organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­benzoic acid–1,2-bis­­(4-pyrid­yl)ethane (1/1)

aDepartment of Biotechnology, Yuanpei University, HsinChu, Taiwan 30015, People's Republic of China, and bDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, HsinChu, Taiwan 30015, People's Republic of China
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 25 March 2010; accepted 19 April 2010; online 24 April 2010)

The asymmetric unit of the title compound, C12H12N2·C7H7NO2, contains two 3-amino­benzoic acid mol­ecules and two 1,2-bis­(4-pyrid­yl)ethane mol­ecules. In the two 1,2-bis­(4-pyrid­yl)ethane mol­ecules, the dihedral angles between the pyridyl rings are 2.99 (9) and 46.78 (8)°. In the crystal, the mol­ecules associate through amine and carboxyl group N—H⋯O=C inter­actions between one of the 3-amino­benzoic acid mol­ecules and one of the 1,2-bis­(4-pyrid­yl)ethane mol­ecules, generating R22(14) dimers, which are extended head-to-tail via amine and pyridine N—H⋯N hydrogen bonds. Inter­molecular O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonding are observed in the crystal structure. C—H⋯π and ππ stacking inter­actions [centroid–centroid distance = 3.9985 (10) Å] are also present.

Related literature

For applications of 3-amino­benzoic acid, see: Lynch & McClenaghan (2001[Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830-832.]); Smith (2005[Smith, G. (2005). Acta Cryst. E61, o3398-o3400.]). For related structures, see: Smith et al. (1995[Smith, G., Gentner, J. M., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1151-1166.]); Lynch et al. (1998[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.]). For a similar dimeric R22(14) structure, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2·C7H7NO2

  • Mr = 321.37

  • Triclinic, [P \overline 1]

  • a = 9.0430 (3) Å

  • b = 13.0565 (5) Å

  • c = 14.6300 (5) Å

  • α = 88.172 (3)°

  • β = 79.366 (3)°

  • γ = 74.506 (3)°

  • V = 1635.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.54 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.997, Tmax = 1.000

  • 12385 measured reflections

  • 5971 independent reflections

  • 4125 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 0.99

  • 5971 reflections

  • 455 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N2 0.84 (2) 1.79 (2) 2.6294 (19) 176 (2)
O3—H3A⋯N6i 0.84 (1) 1.75 (1) 2.5790 (19) 171 (2)
N1—H1A⋯O4ii 0.89 (2) 2.21 (2) 3.061 (2) 158.6 (17)
N1—H1B⋯N3iii 0.882 (19) 2.17 (2) 3.048 (2) 177.8 (19)
N4—H4A⋯O2ii 0.89 (2) 2.19 (2) 3.035 (2) 157.6 (18)
N4—H4B⋯N5iv 0.89 (2) 2.13 (2) 3.017 (2) 171.9 (17)
C3—H3C⋯O4ii 0.95 2.56 3.353 (2) 141
C22—H22A⋯O2ii 0.95 2.54 3.327 (2) 141
C28—H28A⋯O2v 0.95 2.55 3.492 (2) 172
C38—H38A⋯O4vi 0.95 2.50 3.448 (2) 177
C12—H12ACg5v 0.95 2.67 3.5510 (18) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y-1, z-1; (iv) -x+1, -y, -z; (v) -x+2, -y+1, -z; (vi) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of a number of 1:1 adduct compounds of 3-aminobenzoic acid with Lewis bases have been reported. These include compounds with 2-amino-pyrimidine (Smith et al., 1995) and 2-aminobenzothiazole (Lynch et al., 1998). Not only 3-aminobenzoic acid is more effective for the promotion of hydrogen-bonding extensions, but also forms various weak noncovalent interactions, such as π-π stacking and C—H···π interactions.

Our research program aims to gain hydrogen-bonding networks involving 3-aminobenzoic acid with 1,2-bis(4-pyridyl)ethane, which can develop well defined noncovalent supramolecular architectures and form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites. The resulting crystal X-Ray structure (Fig. 1) consists entirely of neutral 3-aminobenzoic acid molecules and neutral 1,2-bis(4-pyridyl)ethane units, with no proton transfer (Lynch & McClenaghan, 2001; Smith, 2005). The title compound comprises non-planar molecules, similar to other analogous compounds (Smith et al., 1995; Lynch et al., 1998) that associate 3-aminobenzoic acid via amine and carboxylic group N—H···O [N···O 3.061 (2) and 3.035 (2) Å] dimer R22(14) (Etter et al., 1990) and form linear hydrogen-bonded via amine and pyridine N—H··· N [N···N 3.048 (2) and 3.017 (2) Å].

The title compound's supramolecular structure can be readily analyzed in terms of carboxyl atom O1 and amino group N1 act as hydrogen-bond donors to pyridyl atoms N2 and N3. Similarly, N4, C22, C28, N1, C3, C38 act as hydrogen-bond donors to carboxyl atoms O2, O4, respectively (Table 1 and Fig. 2).

This layer is consolidated by C—H ···π interaction (C12—H12A···Cg5; full details and symmetry code are given in Table 1). Futhermore, π-π ring stacking interactions are between neighboring complexes in the structure. The distance between Cg1 (N2/C8—C12)···Cg4 (N6/C34—C38) is 3.9985 (10) Å and dihedral angle between two rings is 9.86 (9) °.

Related literature top

For applications of 3-aminobenzoic acid, see: Lynch & McClenaghan (2001); Smith (2005). For related structures, see: Smith et al. (1995); Lynch et al. (1998). For a similar dimeric R22(14) structure, see: Etter et al. (1990).

Experimental top

The 3-aminobenzoic acid (171.0 mg, 1.0 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1.0 mmol) were dissolved in 20 ml 50% methanol-water, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 59.36%). Elemental analysis calcd(%) for C19H19N3O2 (Mr=321.37): C, 55.83; H, 5.96; N, 13.08; Found: C, 56.03; H, 5.92; N, 12.96.

Refinement top

Amino H atoms were located in a difference Fourier map and were refined isotropically. Water H atoms were located in a difference Fourier map and refined with the distances constraints of O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.95 (aromatic) and 0.99 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

The structures of a number of 1:1 adduct compounds of 3-aminobenzoic acid with Lewis bases have been reported. These include compounds with 2-amino-pyrimidine (Smith et al., 1995) and 2-aminobenzothiazole (Lynch et al., 1998). Not only 3-aminobenzoic acid is more effective for the promotion of hydrogen-bonding extensions, but also forms various weak noncovalent interactions, such as π-π stacking and C—H···π interactions.

Our research program aims to gain hydrogen-bonding networks involving 3-aminobenzoic acid with 1,2-bis(4-pyridyl)ethane, which can develop well defined noncovalent supramolecular architectures and form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites. The resulting crystal X-Ray structure (Fig. 1) consists entirely of neutral 3-aminobenzoic acid molecules and neutral 1,2-bis(4-pyridyl)ethane units, with no proton transfer (Lynch & McClenaghan, 2001; Smith, 2005). The title compound comprises non-planar molecules, similar to other analogous compounds (Smith et al., 1995; Lynch et al., 1998) that associate 3-aminobenzoic acid via amine and carboxylic group N—H···O [N···O 3.061 (2) and 3.035 (2) Å] dimer R22(14) (Etter et al., 1990) and form linear hydrogen-bonded via amine and pyridine N—H··· N [N···N 3.048 (2) and 3.017 (2) Å].

The title compound's supramolecular structure can be readily analyzed in terms of carboxyl atom O1 and amino group N1 act as hydrogen-bond donors to pyridyl atoms N2 and N3. Similarly, N4, C22, C28, N1, C3, C38 act as hydrogen-bond donors to carboxyl atoms O2, O4, respectively (Table 1 and Fig. 2).

This layer is consolidated by C—H ···π interaction (C12—H12A···Cg5; full details and symmetry code are given in Table 1). Futhermore, π-π ring stacking interactions are between neighboring complexes in the structure. The distance between Cg1 (N2/C8—C12)···Cg4 (N6/C34—C38) is 3.9985 (10) Å and dihedral angle between two rings is 9.86 (9) °.

For applications of 3-aminobenzoic acid, see: Lynch & McClenaghan (2001); Smith (2005). For related structures, see: Smith et al. (1995); Lynch et al. (1998). For a similar dimeric R22(14) structure, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen-bonding associations are shown as dotted lines.
3-Aminobenzoic acid–1,2-bis(4-pyridyl)ethane (1/1) top
Crystal data top
C12H12N2·C7H7NO2Z = 4
Mr = 321.37F(000) = 680
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0430 (3) ÅCell parameters from 6302 reflections
b = 13.0565 (5) Åθ = 2.5–29.2°
c = 14.6300 (5) ŵ = 0.09 mm1
α = 88.172 (3)°T = 100 K
β = 79.366 (3)°Parallelepiped, colorless
γ = 74.506 (3)°0.54 × 0.18 × 0.15 mm
V = 1635.72 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
5971 independent reflections
Radiation source: fine-focus sealed tube4125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.997, Tmax = 1.000k = 1315
12385 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max = 0.002
455 parametersΔρmax = 0.57 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H12N2·C7H7NO2γ = 74.506 (3)°
Mr = 321.37V = 1635.72 (10) Å3
Triclinic, P1Z = 4
a = 9.0430 (3) ÅMo Kα radiation
b = 13.0565 (5) ŵ = 0.09 mm1
c = 14.6300 (5) ÅT = 100 K
α = 88.172 (3)°0.54 × 0.18 × 0.15 mm
β = 79.366 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
5971 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4125 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 1.000Rint = 0.020
12385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.57 e Å3
5971 reflectionsΔρmin = 0.35 e Å3
455 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76671 (15)0.58027 (10)0.03742 (8)0.0334 (3)
O20.77042 (15)0.69496 (9)0.07886 (8)0.0328 (3)
O30.26995 (15)0.16295 (9)0.48714 (9)0.0323 (3)
O40.23015 (14)0.28364 (9)0.37667 (8)0.0312 (3)
N10.69956 (18)0.49939 (14)0.35303 (11)0.0306 (4)
N20.81019 (17)0.73452 (11)0.13170 (10)0.0281 (3)
N30.7482 (2)1.31954 (12)0.50754 (11)0.0374 (4)
N40.28039 (18)0.06579 (14)0.08726 (11)0.0305 (4)
N50.77629 (17)0.10653 (11)0.02344 (10)0.0299 (4)
N60.76549 (16)0.67214 (11)0.41027 (10)0.0261 (3)
C10.75649 (18)0.60925 (13)0.04865 (12)0.0230 (4)
C20.72593 (18)0.52804 (13)0.10732 (12)0.0225 (4)
C30.73369 (18)0.54740 (13)0.20172 (12)0.0226 (4)
H3C0.75910.61000.22640.027*
C40.70458 (18)0.47598 (13)0.26121 (12)0.0238 (4)
C50.67203 (19)0.38323 (13)0.22244 (13)0.0254 (4)
H5B0.65630.33190.26150.030*
C60.66242 (19)0.36513 (13)0.12816 (13)0.0277 (4)
H6B0.63800.30230.10330.033*
C70.68795 (19)0.43750 (13)0.06922 (13)0.0264 (4)
H7A0.67960.42530.00430.032*
C80.7001 (2)0.82631 (14)0.13950 (13)0.0314 (4)
H8A0.61390.83240.10920.038*
C90.7045 (2)0.91298 (15)0.18921 (14)0.0368 (5)
H9A0.62110.97600.19470.044*
C100.8319 (2)0.90730 (15)0.23106 (14)0.0384 (5)
C110.9444 (2)0.81133 (15)0.22388 (13)0.0353 (5)
H11A1.03220.80310.25320.042*
C120.9304 (2)0.72758 (14)0.17472 (13)0.0297 (4)
H12A1.00920.66230.17120.036*
C130.8492 (2)1.00327 (19)0.28015 (19)0.0631 (7)
H13A0.93960.98000.31220.076*
H13B0.87291.05510.23260.076*
C140.7126 (2)1.05708 (17)0.34813 (16)0.0475 (6)
H14A0.68661.00470.39450.057*
H14B0.62291.08260.31570.057*
C150.7326 (2)1.15073 (15)0.39924 (13)0.0335 (5)
C160.6186 (2)1.24545 (14)0.40946 (13)0.0326 (4)
H16A0.53131.25500.37950.039*
C170.6305 (2)1.32601 (15)0.46274 (14)0.0363 (5)
H17A0.54991.39060.46810.044*
C180.8615 (2)1.22878 (15)0.49533 (13)0.0341 (5)
H18A0.94841.22230.52510.041*
C190.8598 (2)1.14407 (15)0.44223 (13)0.0341 (5)
H19A0.94451.08180.43500.041*
C200.25604 (19)0.19120 (13)0.40181 (12)0.0242 (4)
C210.27294 (18)0.10109 (13)0.33654 (12)0.0228 (4)
C220.26585 (18)0.12404 (13)0.24435 (12)0.0232 (4)
H22A0.25350.19520.22420.028*
C230.27665 (18)0.04385 (13)0.18016 (12)0.0235 (4)
C240.28837 (19)0.05921 (13)0.21297 (13)0.0270 (4)
H24A0.29170.11450.17140.032*
C250.2952 (2)0.08156 (14)0.30540 (13)0.0301 (4)
H25A0.30380.15220.32630.036*
C260.28984 (19)0.00229 (13)0.36817 (13)0.0268 (4)
H26A0.29750.01840.43120.032*
C270.8959 (2)0.14566 (14)0.03144 (13)0.0313 (4)
H27A0.99580.11200.00340.038*
C280.8827 (2)0.23233 (13)0.08754 (12)0.0280 (4)
H28A0.97200.25660.09040.034*
C290.73906 (19)0.28338 (13)0.13937 (12)0.0227 (4)
C300.6147 (2)0.24242 (13)0.13143 (12)0.0264 (4)
H30A0.51370.27390.16610.032*
C310.6377 (2)0.15652 (14)0.07347 (13)0.0284 (4)
H31A0.55010.13120.06870.034*
C320.71112 (19)0.38225 (13)0.19731 (12)0.0243 (4)
H32A0.62040.38550.24770.029*
H32B0.68290.44480.15770.029*
C330.84736 (19)0.39114 (13)0.24075 (13)0.0282 (4)
H33A0.87790.32780.27900.034*
H33B0.93730.39050.19040.034*
C340.81443 (18)0.48966 (13)0.30095 (12)0.0230 (4)
C350.69101 (19)0.57861 (13)0.29678 (12)0.0280 (4)
H35A0.62040.57860.25600.034*
C360.6707 (2)0.66686 (13)0.35164 (12)0.0277 (4)
H36A0.58540.72670.34760.033*
C370.8843 (2)0.58632 (13)0.41499 (12)0.0287 (4)
H37A0.95270.58840.45650.034*
C380.9119 (2)0.49513 (13)0.36243 (12)0.0265 (4)
H38A0.99750.43610.36830.032*
H1C0.785 (2)0.6290 (10)0.0663 (12)0.040*
H3A0.268 (2)0.2174 (9)0.5172 (12)0.040*
H1A0.731 (2)0.5562 (16)0.3754 (13)0.034 (5)*
H1B0.714 (2)0.4461 (15)0.3921 (14)0.036 (5)*
H4A0.252 (2)0.1339 (18)0.0720 (15)0.051 (7)*
H4B0.256 (2)0.0199 (16)0.0528 (14)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0541 (8)0.0295 (7)0.0231 (8)0.0198 (6)0.0098 (6)0.0049 (6)
O20.0516 (8)0.0259 (7)0.0270 (7)0.0185 (6)0.0100 (6)0.0021 (6)
O30.0530 (8)0.0223 (7)0.0236 (8)0.0093 (6)0.0118 (6)0.0049 (6)
O40.0489 (8)0.0192 (7)0.0268 (7)0.0078 (6)0.0110 (6)0.0042 (5)
N10.0430 (9)0.0253 (9)0.0265 (10)0.0107 (8)0.0106 (7)0.0061 (8)
N20.0338 (8)0.0304 (9)0.0207 (8)0.0117 (7)0.0011 (7)0.0057 (7)
N30.0517 (10)0.0340 (10)0.0277 (9)0.0169 (8)0.0006 (8)0.0077 (7)
N40.0430 (10)0.0251 (9)0.0262 (10)0.0120 (8)0.0078 (7)0.0087 (8)
N50.0357 (9)0.0276 (8)0.0292 (9)0.0113 (7)0.0076 (7)0.0067 (7)
N60.0342 (8)0.0240 (8)0.0203 (8)0.0078 (6)0.0046 (7)0.0050 (6)
C10.0234 (8)0.0217 (9)0.0228 (10)0.0052 (7)0.0018 (7)0.0050 (8)
C20.0211 (8)0.0202 (9)0.0251 (10)0.0032 (7)0.0035 (7)0.0061 (7)
C30.0231 (8)0.0177 (9)0.0267 (10)0.0047 (7)0.0039 (7)0.0047 (7)
C40.0199 (8)0.0225 (9)0.0273 (11)0.0005 (7)0.0064 (7)0.0072 (8)
C50.0243 (9)0.0178 (9)0.0350 (12)0.0030 (7)0.0102 (8)0.0093 (8)
C60.0287 (9)0.0188 (9)0.0369 (12)0.0075 (7)0.0069 (8)0.0024 (8)
C70.0296 (9)0.0234 (10)0.0262 (10)0.0067 (7)0.0047 (8)0.0034 (8)
C80.0345 (10)0.0334 (11)0.0296 (11)0.0109 (8)0.0112 (8)0.0020 (9)
C90.0321 (10)0.0301 (11)0.0476 (13)0.0047 (8)0.0093 (9)0.0105 (9)
C100.0310 (10)0.0368 (11)0.0473 (13)0.0073 (8)0.0060 (9)0.0197 (10)
C110.0265 (9)0.0409 (12)0.0397 (12)0.0073 (8)0.0089 (9)0.0146 (9)
C120.0265 (9)0.0288 (10)0.0325 (11)0.0063 (8)0.0015 (8)0.0097 (8)
C130.0382 (12)0.0631 (16)0.087 (2)0.0124 (11)0.0032 (12)0.0452 (14)
C140.0461 (12)0.0530 (14)0.0454 (14)0.0181 (11)0.0027 (11)0.0187 (11)
C150.0413 (11)0.0320 (11)0.0293 (11)0.0122 (9)0.0067 (9)0.0071 (9)
C160.0329 (10)0.0339 (11)0.0343 (12)0.0131 (8)0.0084 (8)0.0014 (9)
C170.0359 (10)0.0294 (11)0.0380 (12)0.0060 (8)0.0044 (9)0.0039 (9)
C180.0396 (11)0.0377 (11)0.0309 (11)0.0179 (9)0.0094 (9)0.0028 (9)
C190.0353 (10)0.0295 (10)0.0356 (12)0.0058 (8)0.0044 (9)0.0064 (9)
C200.0270 (9)0.0228 (10)0.0233 (11)0.0065 (7)0.0057 (8)0.0042 (8)
C210.0221 (8)0.0208 (9)0.0260 (10)0.0063 (7)0.0039 (7)0.0051 (7)
C220.0228 (8)0.0205 (9)0.0272 (10)0.0070 (7)0.0040 (7)0.0056 (7)
C230.0204 (8)0.0242 (10)0.0263 (11)0.0069 (7)0.0029 (7)0.0079 (8)
C240.0271 (9)0.0225 (9)0.0316 (11)0.0065 (7)0.0039 (8)0.0116 (8)
C250.0324 (10)0.0196 (9)0.0381 (12)0.0068 (8)0.0055 (8)0.0037 (8)
C260.0313 (9)0.0223 (9)0.0267 (11)0.0060 (7)0.0061 (8)0.0023 (8)
C270.0312 (10)0.0315 (10)0.0312 (11)0.0091 (8)0.0024 (8)0.0111 (8)
C280.0272 (9)0.0282 (10)0.0316 (11)0.0114 (7)0.0052 (8)0.0075 (8)
C290.0295 (9)0.0205 (9)0.0199 (10)0.0071 (7)0.0082 (7)0.0002 (7)
C300.0263 (9)0.0247 (9)0.0286 (11)0.0068 (7)0.0056 (8)0.0025 (8)
C310.0293 (9)0.0279 (10)0.0326 (11)0.0114 (8)0.0115 (8)0.0018 (8)
C320.0284 (9)0.0216 (9)0.0229 (10)0.0066 (7)0.0034 (7)0.0050 (7)
C330.0260 (9)0.0270 (10)0.0314 (11)0.0070 (7)0.0027 (8)0.0125 (8)
C340.0237 (9)0.0251 (9)0.0208 (10)0.0098 (7)0.0004 (7)0.0050 (7)
C350.0257 (9)0.0300 (10)0.0296 (11)0.0063 (7)0.0080 (8)0.0088 (8)
C360.0298 (9)0.0257 (10)0.0256 (10)0.0029 (7)0.0055 (8)0.0061 (8)
C370.0374 (10)0.0281 (10)0.0218 (10)0.0069 (8)0.0101 (8)0.0050 (8)
C380.0302 (9)0.0242 (9)0.0242 (10)0.0048 (7)0.0058 (8)0.0028 (8)
Geometric parameters (Å, º) top
O1—C11.316 (2)C14—H14A0.9900
O1—H1C0.843 (16)C14—H14B0.9900
O2—C11.2192 (19)C15—C161.374 (3)
O3—C201.309 (2)C15—C191.391 (2)
O3—H3A0.842 (14)C16—C171.367 (2)
O4—C201.2245 (19)C16—H16A0.9500
N1—C41.374 (2)C17—H17A0.9500
N1—H1A0.89 (2)C18—C191.377 (2)
N1—H1B0.881 (19)C18—H18A0.9500
N2—C81.330 (2)C19—H19A0.9500
N2—C121.335 (2)C20—C211.497 (2)
N3—C171.332 (2)C21—C221.382 (2)
N3—C181.335 (2)C21—C261.391 (2)
N4—C231.376 (2)C22—C231.401 (2)
N4—H4A0.89 (2)C22—H22A0.9500
N4—H4B0.889 (19)C23—C241.398 (2)
N5—C311.337 (2)C24—C251.383 (3)
N5—C271.338 (2)C24—H24A0.9500
N6—C361.335 (2)C25—C261.391 (2)
N6—C371.339 (2)C25—H25A0.9500
C1—C21.497 (2)C26—H26A0.9500
C2—C31.388 (2)C27—C281.386 (2)
C2—C71.389 (2)C27—H27A0.9500
C3—C41.401 (2)C28—C291.383 (2)
C3—H3C0.9500C28—H28A0.9500
C4—C51.400 (2)C29—C301.392 (2)
C5—C61.383 (3)C29—C321.505 (2)
C5—H5B0.9500C30—C311.375 (2)
C6—C71.390 (2)C30—H30A0.9500
C6—H6B0.9500C31—H31A0.9500
C7—H7A0.9500C32—C331.518 (2)
C8—C91.378 (2)C32—H32A0.9900
C8—H8A0.9500C32—H32B0.9900
C9—C101.385 (2)C33—C341.513 (2)
C9—H9A0.9500C33—H33A0.9900
C10—C111.380 (3)C33—H33B0.9900
C10—C131.521 (3)C34—C381.386 (2)
C11—C121.374 (2)C34—C351.388 (2)
C11—H11A0.9500C35—C361.377 (2)
C12—H12A0.9500C35—H35A0.9500
C13—C141.462 (3)C36—H36A0.9500
C13—H13A0.9900C37—C381.378 (2)
C13—H13B0.9900C37—H37A0.9500
C14—C151.521 (3)C38—H38A0.9500
C1—O1—H1C109.6 (14)N3—C18—C19123.90 (17)
C20—O3—H3A107.9 (14)N3—C18—H18A118.1
C4—N1—H1A117.4 (12)C19—C18—H18A118.1
C4—N1—H1B117.8 (12)C18—C19—C15119.26 (17)
H1A—N1—H1B117.4 (18)C18—C19—H19A120.4
C8—N2—C12117.35 (14)C15—C19—H19A120.4
C17—N3—C18115.91 (15)O4—C20—O3123.30 (15)
C23—N4—H4A117.2 (14)O4—C20—C21122.09 (15)
C23—N4—H4B117.1 (13)O3—C20—C21114.61 (15)
H4A—N4—H4B116.4 (19)C22—C21—C26120.79 (15)
C31—N5—C27116.04 (14)C22—C21—C20118.06 (15)
C36—N6—C37117.17 (14)C26—C21—C20121.11 (15)
O2—C1—O1123.33 (15)C21—C22—C23120.95 (16)
O2—C1—C2122.23 (16)C21—C22—H22A119.5
O1—C1—C2114.44 (15)C23—C22—H22A119.5
C3—C2—C7120.77 (15)N4—C23—C24121.30 (15)
C3—C2—C1117.48 (15)N4—C23—C22120.70 (16)
C7—C2—C1121.74 (16)C24—C23—C22117.97 (16)
C2—C3—C4121.01 (16)C25—C24—C23120.70 (15)
C2—C3—H3C119.5C25—C24—H24A119.7
C4—C3—H3C119.5C23—C24—H24A119.7
N1—C4—C5121.39 (15)C24—C25—C26121.05 (17)
N1—C4—C3120.93 (16)C24—C25—H25A119.5
C5—C4—C3117.57 (16)C26—C25—H25A119.5
C6—C5—C4121.08 (15)C25—C26—C21118.46 (16)
C6—C5—H5B119.5C25—C26—H26A120.8
C4—C5—H5B119.5C21—C26—H26A120.8
C5—C6—C7120.99 (17)N5—C27—C28123.95 (17)
C5—C6—H6B119.5N5—C27—H27A118.0
C7—C6—H6B119.5C28—C27—H27A118.0
C2—C7—C6118.52 (17)C29—C28—C27119.67 (15)
C2—C7—H7A120.7C29—C28—H28A120.2
C6—C7—H7A120.7C27—C28—H28A120.2
N2—C8—C9123.44 (16)C28—C29—C30116.43 (15)
N2—C8—H8A118.3C28—C29—C32123.50 (14)
C9—C8—H8A118.3C30—C29—C32119.95 (15)
C8—C9—C10119.32 (17)C31—C30—C29120.15 (16)
C8—C9—H9A120.3C31—C30—H30A119.9
C10—C9—H9A120.3C29—C30—H30A119.9
C11—C10—C9116.86 (16)N5—C31—C30123.75 (15)
C11—C10—C13121.56 (17)N5—C31—H31A118.1
C9—C10—C13121.56 (18)C30—C31—H31A118.1
C12—C11—C10120.48 (16)C29—C32—C33115.58 (14)
C12—C11—H11A119.8C29—C32—H32A108.4
C10—C11—H11A119.8C33—C32—H32A108.4
N2—C12—C11122.48 (16)C29—C32—H32B108.4
N2—C12—H12A118.8C33—C32—H32B108.4
C11—C12—H12A118.8H32A—C32—H32B107.4
C14—C13—C10114.94 (18)C34—C33—C32114.45 (14)
C14—C13—H13A108.5C34—C33—H33A108.6
C10—C13—H13A108.5C32—C33—H33A108.6
C14—C13—H13B108.5C34—C33—H33B108.6
C10—C13—H13B108.5C32—C33—H33B108.6
H13A—C13—H13B107.5H33A—C33—H33B107.6
C13—C14—C15114.66 (17)C38—C34—C35116.73 (15)
C13—C14—H14A108.6C38—C34—C33120.09 (15)
C15—C14—H14A108.6C35—C34—C33123.16 (14)
C13—C14—H14B108.6C36—C35—C34120.06 (15)
C15—C14—H14B108.6C36—C35—H35A120.0
H14A—C14—H14B107.6C34—C35—H35A120.0
C16—C15—C19116.69 (16)N6—C36—C35123.04 (16)
C16—C15—C14120.43 (17)N6—C36—H36A118.5
C19—C15—C14122.78 (17)C35—C36—H36A118.5
C17—C16—C15120.10 (17)N6—C37—C38123.11 (15)
C17—C16—H16A119.9N6—C37—H37A118.4
C15—C16—H16A119.9C38—C37—H37A118.4
N3—C17—C16124.04 (18)C37—C38—C34119.88 (16)
N3—C17—H17A118.0C37—C38—H38A120.1
C16—C17—H17A118.0C34—C38—H38A120.1
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1C···N20.84 (2)1.79 (2)2.6294 (19)176 (2)
O3—H3A···N6i0.84 (1)1.75 (1)2.5790 (19)171 (2)
N1—H1A···O4ii0.89 (2)2.21 (2)3.061 (2)158.6 (17)
N1—H1B···N3iii0.882 (19)2.17 (2)3.048 (2)177.8 (19)
N4—H4A···O2ii0.89 (2)2.19 (2)3.035 (2)157.6 (18)
N4—H4B···N5iv0.89 (2)2.13 (2)3.017 (2)171.9 (17)
C3—H3C···O4ii0.952.563.353 (2)141
C22—H22A···O2ii0.952.543.327 (2)141
C28—H28A···O2v0.952.553.492 (2)172
C38—H38A···O4vi0.952.503.448 (2)177
C12—H12A···Cg5v0.952.673.5510 (18)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z1; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2·C7H7NO2
Mr321.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0430 (3), 13.0565 (5), 14.6300 (5)
α, β, γ (°)88.172 (3), 79.366 (3), 74.506 (3)
V3)1635.72 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.54 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.997, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12385, 5971, 4125
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 0.99
No. of reflections5971
No. of parameters455
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1C···N20.843 (16)1.788 (15)2.6294 (19)176.1 (17)
O3—H3A···N6i0.842 (14)1.745 (14)2.5790 (19)170.5 (18)
N1—H1A···O4ii0.89 (2)2.21 (2)3.061 (2)158.6 (17)
N1—H1B···N3iii0.882 (19)2.17 (2)3.048 (2)177.8 (19)
N4—H4A···O2ii0.89 (2)2.19 (2)3.035 (2)157.6 (18)
N4—H4B···N5iv0.89 (2)2.13 (2)3.017 (2)171.9 (17)
C3—H3C···O4ii0.952.563.353 (2)141
C22—H22A···O2ii0.952.543.327 (2)141
C28—H28A···O2v0.952.553.492 (2)172
C38—H38A···O4vi0.952.503.448 (2)177
C12—H12A···Cg5v0.952.673.5510 (18)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z1; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x+1, y, z.
 

Acknowledgements

This work was supported financially by Yuanpei University.

References

First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2005). Acta Cryst. E61, o3398–o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Gentner, J. M., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1151–1166.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds