metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzoato-κO)bis­­(1,10-phenanthroline-κ2N,N′)copper(II) chloride benzoic acid disolvate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 12 March 2010; accepted 26 March 2010; online 2 April 2010)

In the title complex, [Cu(C7H5O2)(C12H8N2)2]Cl·2C6H5CO­OH, the CuII ion is coordinated by one carboxyl­ate O atom from a benzoate anion and four N atoms from two phenantroline ligands in a distorted five-coordinate trigonal-bipyramidal CuON4 chromophore. The Cu2+ and the Cl ion are imposed by a twofold rotation axiss which also bisects the equally disordered benzoate anion. In the crystal, the mol­ecules are assembled into chains along [010] by C—H⋯Cl, O—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions. The resulting chains are further connected into two-dimensional supra­molecular layers parallel to [100] by inter­chain ππ stacking inter­actions [centroid–centroid distance = 3.823 (5) Å] between the phenanthroline ligands and the benzoic acid mol­ecules, and by C—H⋯O hydrogen-bonding inter­actions. Strong ππ stacking inter­actions between adjacent phenantroline ligands [3.548 (4) Å] assemble the layers into a three-dimensional supra­molecular architecture.

Related literature

For copper–aromatic acid coordination polymers, see: Li et al. (2006[Li, W., Li, C. H., Yang, Y. Q., Kuang, D. Z., Chen, Z. M., Xu, W. J. & Chen, M. S. (2006). Chin. J. Inorg. Chem. 22, 101-105.]); Devereux et al. (2007[Devereux, M., Shea, D. O., Kellett, A., Cann, M. M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Buna, H. M. (2007). J. Inorg. Biochem. 101, 881-892.]). For related structures, see: Mao et al. (2001[Mao, Z. W., Heinemann, F. W., Liehr, G. & Eldik, R. V. (2001). J. Chem. Soc. Dalton Trans. pp. 3652-3662.]). For the τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O2)(C12H8N2)2]Cl·2C7H6O2

  • Mr = 824.74

  • Monoclinic, C 2/c

  • a = 16.724 (3) Å

  • b = 19.288 (4) Å

  • c = 13.295 (3) Å

  • β = 113.86 (3)°

  • V = 3922.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.35 × 0.31 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.710, Tmax = 0.750

  • 15193 measured reflections

  • 3449 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.08

  • 3449 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯Cl 0.96 2.94 3.728 (4) 140
O3—H31⋯Cl 0.85 (4) 2.20 (4) 3.051 (3) 177 (4)
O3—H31⋯Cli 0.85 (4) 2.20 (4) 3.051 (3) 177 (4)
C24—H24A⋯O4ii 0.93 2.49 3.355 (5) 155
C8—H8A⋯O3iii 0.93 2.47 3.307 (4) 149
C10—H10A⋯O1iv 0.93 2.53 3.275 (7) 138
C12—H12A⋯O1iv 0.93 2.30 3.106 (7) 146
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past decades, vast efforts have been dedicated to rational design and synthesis of copper-aromatic-acid coordination polymers, due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, etc··· It is well known that aromatic carboxylic acids, such as p–phthalic acid (Li et al., 2006) and salicylic acid (Devereux et al., 2007), were used to construct coordination polymers with copper salts and exhibited interesting electrochemical properties. In the present contribution, we report a new copper coordination complex, [Cu(phen)2(C6H5COO)].2(C6H5COOH).Cl, resulting from self-assembly of CuII ions, phenanthroline ligands and benzoic acid molecules.

The crystal structure of the title complex consists of [Cu(phen)2(C6H5COO)]+cations, free benzoic acid molecules and uncoordinated Cl anions in a ratio 1:2:1. The CuII ion is coordinated by one carboxylate O atom from a benzoate anion and four N atoms from two phenantroline ligands to complete a distorted five–coordinate trigonal bipyramidal CuON4 chromophore. The equatorial positions of the CuII ion are occupied by one O atom and two N atoms from different phen molecules, and the axial ones by the other two N atoms. The Addison's τ value of 0.53 (τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bipyramid) speaks for a trigonal bipyramid character with a '3+2' coordination type (Addison et al., 1984), which is similar to that of Cu atom in the literature (Mao et al., 2001). The dihedral angle between the benzene ring plane and the carboxylate plane of the coordinated benzoic ion is 14.4 (1)°, which is larger than the dihedral angle in the free benzoic acid molecule (6.5 (6)°). In addition, the CuII ions and the benzoate ligands are crystallographically imposed by 2–fold rotation axes. The molecules are assembled into one-dimensional chains along [010] direction through hydrogen bonds interactions (C5–H5A···Cl, O3–H3A···Cl, C24–H24A···O4, C8–H8A···O3). The resulting chains are further connected into two-dimensional supramolecular layers parallel to [100] by interchain π···π stacking interactions (3.823 (5) Å) between the phenantroline ligands and the molecular benzoic acid, and by hydrogen bonding interactions (C10–H10A···O1, C12–H12A···O1). Furthermore, on the basis of strong π···π stacking interactions between interlayer adjacent phenantroline ligands (3.548 (4) Å), the layers are assembled into a three-dimensional supramolecular architecture.

Related literature top

For copper–aromatic acid coordination polymers, see: Li et al. (2006); Devereux et al. (2007). For related structures, see: Mao et al. (2001). For the τ parameter, see: Addison et al. (1984).

Experimental top

Dropwise addition of 2.0 mL (1.0 M) NaOH to a stirred aqueous solution of 0.1708 g (1.001 mmol) CuCl2.H2O in 10.0 mL H2O afforded a blue precipitate, which was separated by centrifugation and washed with distilled water for 5 times. The gathered precipitate was then transferred into a solution of benzoic acid (0.2448 g, 2.0049 mmol) and 1,10-phenanthroline (0.1986 g, 1.002 mmol) in a mixed solvent composed of 10.0 mL H2O and 10.0 mL ethanol to yield a blue suspension. The mixture was then stirred for further 30 min. After filtration, the filtrate was kept at room temperature and afforded a small amount of blue crystalline blocks after 20 days.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The H atom attached to O3 was found in a difference Fourier map and was refined using a riding model, with the O—H bond distance fixed as initially found and with Uiso(H) value set at 1.2 Ueq(O).

Structure description top

Over the past decades, vast efforts have been dedicated to rational design and synthesis of copper-aromatic-acid coordination polymers, due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, etc··· It is well known that aromatic carboxylic acids, such as p–phthalic acid (Li et al., 2006) and salicylic acid (Devereux et al., 2007), were used to construct coordination polymers with copper salts and exhibited interesting electrochemical properties. In the present contribution, we report a new copper coordination complex, [Cu(phen)2(C6H5COO)].2(C6H5COOH).Cl, resulting from self-assembly of CuII ions, phenanthroline ligands and benzoic acid molecules.

The crystal structure of the title complex consists of [Cu(phen)2(C6H5COO)]+cations, free benzoic acid molecules and uncoordinated Cl anions in a ratio 1:2:1. The CuII ion is coordinated by one carboxylate O atom from a benzoate anion and four N atoms from two phenantroline ligands to complete a distorted five–coordinate trigonal bipyramidal CuON4 chromophore. The equatorial positions of the CuII ion are occupied by one O atom and two N atoms from different phen molecules, and the axial ones by the other two N atoms. The Addison's τ value of 0.53 (τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bipyramid) speaks for a trigonal bipyramid character with a '3+2' coordination type (Addison et al., 1984), which is similar to that of Cu atom in the literature (Mao et al., 2001). The dihedral angle between the benzene ring plane and the carboxylate plane of the coordinated benzoic ion is 14.4 (1)°, which is larger than the dihedral angle in the free benzoic acid molecule (6.5 (6)°). In addition, the CuII ions and the benzoate ligands are crystallographically imposed by 2–fold rotation axes. The molecules are assembled into one-dimensional chains along [010] direction through hydrogen bonds interactions (C5–H5A···Cl, O3–H3A···Cl, C24–H24A···O4, C8–H8A···O3). The resulting chains are further connected into two-dimensional supramolecular layers parallel to [100] by interchain π···π stacking interactions (3.823 (5) Å) between the phenantroline ligands and the molecular benzoic acid, and by hydrogen bonding interactions (C10–H10A···O1, C12–H12A···O1). Furthermore, on the basis of strong π···π stacking interactions between interlayer adjacent phenantroline ligands (3.548 (4) Å), the layers are assembled into a three-dimensional supramolecular architecture.

For copper–aromatic acid coordination polymers, see: Li et al. (2006); Devereux et al. (2007). For related structures, see: Mao et al. (2001). For the τ parameter, see: Addison et al. (1984).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The three-dimensional structure of the title complex through π···π stacking and hydrogen bond interactions.
(Benzoato-κO)bis(1,10-phenanthroline-κ2N,N')copper(II) chloride benzoic acid disolvate top
Crystal data top
[Cu(C7H5O2)(C12H8N2)2]Cl·2C7H6O2F(000) = 1700
Mr = 824.74Dx = 1.397 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 15193 reflections
a = 16.724 (3) Åθ = 3.2–25.0°
b = 19.288 (4) ŵ = 0.68 mm1
c = 13.295 (3) ÅT = 293 K
β = 113.86 (3)°Block, blue
V = 3922.1 (14) Å30.35 × 0.31 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3449 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 1917
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2222
Tmin = 0.710, Tmax = 0.750l = 1515
15193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0393P)2 + 3.5087P]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C7H5O2)(C12H8N2)2]Cl·2C7H6O2V = 3922.1 (14) Å3
Mr = 824.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.724 (3) ŵ = 0.68 mm1
b = 19.288 (4) ÅT = 293 K
c = 13.295 (3) Å0.35 × 0.31 × 0.28 mm
β = 113.86 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2623 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.750Rint = 0.029
15193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
3449 reflectionsΔρmin = 0.45 e Å3
286 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.50000.26282 (3)0.25000.05651 (17)
N10.40747 (13)0.19982 (11)0.12871 (18)0.0554 (5)
N20.40438 (13)0.26263 (12)0.30525 (18)0.0565 (5)
O10.4521 (4)0.3849 (3)0.1410 (5)0.090 (2)0.50
O20.5351 (3)0.3568 (3)0.3129 (5)0.0600 (12)0.50
C10.50000.4012 (3)0.25000.0678 (11)
C20.5084 (4)0.47718 (18)0.2698 (3)0.0556 (17)0.50
C30.4829 (4)0.5284 (3)0.1894 (2)0.0788 (19)0.50
H3A0.45980.51590.11310.095*0.50
C40.4907 (5)0.5979 (2)0.2196 (3)0.075 (3)0.50
H4A0.47310.63330.16410.090*0.50
C50.5240 (5)0.61615 (16)0.3302 (4)0.084 (3)0.50
H5A0.52950.66410.35110.100*0.50
C60.5495 (3)0.5649 (2)0.4106 (3)0.0794 (18)0.50
H6A0.57260.57750.48690.095*0.50
C70.5417 (3)0.49540 (19)0.3803 (3)0.0639 (15)0.50
H7A0.55930.46000.43580.077*0.50
C80.4095 (2)0.16743 (16)0.0414 (2)0.0694 (8)
H8A0.46140.16780.03130.083*
C90.3373 (2)0.13300 (16)0.0355 (3)0.0791 (9)
H9A0.34170.11060.09500.095*
C100.2608 (2)0.13242 (17)0.0231 (3)0.0794 (9)
H10A0.21230.10970.07420.095*
C110.25483 (17)0.16598 (14)0.0667 (2)0.0620 (7)
C120.17667 (18)0.16982 (17)0.0868 (3)0.0790 (9)
H12A0.12600.14850.03790.095*
C130.17515 (18)0.20324 (17)0.1738 (3)0.0773 (9)
H13A0.12310.20550.18350.093*
C140.25144 (16)0.23560 (14)0.2524 (2)0.0596 (7)
C150.25428 (19)0.27038 (17)0.3459 (3)0.0726 (8)
H15A0.20410.27410.35960.087*
C160.3303 (2)0.29866 (18)0.4164 (3)0.0773 (9)
H16A0.33300.32110.47960.093*
C170.40467 (19)0.29405 (17)0.3938 (3)0.0728 (8)
H17A0.45650.31380.44300.087*
C180.32904 (15)0.23281 (13)0.2352 (2)0.0502 (6)
C190.33051 (15)0.19836 (13)0.1411 (2)0.0509 (6)
C200.6442 (2)0.89663 (16)0.5209 (3)0.0723 (8)
C210.6652 (2)0.94046 (15)0.6202 (3)0.0673 (8)
C220.7514 (2)0.9571 (2)0.6830 (3)0.0868 (10)
H22A0.79490.94050.66260.104*
C230.7738 (3)0.9976 (2)0.7744 (3)0.1056 (12)
H23A0.83221.00830.81570.127*
C240.7114 (3)1.0223 (2)0.8054 (4)0.1033 (12)
H24A0.72681.04980.86800.124*
C250.6259 (3)1.0067 (2)0.7445 (4)0.1094 (14)
H25A0.58331.02360.76620.131*
C260.6014 (2)0.96621 (18)0.6513 (3)0.0901 (11)
H26A0.54270.95640.61000.108*
Cl0.50000.80270 (7)0.25000.0916 (4)
O40.69924 (15)0.87024 (14)0.4972 (2)0.1004 (8)
O30.55968 (17)0.88975 (14)0.4593 (2)0.0977 (8)
H310.544 (3)0.867 (2)0.400 (3)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0442 (3)0.0686 (3)0.0647 (3)0.0000.0303 (2)0.000
N10.0514 (12)0.0577 (13)0.0631 (13)0.0028 (10)0.0293 (11)0.0023 (11)
N20.0457 (11)0.0689 (14)0.0605 (13)0.0025 (10)0.0274 (11)0.0060 (11)
O10.074 (3)0.099 (5)0.066 (4)0.006 (3)0.003 (3)0.021 (3)
O20.048 (3)0.066 (3)0.065 (3)0.003 (2)0.021 (3)0.001 (2)
C10.043 (2)0.069 (3)0.090 (4)0.0000.025 (2)0.000
C20.036 (3)0.071 (3)0.057 (5)0.001 (4)0.015 (4)0.008 (3)
C30.051 (4)0.108 (6)0.068 (4)0.009 (4)0.014 (3)0.018 (4)
C40.066 (5)0.059 (4)0.099 (10)0.010 (5)0.031 (7)0.030 (4)
C50.066 (5)0.062 (4)0.118 (8)0.009 (4)0.033 (6)0.016 (5)
C60.086 (4)0.067 (4)0.077 (4)0.000 (3)0.025 (4)0.008 (4)
C70.065 (4)0.060 (4)0.062 (4)0.000 (3)0.020 (3)0.004 (3)
C80.0703 (18)0.071 (2)0.077 (2)0.0054 (16)0.0401 (17)0.0067 (16)
C90.088 (2)0.071 (2)0.075 (2)0.0002 (18)0.0290 (18)0.0246 (17)
C100.0640 (19)0.075 (2)0.085 (2)0.0066 (16)0.0146 (17)0.0168 (18)
C110.0550 (16)0.0535 (16)0.0726 (19)0.0011 (13)0.0207 (14)0.0038 (14)
C120.0483 (16)0.078 (2)0.105 (3)0.0131 (15)0.0248 (17)0.009 (2)
C130.0491 (16)0.081 (2)0.108 (3)0.0054 (15)0.0388 (18)0.000 (2)
C140.0462 (14)0.0615 (17)0.0778 (18)0.0016 (13)0.0322 (14)0.0083 (15)
C150.0616 (18)0.086 (2)0.090 (2)0.0066 (16)0.0514 (18)0.0042 (18)
C160.071 (2)0.097 (2)0.080 (2)0.0014 (18)0.0474 (18)0.0120 (18)
C170.0627 (17)0.093 (2)0.0726 (19)0.0080 (16)0.0373 (16)0.0174 (17)
C180.0423 (13)0.0502 (14)0.0619 (15)0.0033 (11)0.0248 (12)0.0061 (13)
C190.0450 (13)0.0464 (15)0.0629 (16)0.0042 (11)0.0237 (13)0.0044 (12)
C200.080 (2)0.0680 (19)0.093 (2)0.0097 (16)0.061 (2)0.0170 (17)
C210.083 (2)0.0550 (17)0.088 (2)0.0119 (15)0.0592 (19)0.0123 (15)
C220.073 (2)0.106 (3)0.093 (3)0.0252 (19)0.044 (2)0.014 (2)
C230.089 (3)0.132 (4)0.093 (3)0.011 (2)0.034 (2)0.005 (3)
C240.115 (3)0.106 (3)0.105 (3)0.002 (3)0.061 (3)0.014 (2)
C250.115 (3)0.105 (3)0.146 (4)0.003 (3)0.093 (3)0.031 (3)
C260.084 (2)0.085 (2)0.129 (3)0.0038 (18)0.072 (2)0.016 (2)
Cl0.0794 (8)0.0839 (8)0.1148 (10)0.0000.0425 (7)0.000
O40.0964 (16)0.121 (2)0.1100 (18)0.0257 (15)0.0688 (15)0.0062 (15)
O30.0869 (17)0.113 (2)0.118 (2)0.0093 (14)0.0673 (17)0.0255 (16)
Geometric parameters (Å, º) top
Cu—O21.984 (5)C11—C191.399 (4)
Cu—O2i1.984 (5)C11—C121.438 (4)
Cu—N2i2.012 (2)C12—C131.334 (4)
Cu—N22.012 (2)C12—H12A0.9300
Cu—N12.110 (2)C13—C141.425 (4)
Cu—N1i2.110 (2)C13—H13A0.9300
N1—C81.330 (3)C14—C151.396 (4)
N1—C191.362 (3)C14—C181.407 (3)
N2—C171.322 (3)C15—C161.352 (4)
N2—C181.355 (3)C15—H15A0.9300
O1—C11.378 (6)C16—C171.395 (4)
O2—C11.174 (6)C16—H16A0.9300
C1—C21.486 (6)C17—H17A0.9300
C2—C31.3900C18—C191.425 (3)
C2—C71.3900C20—O41.200 (3)
C3—C41.3900C20—O31.323 (4)
C3—H3A0.9600C20—C211.485 (4)
C4—C51.3900C21—C221.380 (5)
C4—H4A0.9600C21—C261.384 (4)
C5—C61.3900C22—C231.363 (5)
C5—H5A0.9601C22—H22A0.9300
C6—C71.3900C23—C241.355 (5)
C6—H6A0.9599C23—H23A0.9300
C7—H7A0.9601C24—C251.361 (5)
C8—C91.395 (4)C24—H24A0.9300
C8—H8A0.9300C25—C261.379 (5)
C9—C101.356 (4)C25—H25A0.9300
C9—H9A0.9300C26—H26A0.9300
C10—C111.395 (4)Cl—Cli0.000 (3)
C10—H10A0.9300O3—H310.85 (4)
O2—Cu—O2i47.8 (3)C11—C10—H10A120.1
O2—Cu—N2i90.69 (16)C10—C11—C19117.1 (3)
O2i—Cu—N2i89.49 (16)C10—C11—C12124.5 (3)
O2—Cu—N289.49 (16)C19—C11—C12118.4 (3)
O2i—Cu—N290.69 (16)C13—C12—C11121.6 (3)
N2i—Cu—N2179.80 (13)C13—C12—H12A119.2
O2—Cu—N1148.10 (18)C11—C12—H12A119.2
O2i—Cu—N1101.76 (18)C12—C13—C14121.5 (3)
N2i—Cu—N199.53 (8)C12—C13—H13A119.3
N2—Cu—N180.35 (8)C14—C13—H13A119.3
O2—Cu—N1i101.76 (18)C15—C14—C18117.5 (3)
O2i—Cu—N1i148.10 (18)C15—C14—C13124.1 (3)
N2i—Cu—N1i80.35 (8)C18—C14—C13118.4 (3)
N2—Cu—N1i99.53 (8)C16—C15—C14119.7 (2)
N1—Cu—N1i109.69 (12)C16—C15—H15A120.2
C8—N1—C19117.0 (2)C14—C15—H15A120.2
C8—N1—Cu131.86 (18)C15—C16—C17119.7 (3)
C19—N1—Cu110.87 (16)C15—C16—H16A120.2
C17—N2—C18118.3 (2)C17—C16—H16A120.2
C17—N2—Cu127.38 (19)N2—C17—C16122.6 (3)
C18—N2—Cu113.88 (16)N2—C17—H17A118.7
C1—O2—Cu112.8 (4)C16—C17—H17A118.7
O2—C1—O1119.6 (6)N2—C18—C14122.3 (2)
O2—C1—C2127.5 (4)N2—C18—C19117.4 (2)
O1—C1—C2112.6 (4)C14—C18—C19120.3 (2)
C3—C2—C7120.0N1—C19—C11123.5 (2)
C3—C2—C1126.0 (3)N1—C19—C18116.7 (2)
C7—C2—C1113.9 (3)C11—C19—C18119.8 (2)
C4—C3—C2120.0O4—C20—O3122.4 (3)
C4—C3—H3A120.0O4—C20—C21122.9 (3)
C2—C3—H3A120.0O3—C20—C21114.6 (3)
C3—C4—C5120.0C22—C21—C26118.6 (3)
C3—C4—H4A120.0C22—C21—C20119.0 (3)
C5—C4—H4A120.0C26—C21—C20122.5 (3)
C4—C5—C6120.0C23—C22—C21121.1 (3)
C4—C5—H5A120.0C23—C22—H22A119.5
C6—C5—H5A120.0C21—C22—H22A119.5
C7—C6—C5120.0C24—C23—C22120.3 (4)
C7—C6—H6A120.0C24—C23—H23A119.8
C5—C6—H6A120.0C22—C23—H23A119.8
C6—C7—C2120.0C23—C24—C25119.6 (4)
C6—C7—H7A120.0C23—C24—H24A120.2
C2—C7—H7A120.0C25—C24—H24A120.2
N1—C8—C9122.9 (3)C24—C25—C26121.3 (3)
N1—C8—H8A118.5C24—C25—H25A119.4
C9—C8—H8A118.5C26—C25—H25A119.4
C10—C9—C8119.6 (3)C25—C26—C21119.2 (4)
C10—C9—H9A120.2C25—C26—H26A120.4
C8—C9—H9A120.2C21—C26—H26A120.4
C9—C10—C11119.9 (3)C20—O3—H31119 (3)
C9—C10—H10A120.1
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl0.962.943.728 (4)140
O3—H31···Cl0.85 (4)2.20 (4)3.051 (3)177 (4)
O3—H31···Cli0.85 (4)2.20 (4)3.051 (3)177 (4)
C24—H24A···O4ii0.932.493.355 (5)155
C8—H8A···O3iii0.932.473.307 (4)149
C10—H10A···O1iv0.932.533.275 (7)138
C12—H12A···O1iv0.932.303.106 (7)146
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O2)(C12H8N2)2]Cl·2C7H6O2
Mr824.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.724 (3), 19.288 (4), 13.295 (3)
β (°) 113.86 (3)
V3)3922.1 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.35 × 0.31 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.710, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
15193, 3449, 2623
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.08
No. of reflections3449
No. of parameters286
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl0.962.943.728 (4)139.9
O3—H31···Cl0.85 (4)2.20 (4)3.051 (3)177 (4)
O3—H31···Cli0.85 (4)2.20 (4)3.051 (3)177 (4)
C24—H24A···O4ii0.932.493.355 (5)155.3
C8—H8A···O3iii0.932.473.307 (4)149.0
C10—H10A···O1iv0.932.533.275 (7)137.7
C12—H12A···O1iv0.932.303.106 (7)145.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province. Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationDevereux, M., Shea, D. O., Kellett, A., Cann, M. M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Buna, H. M. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, W., Li, C. H., Yang, Y. Q., Kuang, D. Z., Chen, Z. M., Xu, W. J. & Chen, M. S. (2006). Chin. J. Inorg. Chem. 22, 101–105.  Google Scholar
First citationMao, Z. W., Heinemann, F. W., Liehr, G. & Eldik, R. V. (2001). J. Chem. Soc. Dalton Trans. pp. 3652–3662.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds