.019 (2)0.0135 (19)0.007 (2)
C60.041 (2)0.046 (3)0.026 (2)0.014 (2)0.0045 (18)0.0082 (19)
B310.031 (2)0.022 (2)0.020 (2)0.0009 (18)0.0101 (18)0.0015 (17)
N310.0212 (16)0.0228 (16)0.0224 (16)0.0006 (13)0.0065 (13)0.0024 (13)
O310.0284 (15)0.0223 (14)0.0254 (14)0.0043 (11)0.0013 (11)0.0028 (11)
O320.0331 (15)0.0181 (13)0.0270 (14)0.0037 (11)0.0022 (12)0.0040 (11)
C310.0243 (19)0.0234 (19)0.0192 (17)0.0002 (15)0.0059 (15)0.0007 (15)
C320.0206 (19)0.026 (2)0.0186 (18)0.0023 (15)0.0019 (14)0.0002 (14)
C330.0231 (19)0.0196 (18)0.0195 (17)0.0019 (14)0.0091 (15)0.0025 (14)
C340.025 (2)0.028 (2)0.0224 (19)0.0011 (16)0.0021 (15)0.0038 (15)
C350.031 (2)0.027 (2)0.026 (2)0.0054 (17)0.0014 (17)0.0007 (16)
C360.034 (2)0.0183 (19)0.0233 (19)0.0013 (16)0.0067 (16)0.0033 (14)
S510.0197 (4)0.0264 (5)0.0190 (4)0.0009 (4)0.0035 (3)0.0033 (4)
O510.0253 (15)0.0582 (19)0.0267 (15)0.0102 (13)0.0002 (12)0.0024 (13)
O520.0317 (16)0.079 (2)0.0254 (15)0.0252 (15)0.0063 (12)0.0004 (14)
O530.0279 (14)0.0339 (15)0.0205 (13)0.0081 (11)0.0049 (11)0.0021 (11)
O540.071 (2)0.0271 (16)0.0368 (17)0.0020 (15)0.0049 (15)0.0082 (13)
Geometric parameters (Å, º) top
B1—O11.344 (5)B31—C311.571 (5)
B1—O21.380 (5)N31—C331.460 (4)
B1—C11.565 (6)N31—H31A0.86 (3)
N1—C31.456 (5)N31—H31B0.86 (3)
N1—H1A0.87 (4)N31—H31C0.86 (2)
N1—H1B0.86 (4)O31—H31'0.84 (3)
N1—H1C0.86 (2)O32—H32'0.84 (3)
O1—H1'0.84 (4)C31—C321.400 (5)
O2—H2'0.840 (12)C31—C361.401 (5)
C1—C21.397 (5)C32—C331.374 (5)
C1—C61.401 (5)C32—H320.9500
C2—C31.376 (5)C33—C341.381 (5)
C2—H20.9500C34—C351.380 (5)
C3—C41.378 (5)C34—H340.9500
C4—C51.381 (6)C35—C361.380 (5)
C4—H40.9500C35—H350.9500
C5—C61.374 (6)C36—H360.9500
C5—H50.9500S51—O511.445 (3)
C6—H60.9500S51—O541.460 (3)
B31—O311.358 (5)S51—O521.470 (3)
B31—O321.364 (5)S51—O531.483 (2)
O1—B1—O2119.0 (4)C33—N31—H31A108 (3)
O1—B1—C1119.7 (4)C33—N31—H31B110 (3)
O2—B1—C1121.3 (4)H31A—N31—H31B107 (3)
C3—N1—H1A110 (3)C33—N31—H31C112 (3)
C3—N1—H1B113 (3)H31A—N31—H31C107 (4)
H1A—N1—H1B102 (4)H31B—N31—H31C111 (4)
C3—N1—H1C113 (3)B31—O31—H31'114 (3)
H1A—N1—H1C114 (5)B31—O32—H32'111 (3)
H1B—N1—H1C104 (4)C32—C31—C36117.5 (3)
B1—O1—H1'114 (3)C32—C31—B31121.2 (3)
B1—O2—H2'114 (3)C36—C31—B31121.3 (3)
C2—C1—C6117.0 (4)C33—C32—C31120.8 (3)
C2—C1—B1121.3 (3)C33—C32—H32119.6
C6—C1—B1121.6 (4)C31—C32—H32119.6
C3—C2—C1121.0 (4)C32—C33—C34121.1 (3)
C3—C2—H2119.5C32—C33—N31119.3 (3)
C1—C2—H2119.5C34—C33—N31119.6 (3)
C2—C3—C4121.3 (4)C35—C34—C33119.1 (3)
C2—C3—N1118.5 (3)C35—C34—H34120.4
C4—C3—N1120.2 (3)C33—C34—H34120.4
C3—C4—C5118.4 (4)C36—C35—C34120.4 (3)
C3—C4—H4120.8C36—C35—H35119.8
C5—C4—H4120.8C34—C35—H35119.8
C6—C5—C4121.0 (4)C35—C36—C31121.1 (3)
C6—C5—H5119.5C35—C36—H36119.4
C4—C5—H5119.5C31—C36—H36119.4
C5—C6—C1121.3 (4)O51—S51—O54110.29 (17)
C5—C6—H6119.4O51—S51—O52110.33 (17)
C1—C6—H6119.4O54—S51—O52108.31 (19)
O31—B31—O32122.7 (3)O51—S51—O53111.12 (15)
O31—B31—C31118.1 (3)O54—S51—O53109.24 (16)
O32—B31—C31119.2 (3)O52—S51—O53107.46 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O53i0.84 (3)1.81 (3)2.653 (4)175 (3)
O32—H32···O54i0.84 (3)1.96 (3)2.744 (4)155 (3)
N1—H1A···O54ii0.87 (4)2.31 (4)3.161 (5)169 (4)
N1—H1C···O52iii0.86 (2)1.86 (2)2.718 (4)176 (5)
O1—H1···O31iv0.84 (4)1.99 (4)2.803 (4)163 (4)
N31—H31A···O520.86 (3)1.92 (3)2.787 (4)179 (3)
N31—H31C···O20.86 (2)2.07 (2)2.874 (4)156 (3)
O2—H2···O32v0.84 (1)1.99 (2)2.820 (3)169 (4)
N1—H1B···O51vi0.86 (4)2.13 (4)2.923 (5)152 (4)
N1—H1B···O54vi0.86 (4)2.37 (4)3.112 (5)144 (4)
N31—H31B···O53vii0.86 (3)1.90 (3)2.744 (4)168 (4)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y1/2, z+1/2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C6H9BNO2+·SO42
Mr371.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.3589 (9), 15.695 (3), 20.489 (3)
β (°) 101.423 (3)
V3)1689.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.41 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.83, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
18634, 3675, 2642
Rint0.096
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.145, 1.12
No. of reflections3675
No. of parameters256
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: SMART (Bruker, 2000), SAINT-Plus NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31'···O53i0.84 (3)1.81 (3)2.653 (4)175 (3)
O32—H32'···O54i0.84 (3)1.96 (3)2.744 (4)155 (3)
N1—H1A···O54ii0.87 (4)2.31 (4)3.161 (5)169 (4)
N1—H1C···O52iii0.86 (2)1.86 (2)2.718 (4)176 (5)
O1—H1'···O31iv0.84 (4)1.99 (4)2.803 (4)163 (4)
N31—H31A···O520.86 (3)1.92 (3)2.787 (4)179 (3)
N31—H31C···O20.86 (2)2.07 (2)2.874 (4)156 (3)
O2—H2'···O32v0.840 (12)1.990 (16)2.820 (3)169 (4)
N1—H1B···O51vi0.86 (4)2.13 (4)2.923 (5)152 (4)
N1—H1B···O54vi0.86 (4)2.37 (4)3.112 (5)144 (4)
N31—H31B···O53vii0.86 (3)1.90 (3)2.744 (4)168 (4)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y1/2, z+1/2; (vii) x+1, y, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

References

First citationAakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Polito, M., Bi, M., D-Addario, D., Tagliavini, E. & Sturba, L. (2003). Organometallics, 22, 2142–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFilthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKara, H., Adams, C. J., Orpen, A. G. & Podesta, T. J. (2006). New. J. Chem. 30, 1461–1469.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.  CSD CrossRef CAS Web of Science Google Scholar
First citationPedireddi, V. R. & SeethaLekshmi, N. (2004). Tetrahedron Lett. 45, 1903–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769–770.  Web of Science CSD CrossRef Google Scholar
First citationRodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175.  Google Scholar
First citationRodríguez-Cuamatzi, P., Luna-García, R., Torres-Huerta, A., Bernal-Uruchurtu, M. I., Barba, V. & Höpfl, H. (2009). Cryst. Growth Des. 9, 1575–1583.  Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004a). Angew. Chem. Int. Ed. 43, 3041–3044.  Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004b). Acta Cryst. E60, o1316–o1318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRogowska, P., Cyranski, M. K., Sporzynski, A. & Ciesielski, A. (2006). Tetrahedron Lett. 47, 1389–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400–2402.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287–3292.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds