metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,3-Bis[(di­phenyl­phosphanyl-κP)­­oxy]prop-2-yl-κC2}iodido(tri­methyl­phosphane)cobalt(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 19 March 2010; accepted 14 April 2010; online 21 April 2010)

The title compound, [Co(C27H25O2P2)I(C3H9P)], was synthesized by the addition of 1-iodo­butane to a solution of the parent cobalt complex {1,3-bis­[(diphenyl­phosphan­yl)­oxy]prop-2-yl}bis­(trimethyl­phosphane)cobalt(II). Two five-membered cobaltocycles with considerable ring bending (sum of inter­nal angles = 516.4 and 517.7°) are formed through two P atoms of the PPh2 groups and a metallated Csp3 atom. The CoII atom is centered in a trigonal-bipyramidal configuration.

Related literature

For general background to transition metal complexes with PCP pincer ligands and their preparation, see: Boom & Milstein (2003[Boom, M. & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]); Pandarus et al. (2008[Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756-4761.]); Xu et al. (2009[Xu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090-6095.]); Zheng et al. (2009[Zheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771-5776.]). For Co—Csp3 bond lengths, see: Klein et al. (2003[Klein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 853-862.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C27H25O2P2)I(C3H9P)]

  • Mr = 705.31

  • Orthorhombic, P b c a

  • a = 15.161 (3) Å

  • b = 18.194 (4) Å

  • c = 21.410 (4) Å

  • V = 5906 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.713, Tmax = 0.876

  • 35496 measured reflections

  • 6237 independent reflections

  • 5551 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.04

  • 6237 reflections

  • 357 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with PCP pincer ligands have attracted a substantial amount of interest (Boom et al. 2003). We previously reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Co(PMe3)4Me to afford metallated PCP pincer compounds at room temperature (Xu et al., 2009) and the subsequent reaction with CH3I gave rise to iodomethylcobalt(III) complex. Here we explored the reaction of Co(C27H25O2P2)(C3H9P)2 with n-C4H9I, which afforded the title compound via one-electron oxidative addition. The rest part of products might be C,C-coupling product (Zheng et al., 2009), despite it has not been isolated.

The molecular structure is shown in Fig. 1. The CoII atom is five coordinated in a trigonal bipyramidal configuration. The Co—C bond distance of 2.068 (18) Å is within the range of Co—C (sp3) bonds (2.03-2.15 Å) (Klein et al., 2003).

Related literature top

For general background to transition metal complexes with PCP pincer ligands and their preparation, see: Boom et al. (2003); Pandarus et al. (2008); Xu et al. (2009); Zheng et al. (2009). For Co—Csp3 bond lengths, see: Klein et al. (2003).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. The title compound was synthesized by combining a solution of {1,3-bis[(diphenylphosphanyl)oxy]prop-2-yl}bis(trimethylphosphane)cobalt(II) (733 mg, 1.12 mmol) in 30 ml of diethyl ether with a sample of n-C4H9I (203 mg, 1.12 mmol) in 30 ml of diethyl ether at 273 K. After kept stirring for 16 h at room temperature, the color changed from red to brown. Volatiles were concentrated and filtrated. Red crystals, which were suitable for X-ray diffraction, could be obtained from diethyl ether at 255 K.

Refinement top

The H atoms bound to C16-C18 were located in a difference Fourier map and refined isotropically. The remaining H atoms were included in calculated positions, with C—H = 0.93 Å (aromatic) and 0.96 Å (alkyl), and with Uiso(H) = 1.2 (1.5 for alkyl groups) times Ueq(C).

Structure description top

Transition metal complexes with PCP pincer ligands have attracted a substantial amount of interest (Boom et al. 2003). We previously reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Co(PMe3)4Me to afford metallated PCP pincer compounds at room temperature (Xu et al., 2009) and the subsequent reaction with CH3I gave rise to iodomethylcobalt(III) complex. Here we explored the reaction of Co(C27H25O2P2)(C3H9P)2 with n-C4H9I, which afforded the title compound via one-electron oxidative addition. The rest part of products might be C,C-coupling product (Zheng et al., 2009), despite it has not been isolated.

The molecular structure is shown in Fig. 1. The CoII atom is five coordinated in a trigonal bipyramidal configuration. The Co—C bond distance of 2.068 (18) Å is within the range of Co—C (sp3) bonds (2.03-2.15 Å) (Klein et al., 2003).

For general background to transition metal complexes with PCP pincer ligands and their preparation, see: Boom et al. (2003); Pandarus et al. (2008); Xu et al. (2009); Zheng et al. (2009). For Co—Csp3 bond lengths, see: Klein et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.
(I) top
Crystal data top
[Co(C27H25O2P2)I(C3H9P)]F(000) = 2840
Mr = 705.31Dx = 1.587 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 13063 reflections
a = 15.161 (3) Åθ = 2.0–26.9°
b = 18.194 (4) ŵ = 1.82 mm1
c = 21.410 (4) ÅT = 293 K
V = 5906 (2) Å3Block, red
Z = 80.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6237 independent reflections
Radiation source: fine-focus sealed tube5551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 26.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1918
Tmin = 0.713, Tmax = 0.876k = 2323
35496 measured reflectionsl = 2720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.1856P]
where P = (Fo2 + 2Fc2)/3
6237 reflections(Δ/σ)max = 0.004
357 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co(C27H25O2P2)I(C3H9P)]V = 5906 (2) Å3
Mr = 705.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.161 (3) ŵ = 1.82 mm1
b = 18.194 (4) ÅT = 293 K
c = 21.410 (4) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6237 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5551 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.876Rint = 0.071
35496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.57 e Å3
6237 reflectionsΔρmin = 0.54 e Å3
357 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.657194 (9)0.086157 (8)0.506996 (6)0.02926 (5)
Co20.644969 (16)0.062554 (12)0.387635 (11)0.01625 (6)
P10.75443 (3)0.14172 (2)0.37052 (2)0.02092 (10)
P20.54174 (3)0.10487 (2)0.32815 (2)0.01924 (10)
P30.70421 (3)0.03885 (2)0.35418 (2)0.01858 (10)
O10.48603 (9)0.03615 (7)0.30021 (7)0.0249 (3)
O20.65551 (9)0.10523 (7)0.39172 (7)0.0247 (3)
C10.79921 (15)0.15169 (11)0.29188 (10)0.0300 (4)
H1A0.84270.19000.29160.045*
H1B0.75250.16400.26350.045*
H1C0.82600.10630.27920.045*
C20.85631 (13)0.12727 (12)0.41438 (11)0.0302 (4)
H2A0.88330.08210.40120.045*
H2B0.84310.12470.45820.045*
H2C0.89600.16740.40680.045*
C30.72818 (15)0.23686 (10)0.39039 (10)0.0291 (4)
H3A0.78130.26550.39060.044*
H3B0.70140.23850.43100.044*
H3C0.68800.25650.36000.044*
C40.55196 (12)0.16068 (10)0.25779 (9)0.0235 (4)
C50.56173 (14)0.12717 (12)0.20005 (10)0.0297 (4)
H50.55820.07630.19680.036*
C60.57680 (15)0.16956 (14)0.14697 (11)0.0380 (5)
H60.58250.14690.10830.046*
C70.58336 (16)0.24521 (14)0.15141 (13)0.0437 (6)
H70.59420.27330.11600.052*
C80.57375 (18)0.27844 (13)0.20852 (13)0.0424 (6)
H80.57880.32920.21170.051*
C90.55662 (16)0.23727 (11)0.26161 (11)0.0330 (5)
H90.54820.26060.29980.040*
C100.45903 (13)0.15345 (10)0.37462 (9)0.0240 (4)
C110.48287 (15)0.20811 (11)0.41667 (11)0.0327 (5)
H110.54160.22240.41960.039*
C120.42052 (18)0.24143 (12)0.45408 (12)0.0417 (6)
H120.43720.27860.48150.050*
C130.33319 (18)0.21962 (14)0.45081 (13)0.0458 (7)
H130.29100.24200.47600.055*
C140.30906 (17)0.16476 (15)0.41022 (14)0.0449 (6)
H140.25050.14970.40840.054*
C150.37125 (15)0.13148 (12)0.37182 (11)0.0332 (5)
H150.35420.09460.34430.040*
C160.49139 (13)0.02708 (10)0.34158 (10)0.0236 (4)
C170.54239 (12)0.01073 (9)0.40104 (9)0.0207 (4)
C180.57921 (13)0.08121 (10)0.42799 (10)0.0243 (4)
C190.81877 (13)0.05789 (9)0.37445 (10)0.0229 (4)
C200.88739 (14)0.05669 (10)0.33109 (10)0.0261 (4)
H200.87490.05010.28890.031*
C210.97401 (14)0.06518 (12)0.35030 (12)0.0337 (5)
H211.01930.06440.32110.040*
C220.99311 (16)0.07482 (13)0.41270 (13)0.0400 (5)
H221.05130.08060.42540.048*
C230.92562 (17)0.07593 (14)0.45670 (12)0.0428 (6)
H230.93870.08200.49880.051*
C240.83859 (15)0.06791 (12)0.43761 (12)0.0333 (5)
H240.79340.06920.46700.040*
C250.69869 (13)0.07007 (10)0.27348 (9)0.0216 (4)
C260.71675 (14)0.02226 (10)0.22455 (10)0.0272 (4)
H260.72650.02730.23280.033*
C270.72045 (14)0.04749 (12)0.16343 (10)0.0313 (4)
H270.73430.01530.13120.038*
C280.70351 (14)0.12086 (12)0.15053 (10)0.0299 (4)
H280.70700.13820.10970.036*
C290.68137 (16)0.16818 (11)0.19879 (11)0.0336 (5)
H290.66770.21690.19010.040*
C300.67953 (16)0.14335 (10)0.25967 (11)0.0302 (4)
H300.66540.17570.29180.036*
H180.5970 (16)0.0751 (11)0.4712 (12)0.021 (5)*
H310.5038 (15)0.0134 (12)0.4328 (11)0.023 (5)*
H160.5197 (16)0.0676 (12)0.3174 (11)0.025 (6)*
H170.4303 (17)0.0420 (13)0.3517 (12)0.029 (6)*
H190.5380 (17)0.1227 (13)0.4249 (12)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03046 (8)0.03908 (9)0.01822 (7)0.00978 (5)0.00190 (5)0.00184 (5)
Co20.01717 (12)0.01357 (11)0.01801 (12)0.00099 (8)0.00126 (9)0.00041 (8)
P10.0226 (2)0.0175 (2)0.0227 (2)0.00525 (17)0.00225 (19)0.00124 (17)
P20.0203 (2)0.01627 (19)0.0211 (2)0.00030 (16)0.00108 (18)0.00069 (16)
P30.0197 (2)0.01471 (19)0.0214 (2)0.00055 (16)0.00333 (18)0.00018 (16)
O10.0270 (7)0.0225 (6)0.0252 (7)0.0043 (5)0.0052 (6)0.0015 (5)
O20.0255 (7)0.0170 (6)0.0317 (8)0.0013 (5)0.0089 (6)0.0035 (5)
C10.0343 (12)0.0263 (9)0.0293 (11)0.0095 (8)0.0085 (9)0.0016 (8)
C20.0243 (10)0.0310 (10)0.0353 (12)0.0068 (8)0.0002 (9)0.0028 (9)
C30.0342 (11)0.0187 (8)0.0343 (11)0.0064 (8)0.0039 (9)0.0033 (8)
C40.0192 (9)0.0259 (9)0.0254 (10)0.0026 (7)0.0018 (8)0.0041 (7)
C50.0265 (10)0.0345 (10)0.0281 (11)0.0025 (8)0.0002 (8)0.0009 (8)
C60.0299 (12)0.0571 (14)0.0270 (11)0.0026 (10)0.0011 (9)0.0020 (10)
C70.0361 (13)0.0555 (14)0.0394 (13)0.0018 (11)0.0003 (10)0.0241 (11)
C80.0496 (15)0.0306 (10)0.0470 (15)0.0057 (10)0.0002 (12)0.0160 (10)
C90.0395 (12)0.0258 (9)0.0336 (12)0.0066 (8)0.0006 (9)0.0047 (8)
C100.0228 (9)0.0240 (8)0.0252 (10)0.0056 (7)0.0012 (8)0.0043 (7)
C110.0331 (12)0.0293 (10)0.0357 (12)0.0050 (8)0.0050 (9)0.0045 (8)
C120.0542 (16)0.0340 (11)0.0369 (13)0.0121 (10)0.0130 (11)0.0027 (9)
C130.0475 (15)0.0459 (13)0.0439 (15)0.0244 (11)0.0223 (12)0.0124 (11)
C140.0257 (12)0.0579 (15)0.0512 (16)0.0097 (10)0.0101 (11)0.0150 (13)
C150.0258 (11)0.0377 (11)0.0362 (12)0.0044 (9)0.0003 (9)0.0065 (9)
C160.0218 (9)0.0185 (8)0.0304 (10)0.0045 (7)0.0002 (8)0.0020 (7)
C170.0202 (9)0.0171 (7)0.0249 (9)0.0031 (7)0.0048 (7)0.0006 (7)
C180.0243 (10)0.0193 (8)0.0293 (11)0.0020 (7)0.0073 (8)0.0035 (7)
C190.0239 (9)0.0159 (8)0.0290 (10)0.0026 (7)0.0016 (8)0.0015 (7)
C200.0253 (10)0.0263 (9)0.0268 (10)0.0023 (7)0.0020 (8)0.0006 (8)
C210.0251 (11)0.0352 (11)0.0409 (13)0.0045 (8)0.0074 (9)0.0023 (9)
C220.0263 (11)0.0475 (13)0.0462 (15)0.0067 (9)0.0053 (10)0.0096 (11)
C230.0346 (13)0.0601 (15)0.0339 (13)0.0081 (11)0.0046 (10)0.0128 (11)
C240.0295 (12)0.0401 (11)0.0302 (11)0.0053 (9)0.0034 (9)0.0080 (9)
C250.0193 (9)0.0213 (8)0.0243 (10)0.0019 (7)0.0022 (7)0.0034 (7)
C260.0305 (11)0.0245 (9)0.0266 (10)0.0063 (8)0.0024 (8)0.0025 (7)
C270.0300 (11)0.0371 (11)0.0268 (11)0.0089 (9)0.0038 (9)0.0008 (8)
C280.0270 (10)0.0357 (10)0.0269 (11)0.0002 (8)0.0013 (8)0.0096 (8)
C290.0428 (13)0.0224 (9)0.0355 (12)0.0005 (8)0.0020 (10)0.0074 (8)
C300.0424 (12)0.0182 (9)0.0300 (11)0.0015 (8)0.0000 (9)0.0002 (8)
Geometric parameters (Å, º) top
I1—Co22.5980 (6)C11—C121.379 (3)
Co2—C172.0685 (18)C11—H110.9300
Co2—P22.1597 (6)C12—C131.384 (4)
Co2—P32.1734 (6)C12—H120.9300
Co2—P12.2278 (6)C13—C141.373 (4)
P1—C11.824 (2)C13—H130.9300
P1—C31.8263 (19)C14—C151.390 (3)
P1—C21.827 (2)C14—H140.9300
P2—O11.6231 (13)C15—H150.9300
P2—C41.823 (2)C16—C171.519 (3)
P2—C101.829 (2)C16—H161.00 (2)
P3—O21.6278 (14)C16—H170.99 (2)
P3—C251.821 (2)C17—C181.513 (3)
P3—C191.823 (2)C17—H311.00 (2)
O1—C161.454 (2)C18—H180.97 (3)
O2—C181.460 (2)C18—H190.98 (2)
C1—H1A0.9600C19—C201.394 (3)
C1—H1B0.9600C19—C241.397 (3)
C1—H1C0.9600C20—C211.385 (3)
C2—H2A0.9600C20—H200.9300
C2—H2B0.9600C21—C221.378 (4)
C2—H2C0.9600C21—H210.9300
C3—H3A0.9600C22—C231.391 (4)
C3—H3B0.9600C22—H220.9300
C3—H3C0.9600C23—C241.389 (3)
C4—C51.386 (3)C23—H230.9300
C4—C91.398 (3)C24—H240.9300
C5—C61.392 (3)C25—C261.389 (3)
C5—H50.9300C25—C301.396 (3)
C6—C71.383 (4)C26—C271.388 (3)
C6—H60.9300C26—H260.9300
C7—C81.372 (4)C27—C281.387 (3)
C7—H70.9300C27—H270.9300
C8—C91.386 (3)C28—C291.386 (3)
C8—H80.9300C28—H280.9300
C9—H90.9300C29—C301.380 (3)
C10—C111.389 (3)C29—H290.9300
C10—C151.391 (3)C30—H300.9300
C17—Co2—P276.51 (6)C12—C11—C10120.8 (2)
C17—Co2—P379.01 (5)C12—C11—H11119.6
P2—Co2—P3114.06 (2)C10—C11—H11119.6
C17—Co2—P1178.47 (6)C11—C12—C13120.0 (2)
P2—Co2—P1102.26 (2)C11—C12—H12120.0
P3—Co2—P1100.77 (2)C13—C12—H12120.0
C17—Co2—I191.36 (6)C14—C13—C12119.7 (2)
P2—Co2—I1124.951 (18)C14—C13—H13120.2
P3—Co2—I1115.788 (17)C12—C13—H13120.2
P1—Co2—I190.104 (16)C13—C14—C15120.7 (2)
C1—P1—C3101.64 (10)C13—C14—H14119.7
C1—P1—C2100.03 (11)C15—C14—H14119.7
C3—P1—C2101.59 (10)C14—C15—C10119.9 (2)
C1—P1—Co2119.56 (7)C14—C15—H15120.0
C3—P1—Co2114.34 (7)C10—C15—H15120.0
C2—P1—Co2116.88 (7)O1—C16—C17112.58 (14)
O1—P2—C499.72 (8)O1—C16—H16107.0 (14)
O1—P2—C10102.47 (9)C17—C16—H16111.2 (14)
C4—P2—C10103.81 (9)O1—C16—H17107.3 (14)
O1—P2—Co2108.65 (5)C17—C16—H17110.3 (15)
C4—P2—Co2128.62 (7)H16—C16—H17108.3 (19)
C10—P2—Co2110.39 (7)C18—C17—C16109.96 (15)
O2—P3—C25102.49 (8)C18—C17—Co2108.77 (13)
O2—P3—C1999.99 (8)C16—C17—Co2113.12 (13)
C25—P3—C19102.15 (9)C18—C17—H31109.3 (13)
O2—P3—Co2106.24 (5)C16—C17—H31111.0 (13)
C25—P3—Co2123.96 (6)Co2—C17—H31104.6 (12)
C19—P3—Co2118.45 (6)O2—C18—C17110.07 (15)
C16—O1—P2110.85 (12)O2—C18—H18108.7 (14)
C18—O2—P3113.57 (11)C17—C18—H18111.6 (13)
P1—C1—H1A109.5O2—C18—H19103.7 (15)
P1—C1—H1B109.5C17—C18—H19113.0 (14)
H1A—C1—H1B109.5H18—C18—H19109 (2)
P1—C1—H1C109.5C20—C19—C24119.07 (19)
H1A—C1—H1C109.5C20—C19—P3123.31 (16)
H1B—C1—H1C109.5C24—C19—P3117.39 (16)
P1—C2—H2A109.5C21—C20—C19120.5 (2)
P1—C2—H2B109.5C21—C20—H20119.7
H2A—C2—H2B109.5C19—C20—H20119.7
P1—C2—H2C109.5C22—C21—C20120.1 (2)
H2A—C2—H2C109.5C22—C21—H21120.0
H2B—C2—H2C109.5C20—C21—H21120.0
P1—C3—H3A109.5C21—C22—C23120.2 (2)
P1—C3—H3B109.5C21—C22—H22119.9
H3A—C3—H3B109.5C23—C22—H22119.9
P1—C3—H3C109.5C24—C23—C22119.9 (2)
H3A—C3—H3C109.5C24—C23—H23120.1
H3B—C3—H3C109.5C22—C23—H23120.1
C5—C4—C9119.02 (19)C23—C24—C19120.2 (2)
C5—C4—P2120.07 (15)C23—C24—H24119.9
C9—C4—P2120.74 (17)C19—C24—H24119.9
C4—C5—C6120.1 (2)C26—C25—C30118.65 (19)
C4—C5—H5119.9C26—C25—P3120.75 (14)
C6—C5—H5119.9C30—C25—P3120.55 (16)
C7—C6—C5120.4 (2)C27—C26—C25120.79 (18)
C7—C6—H6119.8C27—C26—H26119.6
C5—C6—H6119.8C25—C26—H26119.6
C8—C7—C6119.5 (2)C28—C27—C26119.9 (2)
C8—C7—H7120.3C28—C27—H27120.1
C6—C7—H7120.3C26—C27—H27120.1
C7—C8—C9120.8 (2)C29—C28—C27119.6 (2)
C7—C8—H8119.6C29—C28—H28120.2
C9—C8—H8119.6C27—C28—H28120.2
C8—C9—C4120.0 (2)C30—C29—C28120.38 (19)
C8—C9—H9120.0C30—C29—H29119.8
C4—C9—H9120.0C28—C29—H29119.8
C11—C10—C15118.9 (2)C29—C30—C25120.6 (2)
C11—C10—P2121.34 (16)C29—C30—H30119.7
C15—C10—P2119.59 (16)C25—C30—H30119.7
P2—Co2—P1—C160.80 (9)C4—P2—C10—C1189.34 (18)
P3—Co2—P1—C156.98 (9)Co2—P2—C10—C1151.66 (18)
I1—Co2—P1—C1173.28 (9)O1—P2—C10—C157.46 (18)
P2—Co2—P1—C359.95 (8)C4—P2—C10—C1595.97 (17)
P3—Co2—P1—C3177.72 (8)Co2—P2—C10—C15123.03 (16)
I1—Co2—P1—C365.97 (8)C15—C10—C11—C121.5 (3)
P2—Co2—P1—C2178.41 (8)P2—C10—C11—C12176.23 (18)
P3—Co2—P1—C263.81 (9)C10—C11—C12—C131.1 (4)
I1—Co2—P1—C252.49 (8)C11—C12—C13—C140.0 (4)
C17—Co2—P2—O134.20 (8)C12—C13—C14—C150.8 (4)
P3—Co2—P2—O137.03 (6)C13—C14—C15—C100.4 (4)
P1—Co2—P2—O1144.87 (6)C11—C10—C15—C140.7 (3)
I1—Co2—P2—O1116.27 (6)P2—C10—C15—C14175.55 (18)
C17—Co2—P2—C4154.04 (10)P2—O1—C16—C173.5 (2)
P3—Co2—P2—C482.82 (9)O1—C16—C17—C18155.92 (16)
P1—Co2—P2—C425.02 (9)O1—C16—C17—Co234.09 (19)
I1—Co2—P2—C4123.89 (8)P2—Co2—C17—C18160.80 (14)
C17—Co2—P2—C1077.43 (9)P3—Co2—C17—C1842.53 (12)
P3—Co2—P2—C10148.66 (7)I1—Co2—C17—C1873.49 (13)
P1—Co2—P2—C10103.50 (7)P2—Co2—C17—C1638.31 (12)
I1—Co2—P2—C104.64 (7)P3—Co2—C17—C1679.97 (13)
C17—Co2—P3—O227.71 (8)I1—Co2—C17—C16164.01 (12)
P2—Co2—P3—O297.41 (6)P3—O2—C18—C1723.9 (2)
P1—Co2—P3—O2153.84 (6)C16—C17—C18—O275.7 (2)
I1—Co2—P3—O258.45 (6)Co2—C17—C18—O248.69 (18)
C17—Co2—P3—C2590.18 (10)O2—P3—C19—C20135.14 (16)
P2—Co2—P3—C2520.48 (8)C25—P3—C19—C2029.91 (18)
P1—Co2—P3—C2588.28 (8)Co2—P3—C19—C20110.13 (16)
I1—Co2—P3—C25176.33 (7)O2—P3—C19—C2450.42 (17)
C17—Co2—P3—C19139.02 (9)C25—P3—C19—C24155.65 (16)
P2—Co2—P3—C19151.28 (7)Co2—P3—C19—C2464.31 (17)
P1—Co2—P3—C1942.53 (8)C24—C19—C20—C210.1 (3)
I1—Co2—P3—C1952.86 (8)P3—C19—C20—C21174.23 (15)
C4—P2—O1—C16162.61 (13)C19—C20—C21—C220.1 (3)
C10—P2—O1—C1690.78 (14)C20—C21—C22—C230.1 (4)
Co2—P2—O1—C1626.04 (13)C21—C22—C23—C240.5 (4)
C25—P3—O2—C18122.07 (14)C22—C23—C24—C190.7 (4)
C19—P3—O2—C18132.99 (14)C20—C19—C24—C230.5 (3)
Co2—P3—O2—C189.27 (15)P3—C19—C24—C23174.15 (18)
O1—P2—C4—C535.28 (18)O2—P3—C25—C26166.52 (16)
C10—P2—C4—C5140.81 (17)C19—P3—C25—C2690.21 (17)
Co2—P2—C4—C588.23 (17)Co2—P3—C25—C2646.88 (19)
O1—P2—C4—C9149.46 (17)O2—P3—C25—C3015.99 (19)
C10—P2—C4—C943.93 (19)C19—P3—C25—C3087.28 (18)
Co2—P2—C4—C987.03 (18)Co2—P3—C25—C30135.62 (15)
C9—C4—C5—C60.6 (3)C30—C25—C26—C273.5 (3)
P2—C4—C5—C6174.71 (17)P3—C25—C26—C27174.08 (17)
C4—C5—C6—C70.9 (3)C25—C26—C27—C281.8 (3)
C5—C6—C7—C80.8 (4)C26—C27—C28—C291.2 (3)
C6—C7—C8—C90.7 (4)C27—C28—C29—C302.6 (3)
C7—C8—C9—C42.2 (4)C28—C29—C30—C250.9 (4)
C5—C4—C9—C82.2 (3)C26—C25—C30—C292.1 (3)
P2—C4—C9—C8173.15 (18)P3—C25—C30—C29175.47 (18)
O1—P2—C10—C11167.23 (17)

Experimental details

Crystal data
Chemical formula[Co(C27H25O2P2)I(C3H9P)]
Mr705.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.161 (3), 18.194 (4), 21.410 (4)
V3)5906 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.713, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
35496, 6237, 5551
Rint0.071
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.04
No. of reflections6237
No. of parameters357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.54

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support by NSF China (No. 20872080/20772072).

References

First citationBoom, M. & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science PubMed Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 853–862.  CSD CrossRef Google Scholar
First citationPandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090–6095.  Web of Science CrossRef CAS Google Scholar
First citationZheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771–5776.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds