organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-tert-Butyl-1H-isochromene-1-thione

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 May 2010; accepted 24 May 2010; online 26 May 2010)

The title compound, C13H14OS, crystallizes with two independent mol­ecules in the asymmetric unit. The unit cell contains three voids of 197 Å3, but the residual electron density (highest peak = 0.24 e Å−3 and deepest hole = −0.18 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupies this void. The crystal structure is stabilized by ππ inter­actions between the isocoumarin ring systems, with centroid–centroid distances of 3.6793 (14) and 3.6566 (15) Å.

Related literature

For the crystal structure and synthesis of isocoumarin and its thio­analogues, see: Hathwar et al. (2007a[Hathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007a). Acta Cryst. E63, o3708.],b[Hathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007b). Acta Cryst. E63, o3707.], 2009[Hathwar, V. R., Manivel, P., Khan, F. N. & Row, T. N. G. (2009). CrystEngComm, 11, 284-291.]); Manivel et al. (2008[Manivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609-1610.]); Basvanag et al. (2009[Basvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276-1278.]); Henerson & Hill (1982[Henerson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin. Trans. 1, pp. 1111-1115.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14OS

  • Mr = 218.31

  • Trigonal, [R \overline 3]

  • a = 43.2799 (16) Å

  • c = 6.9025 (5) Å

  • V = 11197.2 (10) Å3

  • Z = 36

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.31 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.966

  • 33028 measured reflections

  • 5943 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.161

  • S = 1.09

  • 5943 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isocoumarins are isolated in a great variety of microorganisms, plants, and insects, and have been shown to have considerable biological activity. Isocoumarins and its derivatives are secondary metabolites of a wide variety of microbial plant and insect sources and in synthesis of other medicinal compounds (Manivel et al., 2008, Basvanag et al., 2009). Sulfur containing isocoumarins have been known and a number of substituted thioisocoumarins, (Henerson et al., 1982) have been prepared. Most methods available for the construction of thioisocoumarin nucleus suffer from one or more drawbacks, such as the long reaction time required obtaining a good yield of the desired product or the use of expensive and hazardous reagents and solvents. Herewith, we are reporting the synthesis of 3-tert-butyl-1H-isochromene-1-thione using Lawessons reagent.

The isocoumarin moieties in the symmetric unit of the title compound, (I), (Fig. 1a and Fig. 1 b), are essentially parallel to each other with a small dihedral angle of 1.20 (7) °.

In the molecular structure of (I), there exist C—H···S and C—H···O intramolecular interactions (Table 1, Fig. 2). In adition, π-π interactions are observed between the isocoumarin ring systems [Cg2···Cg4(x, y, z) = 3.6793 (14) Å and Cg2···Cg5(x, y, 1 + z) = 3.6566 (15) Å; where Cg2, Cg4 and Cg5 are the centroids of the C1–C6, O2'/C1'/C6'–C9' and C1'–C6' rings, respectively]. There is no classic hydrogen bonds in the structure.

Related literature top

For the crystal structure and synthesis of isocoumarin and its thioanalogues, see: Hathwar et al. (2007a,b, 2009); Manivel et al. (2008); Basvanag et al. (2009); Henerson & Hill (1982).

Experimental top

The 3-tert-butyl-1H-isochromen-1-one and Lawessons reagent were taken in toluene (1:1 ratio) and refluxed for 1 h. Then the reaction mass was quenched with water, extracted with dichloromethane, washed with water, dried, concentrated and purified by column chromatography to get the titled compound. Single crystals of the title compound were obtained via recrystalization from a chloroform solution.

Refinement top

All H-atoms were placed in calculated positions (C—H = 0.93 and 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 or 1.5Ueq(C). In the crystal structure, there is an 197 Å3 void, but the low electron density (0.24 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Structure description top

Isocoumarins are isolated in a great variety of microorganisms, plants, and insects, and have been shown to have considerable biological activity. Isocoumarins and its derivatives are secondary metabolites of a wide variety of microbial plant and insect sources and in synthesis of other medicinal compounds (Manivel et al., 2008, Basvanag et al., 2009). Sulfur containing isocoumarins have been known and a number of substituted thioisocoumarins, (Henerson et al., 1982) have been prepared. Most methods available for the construction of thioisocoumarin nucleus suffer from one or more drawbacks, such as the long reaction time required obtaining a good yield of the desired product or the use of expensive and hazardous reagents and solvents. Herewith, we are reporting the synthesis of 3-tert-butyl-1H-isochromene-1-thione using Lawessons reagent.

The isocoumarin moieties in the symmetric unit of the title compound, (I), (Fig. 1a and Fig. 1 b), are essentially parallel to each other with a small dihedral angle of 1.20 (7) °.

In the molecular structure of (I), there exist C—H···S and C—H···O intramolecular interactions (Table 1, Fig. 2). In adition, π-π interactions are observed between the isocoumarin ring systems [Cg2···Cg4(x, y, z) = 3.6793 (14) Å and Cg2···Cg5(x, y, 1 + z) = 3.6566 (15) Å; where Cg2, Cg4 and Cg5 are the centroids of the C1–C6, O2'/C1'/C6'–C9' and C1'–C6' rings, respectively]. There is no classic hydrogen bonds in the structure.

For the crystal structure and synthesis of isocoumarin and its thioanalogues, see: Hathwar et al. (2007a,b, 2009); Manivel et al. (2008); Basvanag et al. (2009); Henerson & Hill (1982).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The first molecule in the asymmetric unit with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The second molecule in the asymmetric unit with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 3] Fig. 3. The packing diagram of the title compound down c axis in the unitcell.
3-tert-Butyl-1H-isochromene-1-thione top
Crystal data top
C13H14OSDx = 1.166 Mg m3
Mr = 218.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 856 reflections
Hall symbol: -R 3θ = 1.9–24.7°
a = 43.2799 (16) ŵ = 0.23 mm1
c = 6.9025 (5) ÅT = 293 K
V = 11197.2 (10) Å3Block, yellow
Z = 360.31 × 0.18 × 0.15 mm
F(000) = 4176
Data collection top
Bruker SMART CCD area-detector
diffractometer
5943 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 5757
Tmin = 0.932, Tmax = 0.966k = 5656
33028 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0599P)2 + 4.5485P]
where P = (Fo2 + 2Fc2)/3
5943 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H14OSZ = 36
Mr = 218.31Mo Kα radiation
Trigonal, R3µ = 0.23 mm1
a = 43.2799 (16) ÅT = 293 K
c = 6.9025 (5) Å0.31 × 0.18 × 0.15 mm
V = 11197.2 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5943 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3409 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.966Rint = 0.047
33028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
5943 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81419 (2)0.00817 (2)0.78291 (13)0.0811 (3)
O10.87826 (4)0.04385 (4)0.7757 (3)0.0606 (7)
C10.86386 (7)0.09888 (6)0.7809 (3)0.0502 (8)
C20.85585 (8)0.12659 (7)0.7850 (4)0.0631 (10)
C30.82145 (9)0.11923 (8)0.7911 (4)0.0729 (11)
C40.79363 (8)0.08436 (9)0.7932 (4)0.0720 (11)
C50.80057 (7)0.05677 (7)0.7903 (4)0.0635 (10)
C60.83556 (6)0.06358 (6)0.7841 (3)0.0492 (8)
C70.84331 (7)0.03469 (6)0.7812 (4)0.0548 (9)
C80.90635 (6)0.07871 (6)0.7703 (3)0.0516 (8)
C90.89948 (7)0.10530 (6)0.7739 (3)0.0535 (8)
C100.94129 (7)0.07913 (7)0.7620 (4)0.0639 (10)
C110.97229 (7)0.11727 (8)0.7400 (5)0.0878 (13)
C120.94624 (9)0.06357 (9)0.9523 (5)0.0979 (16)
C130.94106 (9)0.05714 (9)0.5875 (5)0.1021 (16)
S1'0.77849 (2)0.11691 (2)0.28420 (12)0.0772 (3)
O2'0.76501 (4)0.05251 (4)0.2971 (3)0.0574 (6)
C1'0.83413 (6)0.06544 (6)0.2874 (3)0.0465 (8)
C2'0.86926 (6)0.07253 (7)0.2822 (4)0.0574 (9)
C3'0.89714 (7)0.10670 (8)0.2764 (4)0.0649 (10)
C4'0.89068 (7)0.13502 (7)0.2747 (4)0.0660 (10)
C5'0.85652 (7)0.12899 (6)0.2800 (3)0.0579 (9)
C6'0.82767 (6)0.09412 (6)0.2863 (3)0.0459 (8)
C7'0.79136 (6)0.08729 (6)0.2900 (3)0.0520 (8)
C8'0.77110 (6)0.02397 (6)0.2971 (4)0.0521 (8)
C9'0.80418 (6)0.02988 (6)0.2925 (3)0.0524 (9)
C10'0.73624 (7)0.01086 (6)0.3019 (5)0.0680 (10)
C11'0.74338 (8)0.04203 (7)0.2923 (5)0.0903 (13)
C12'0.71642 (9)0.01317 (8)0.4895 (6)0.1127 (16)
C13'0.71430 (8)0.01215 (8)0.1256 (6)0.1090 (16)
H20.874300.150200.783600.0760*
H30.816600.137900.793900.0880*
H40.770200.079600.796600.0870*
H50.781800.033300.792400.0760*
H90.918300.128700.771700.0640*
H11A0.968800.127800.625900.1320*
H11B0.994200.116900.728600.1320*
H11C0.973300.131000.851600.1320*
H12A0.948300.078901.058200.1460*
H12B0.967500.061900.944400.1460*
H12C0.926000.040300.972900.1460*
H13A0.921600.033100.599800.1540*
H13B0.963200.057000.582700.1540*
H13C0.938200.067500.470700.1540*
H2'0.873800.053700.282800.0690*
H3'0.920500.111000.273700.0780*
H4'0.909700.158300.269800.0790*
H5'0.852500.148200.279400.0700*
H9'0.808100.010600.292700.0630*
H11D0.755600.040700.173800.1360*
H11E0.721100.064100.296700.1360*
H11F0.757900.040800.400500.1360*
H12D0.728800.016000.597300.1690*
H12E0.692700.033300.483300.1690*
H12F0.715300.008300.505800.1690*
H13D0.710300.007800.129300.1630*
H13E0.691800.034000.127300.1630*
H13F0.727000.011100.009500.1630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0696 (5)0.0415 (4)0.1141 (7)0.0142 (3)0.0067 (4)0.0026 (4)
O10.0547 (11)0.0442 (10)0.0807 (13)0.0231 (8)0.0041 (9)0.0046 (8)
C10.0629 (16)0.0480 (14)0.0398 (14)0.0278 (13)0.0024 (11)0.0030 (11)
C20.082 (2)0.0539 (16)0.0593 (17)0.0383 (15)0.0031 (14)0.0037 (13)
C30.100 (2)0.079 (2)0.0639 (19)0.063 (2)0.0030 (16)0.0045 (15)
C40.0701 (19)0.097 (2)0.0658 (19)0.0544 (19)0.0005 (15)0.0057 (17)
C50.0550 (16)0.0694 (18)0.0613 (17)0.0275 (14)0.0006 (13)0.0017 (14)
C60.0540 (14)0.0494 (14)0.0420 (14)0.0243 (12)0.0004 (11)0.0034 (11)
C70.0536 (15)0.0482 (14)0.0561 (16)0.0206 (12)0.0047 (12)0.0036 (12)
C80.0493 (14)0.0467 (14)0.0497 (15)0.0171 (12)0.0020 (11)0.0034 (11)
C90.0575 (15)0.0429 (13)0.0497 (15)0.0173 (12)0.0015 (12)0.0028 (11)
C100.0535 (16)0.0663 (17)0.0679 (19)0.0270 (14)0.0014 (13)0.0039 (14)
C110.0572 (18)0.082 (2)0.107 (3)0.0220 (16)0.0055 (17)0.0042 (18)
C120.080 (2)0.115 (3)0.111 (3)0.058 (2)0.0003 (19)0.028 (2)
C130.081 (2)0.117 (3)0.121 (3)0.059 (2)0.004 (2)0.037 (2)
S1'0.0796 (5)0.0522 (4)0.1108 (7)0.0413 (4)0.0313 (4)0.0127 (4)
O2'0.0444 (9)0.0391 (9)0.0862 (13)0.0191 (8)0.0055 (8)0.0002 (8)
C1'0.0473 (13)0.0459 (13)0.0432 (14)0.0209 (11)0.0008 (11)0.0034 (10)
C2'0.0506 (15)0.0635 (16)0.0586 (17)0.0288 (13)0.0024 (12)0.0038 (13)
C3'0.0444 (15)0.077 (2)0.0610 (18)0.0212 (14)0.0013 (12)0.0015 (14)
C4'0.0506 (16)0.0582 (17)0.0604 (18)0.0055 (13)0.0034 (13)0.0005 (13)
C5'0.0616 (17)0.0445 (14)0.0561 (16)0.0178 (12)0.0086 (13)0.0021 (12)
C6'0.0447 (13)0.0410 (12)0.0430 (14)0.0147 (11)0.0056 (10)0.0042 (10)
C7'0.0559 (15)0.0414 (13)0.0536 (16)0.0205 (12)0.0112 (12)0.0004 (11)
C8'0.0507 (14)0.0364 (12)0.0675 (17)0.0206 (11)0.0047 (12)0.0061 (11)
C9'0.0539 (15)0.0396 (13)0.0665 (17)0.0255 (12)0.0043 (12)0.0069 (11)
C10'0.0500 (15)0.0382 (14)0.105 (2)0.0140 (12)0.0103 (16)0.0065 (14)
C11'0.0727 (19)0.0383 (15)0.147 (3)0.0181 (14)0.023 (2)0.0098 (17)
C12'0.078 (2)0.061 (2)0.158 (4)0.0039 (17)0.041 (2)0.006 (2)
C13'0.072 (2)0.063 (2)0.168 (4)0.0157 (17)0.047 (2)0.012 (2)
Geometric parameters (Å, º) top
S1—C71.641 (2)C13—H13A0.9600
S1'—C7'1.634 (3)C13—H13B0.9600
O1—C81.386 (3)C13—H13C0.9600
O1—C71.359 (4)C1'—C2'1.393 (4)
O2'—C8'1.386 (3)C1'—C6'1.402 (4)
O2'—C7'1.361 (3)C1'—C9'1.434 (3)
C1—C61.401 (3)C2'—C3'1.364 (4)
C1—C21.405 (4)C3'—C4'1.387 (4)
C1—C91.424 (5)C4'—C5'1.367 (5)
C2—C31.359 (6)C5'—C6'1.398 (3)
C3—C41.382 (5)C6'—C7'1.447 (4)
C4—C51.369 (5)C8'—C9'1.323 (4)
C5—C61.391 (4)C8'—C10'1.509 (4)
C6—C71.448 (4)C10'—C11'1.529 (4)
C8—C91.325 (4)C10'—C12'1.529 (5)
C8—C101.504 (4)C10'—C13'1.527 (5)
C10—C111.528 (4)C2'—H2'0.9300
C10—C121.539 (5)C3'—H3'0.9300
C10—C131.532 (4)C4'—H4'0.9300
C2—H20.9300C5'—H5'0.9300
C3—H30.9300C9'—H9'0.9300
C4—H40.9300C11'—H11D0.9600
C5—H50.9300C11'—H11E0.9600
C9—H90.9300C11'—H11F0.9600
C11—H11A0.9600C12'—H12D0.9600
C11—H11B0.9600C12'—H12E0.9600
C11—H11C0.9600C12'—H12F0.9600
C12—H12C0.9600C13'—H13D0.9600
C12—H12A0.9600C13'—H13E0.9600
C12—H12B0.9600C13'—H13F0.9600
S1'···C5'i3.681 (2)H9···H11A2.4200
S1···H3'ii3.0200H9···H11C2.4000
S1···H11Ciii3.0800H9'···C11'2.5800
S1···H52.7800H9'···H2'2.5000
S1'···H11Eiv3.1800H9'···H11D2.3900
S1'···H5'2.7900H9'···H11F2.3200
S1'···H5'i3.0100H11A···H92.4200
S1'···H2v3.2000H11A···H13C2.5000
O1···H13A2.4700H11A···C92.8400
O1···H12C2.5400H11B···H12B2.5400
O2'···H12F2.5000H11B···H13B2.4600
O2'···H13D2.4700H11C···H92.4000
C1'···C63.431 (3)H11C···C92.8600
C1'···C6vi3.476 (3)H11C···H12A2.4200
C2···C5'3.487 (3)H11C···S1ix3.0800
C2···C5'vii3.418 (3)H11D···H13F2.4600
C3'···C9vi3.471 (3)H11D···C9'2.8300
C3'···C93.437 (3)H11D···H9'2.3900
C4···C7'vii3.435 (3)H11E···H12E2.5700
C4···C7'3.479 (3)H11E···H13E2.5100
C5'···S1'i3.681 (2)H11E···S1'x3.1800
C5'···C23.487 (3)H11F···C9'2.7900
C5'···C2vi3.418 (3)H11F···H12D2.4400
C6···C1'vii3.476 (3)H11F···H9'2.3200
C6···C1'3.431 (3)H12A···H11C2.4200
C7'···C4vi3.435 (3)H12B···H13B2.5000
C7'···C43.479 (3)H12B···H11B2.5400
C9···C3'3.437 (3)H12C···H13A2.5900
C9···C3'vii3.471 (3)H12C···O12.5400
C9···H11A2.8400H12D···H11F2.4400
C9···H11C2.8600H12D···H52.5900
C9'···H11F2.7900H12E···H13E2.4600
C9'···H11D2.8300H12E···H11E2.5700
C11···H92.6300H12F···O2'2.5000
C11'···H9'2.5800H12F···H13Eiv2.5900
H2···H92.5000H13A···H12C2.5900
H2···S1'v3.2000H13A···O12.4700
H2'···H9'2.5000H13B···H12B2.5000
H3'···S1viii3.0200H13B···H11B2.4600
H5···H12D2.5900H13C···H11A2.5000
H5···S12.7800H13D···O2'2.4700
H5'···S1'2.7900H13E···H11E2.5100
H5'···S1'i3.0100H13E···H12E2.4600
H9···C112.6300H13E···H12Fx2.5900
H9···H22.5000H13F···H11D2.4600
C7—O1—C8124.1 (2)H13A—C13—H13B109.00
C7'—O2'—C8'123.9 (2)C2'—C1'—C6'118.9 (2)
C2—C1—C6118.4 (3)C2'—C1'—C9'122.6 (2)
C2—C1—C9122.6 (2)C6'—C1'—C9'118.5 (3)
C6—C1—C9119.0 (2)C1'—C2'—C3'121.1 (3)
C1—C2—C3120.6 (3)C2'—C3'—C4'119.9 (3)
C2—C3—C4120.7 (3)C3'—C4'—C5'120.5 (3)
C3—C4—C5120.1 (4)C4'—C5'—C6'120.3 (3)
C4—C5—C6120.4 (3)C1'—C6'—C5'119.3 (3)
C1—C6—C7119.2 (3)C1'—C6'—C7'119.7 (2)
C5—C6—C7121.0 (2)C5'—C6'—C7'120.9 (2)
C1—C6—C5119.8 (2)S1'—C7'—O2'116.3 (2)
S1—C7—C6126.7 (2)S1'—C7'—C6'126.93 (18)
O1—C7—C6117.0 (2)O2'—C7'—C6'116.8 (2)
S1—C7—O1116.3 (2)O2'—C8'—C9'119.8 (2)
O1—C8—C10110.1 (2)O2'—C8'—C10'110.5 (2)
C9—C8—C10130.6 (2)C9'—C8'—C10'129.7 (2)
O1—C8—C9119.3 (3)C1'—C9'—C8'121.2 (2)
C1—C9—C8121.5 (2)C8'—C10'—C11'109.8 (3)
C8—C10—C12108.7 (3)C8'—C10'—C12'109.4 (2)
C8—C10—C13109.2 (3)C8'—C10'—C13'108.2 (2)
C8—C10—C11110.6 (2)C11'—C10'—C12'109.5 (3)
C11—C10—C13108.8 (3)C11'—C10'—C13'109.2 (3)
C12—C10—C13111.0 (3)C12'—C10'—C13'110.8 (3)
C11—C10—C12108.6 (3)C1'—C2'—H2'120.00
C3—C2—H2120.00C3'—C2'—H2'119.00
C1—C2—H2120.00C2'—C3'—H3'120.00
C2—C3—H3120.00C4'—C3'—H3'120.00
C4—C3—H3120.00C3'—C4'—H4'120.00
C3—C4—H4120.00C5'—C4'—H4'120.00
C5—C4—H4120.00C4'—C5'—H5'120.00
C6—C5—H5120.00C6'—C5'—H5'120.00
C4—C5—H5120.00C1'—C9'—H9'119.00
C1—C9—H9119.00C8'—C9'—H9'119.00
C8—C9—H9119.00C10'—C11'—H11D109.00
C10—C11—H11B109.00C10'—C11'—H11E109.00
C10—C11—H11C109.00C10'—C11'—H11F109.00
C10—C11—H11A109.00H11D—C11'—H11E110.00
H11A—C11—H11C110.00H11D—C11'—H11F109.00
H11B—C11—H11C110.00H11E—C11'—H11F110.00
H11A—C11—H11B109.00C10'—C12'—H12D110.00
C10—C12—H12A109.00C10'—C12'—H12E109.00
C10—C12—H12B109.00C10'—C12'—H12F110.00
H12A—C12—H12B109.00H12D—C12'—H12E109.00
H12A—C12—H12C109.00H12D—C12'—H12F110.00
C10—C12—H12C109.00H12E—C12'—H12F110.00
H12B—C12—H12C110.00C10'—C13'—H13D109.00
C10—C13—H13B110.00C10'—C13'—H13E109.00
C10—C13—H13C109.00C10'—C13'—H13F109.00
C10—C13—H13A109.00H13D—C13'—H13E110.00
H13A—C13—H13C109.00H13D—C13'—H13F110.00
H13B—C13—H13C110.00H13E—C13'—H13F109.00
C8—O1—C7—S1178.89 (18)C10—C8—C9—C1179.7 (2)
C8—O1—C7—C60.9 (4)O1—C8—C10—C11175.6 (2)
C7—O1—C8—C91.2 (3)O1—C8—C10—C1265.3 (3)
C7—O1—C8—C10179.1 (2)O1—C8—C10—C1355.9 (3)
C8'—O2'—C7'—S1'178.1 (2)C6'—C1'—C2'—C3'0.1 (4)
C8'—O2'—C7'—C6'1.3 (3)C9'—C1'—C2'—C3'179.7 (2)
C7'—O2'—C8'—C9'0.9 (4)C2'—C1'—C6'—C5'0.0 (3)
C7'—O2'—C8'—C10'178.9 (2)C2'—C1'—C6'—C7'179.5 (2)
C9—C1—C2—C3179.8 (2)C9'—C1'—C6'—C5'179.56 (19)
C2—C1—C6—C50.3 (3)C9'—C1'—C6'—C7'0.1 (3)
C6—C1—C2—C30.3 (4)C2'—C1'—C9'—C8'179.9 (2)
C6—C1—C9—C80.0 (3)C6'—C1'—C9'—C8'0.4 (3)
C9—C1—C6—C5179.8 (2)C1'—C2'—C3'—C4'0.3 (4)
C9—C1—C6—C70.3 (3)C2'—C3'—C4'—C5'0.4 (4)
C2—C1—C6—C7179.6 (2)C3'—C4'—C5'—C6'0.3 (4)
C2—C1—C9—C8180.0 (2)C4'—C5'—C6'—C1'0.1 (3)
C1—C2—C3—C40.1 (4)C4'—C5'—C6'—C7'179.4 (2)
C2—C3—C4—C50.4 (4)C1'—C6'—C7'—S1'178.42 (17)
C3—C4—C5—C60.4 (4)C1'—C6'—C7'—O2'0.9 (3)
C4—C5—C6—C7179.9 (2)C5'—C6'—C7'—S1'1.1 (3)
C4—C5—C6—C10.0 (4)C5'—C6'—C7'—O2'179.7 (2)
C1—C6—C7—O10.1 (3)O2'—C8'—C9'—C1'0.0 (4)
C5—C6—C7—S10.5 (4)C10'—C8'—C9'—C1'179.7 (3)
C5—C6—C7—O1179.8 (2)O2'—C8'—C10'—C11'177.4 (2)
C1—C6—C7—S1179.63 (19)O2'—C8'—C10'—C12'62.5 (3)
O1—C8—C9—C10.8 (3)O2'—C8'—C10'—C13'58.3 (3)
C9—C8—C10—C114.8 (4)C9'—C8'—C10'—C11'2.4 (4)
C9—C8—C10—C12114.3 (3)C9'—C8'—C10'—C12'117.8 (3)
C9—C8—C10—C13124.5 (3)C9'—C8'—C10'—C13'121.5 (3)
Symmetry codes: (i) x+5/3, y+1/3, z+1/3; (ii) xy, x1, z+1; (iii) xy, x1, z+2; (iv) y+2/3, xy2/3, z+1/3; (v) x+5/3, y+1/3, z+4/3; (vi) x, y, z1; (vii) x, y, z+1; (viii) y+1, x+y+1, z+1; (ix) y+1, x+y+1, z+2; (x) x+y+4/3, x+2/3, z1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.932.783.148 (3)105
C5—H5···S10.932.793.149 (3)104
C12—H12C···O10.962.542.891 (5)102
C12—H12F···O20.962.502.879 (4)103
C13—H13A···O10.962.472.800 (5)100
C13—H13D···O20.962.472.812 (4)101

Experimental details

Crystal data
Chemical formulaC13H14OS
Mr218.31
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)43.2799 (16), 6.9025 (5)
V3)11197.2 (10)
Z36
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.31 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
33028, 5943, 3409
Rint0.047
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.161, 1.09
No. of reflections5943
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.932.783.148 (3)105
C5'—H5'···S1'0.932.793.149 (3)104
C12—H12C···O10.962.542.891 (5)102
C12'—H12F···O2'0.962.502.879 (4)103
C13—H13A···O10.962.472.800 (5)100
C13'—H13D···O2'0.962.472.812 (4)101
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276–1278.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Manivel, P., Khan, F. N. & Row, T. N. G. (2009). CrystEngComm, 11, 284–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007a). Acta Cryst. E63, o3708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007b). Acta Cryst. E63, o3707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHenerson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin. Trans. 1, pp. 1111–1115.  Google Scholar
First citationManivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609–1610.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds