organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(N-Propan-2-ylcarbamo­yl)pyridinium perchlorate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wsp1314@126.com

(Received 17 May 2010; accepted 23 May 2010; online 26 May 2010)

In the title compound, C9H13N2O+·ClO4, the dihedral angle between the planes of the amide group and the pyridinium fragment is 34.11 (14)°. In the crystal, the cations are connected by N—H⋯O hydrogen bonds between the amide groups into chains extended along the a axis. Hydrogen bonds between the pyridinium N—H group and the perchlorate anions organize the chains into a two-dimensional network.

Related literature

For the physical properties of simple mol­ecular–ionic crystals, see: Czupiński et al., 2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]; Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For related structures, see: Gholivand et al. (2007[Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z. & Khavasi, H. R. (2007). Acta Cryst. E63, o4027.]); Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2626.]); Zhang et al. (2009[Zhang, L., Wang, X. J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964-2966]).

[Scheme 1]

Experimental

Crystal data
  • C9H13N2O+·ClO4

  • Mr = 264.66

  • Triclinic, [P \overline 1]

  • a = 4.9342 (3) Å

  • b = 8.973 (4) Å

  • c = 13.715 (10) Å

  • α = 93.046 (12)°

  • β = 91.07 (2)°

  • γ = 101.01 (3)°

  • V = 594.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 1.000

  • 6065 measured reflections

  • 2708 independent reflections

  • 2160 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.159

  • S = 1.07

  • 2708 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5i 0.86 2.20 2.879 (3) 136
N1—H1B⋯O2ii 0.86 2.36 3.032 (4) 135
N2—H2B⋯O1iii 0.86 2.18 2.957 (3) 150
Symmetry codes: (i) x+1, y+1, z; (ii) -x+2, -y+1, -z+2; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). For similar structures, see: Gholivand et al., 2007; Chen, 2009. In our laboratory, the compound containing 4-(propan-2-ylcarbamoyl)pyridinium cation and ClO4-anion has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound, C9H13N2O+.ClO4-, consists of a 4-(propan-2-ylcarbamoyl)pyridinium cation and a ClO4- anion (Fig 1). In the anion, the average Cl—O bond distances and O—Cl—O bond angles are 1.425 Å and 109.4°, respectively, confirming a tetrahedral configuration. In the 4-(propan-2-ylcarbamoyl)pyridinium cation , the pyridine N atom is protonated. In the cation, the acyl group is twisted relative to the pyridine by 34.11(0.14)°. The torsion angle O1-C6-N2-C7 isof -2.7 (4)°. It shows that the four atoms are nearly coplanar.

Hydrogen bonds N—H···O and C—H···O make great contribution to the stability of the crystal structure (Table 1). The cations are connected by N—H···O hydrogen bonds between the amide groups into chains extended along the a axis. Hydrogen bonds between pyridinium N-H group and the perchlorate anions organize the chains into two-dimensional polymeric structure (Fig 2).

Related literature top

For the physical properties of simple molecular– ionic crystals, see: Czupiński et al., 2002; Katrusiak & Szafrański (1999, 2006). For related structures, see: Gholivand et al. (2007); Chen (2009); Zhang et al. (2009).

Experimental top

4-(Propan-2-ylcarbamoyl) pyridine (0.492 g, 3 mmol) (Zhang et al., 2009), and HClO4 (0.42 g, 70%) were dissolved in 15 ml of ethanol. Single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvent over a period of 7 days.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε=C/ (T—T0)), suggesting that this compound should not be a real ferroelectric and that no distinct phase transitions occur within the measured temperature range. Similarly, below the melting point (408K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and no dielectric anomaly is observed.

Refinement top

The C-bound H atoms were positioned geometrically, with C—H = 0.93-0.98 Å and refined as riding on their parent atoms with Uiso (H) = 1.2Ueq(C) or 1.5Ueq (methyl). Atoms H2 and H1B were positioned geometrically and allowed to ride on N1, with N—H = 0.86 Å and Uiso (H) = 1.2Ueq (N).

Structure description top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). For similar structures, see: Gholivand et al., 2007; Chen, 2009. In our laboratory, the compound containing 4-(propan-2-ylcarbamoyl)pyridinium cation and ClO4-anion has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound, C9H13N2O+.ClO4-, consists of a 4-(propan-2-ylcarbamoyl)pyridinium cation and a ClO4- anion (Fig 1). In the anion, the average Cl—O bond distances and O—Cl—O bond angles are 1.425 Å and 109.4°, respectively, confirming a tetrahedral configuration. In the 4-(propan-2-ylcarbamoyl)pyridinium cation , the pyridine N atom is protonated. In the cation, the acyl group is twisted relative to the pyridine by 34.11(0.14)°. The torsion angle O1-C6-N2-C7 isof -2.7 (4)°. It shows that the four atoms are nearly coplanar.

Hydrogen bonds N—H···O and C—H···O make great contribution to the stability of the crystal structure (Table 1). The cations are connected by N—H···O hydrogen bonds between the amide groups into chains extended along the a axis. Hydrogen bonds between pyridinium N-H group and the perchlorate anions organize the chains into two-dimensional polymeric structure (Fig 2).

For the physical properties of simple molecular– ionic crystals, see: Czupiński et al., 2002; Katrusiak & Szafrański (1999, 2006). For related structures, see: Gholivand et al. (2007); Chen (2009); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis showing the N—H···O and, C—H···O interactions (dotted line).
4-(N-Propan-2-ylcarbamoyl)pyridinium perchlorate top
Crystal data top
C9H13N2O+·ClO4Z = 2
Mr = 264.66F(000) = 276
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Melting point: 408 K
a = 4.9342 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.973 (4) ÅCell parameters from 1631 reflections
c = 13.715 (10) Åθ = 2.3–27.4°
α = 93.046 (12)°µ = 0.33 mm1
β = 91.07 (2)°T = 298 K
γ = 101.01 (3)°Prism, colourless
V = 594.9 (5) Å30.2 × 0.2 × 0.2 mm
Data collection top
Rigaku SCXmini
diffractometer
2708 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.887, Tmax = 1.000l = 1717
6065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.078P)2 + 0.3515P]
where P = (Fo2 + 2Fc2)/3
2708 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C9H13N2O+·ClO4γ = 101.01 (3)°
Mr = 264.66V = 594.9 (5) Å3
Triclinic, P1Z = 2
a = 4.9342 (3) ÅMo Kα radiation
b = 8.973 (4) ŵ = 0.33 mm1
c = 13.715 (10) ÅT = 298 K
α = 93.046 (12)°0.2 × 0.2 × 0.2 mm
β = 91.07 (2)°
Data collection top
Rigaku SCXmini
diffractometer
2708 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2160 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.024
6065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
2708 reflectionsΔρmin = 0.58 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8695 (6)0.8140 (3)0.8363 (2)0.0502 (7)
H1A0.82910.91110.84080.060*
C20.7491 (5)0.7102 (3)0.76352 (19)0.0428 (6)
H2A0.62490.73630.71870.051*
C30.8135 (4)0.5660 (2)0.75713 (17)0.0329 (5)
C40.9972 (5)0.5295 (3)0.82555 (19)0.0398 (5)
H4A1.04370.43370.82230.048*
C51.1098 (5)0.6358 (3)0.8980 (2)0.0463 (6)
H5A1.23030.61200.94510.056*
C60.6751 (5)0.4515 (3)0.67827 (17)0.0340 (5)
C70.7297 (5)0.2295 (3)0.5718 (2)0.0452 (6)
H7A0.52800.21510.56580.054*
C80.8048 (8)0.0860 (3)0.6075 (2)0.0616 (8)
H8A0.72330.06520.66950.092*
H8B1.00200.09890.61440.092*
H8C0.73680.00260.56120.092*
C90.8498 (9)0.2688 (4)0.4730 (2)0.0703 (10)
H9A0.79610.36030.45320.105*
H9B0.78150.18710.42560.105*
H9C1.04760.28400.47790.105*
Cl10.42620 (12)0.18228 (8)0.88680 (5)0.0452 (2)
N11.0451 (5)0.7740 (3)0.90049 (17)0.0485 (6)
H1B1.12020.84010.94550.058*
N20.8294 (4)0.3550 (2)0.64449 (17)0.0436 (5)
H2B0.99700.36670.66640.052*
O10.4371 (3)0.4521 (2)0.65134 (14)0.0471 (5)
O20.7111 (4)0.1708 (2)0.89323 (17)0.0577 (5)
O30.3117 (6)0.1454 (5)0.79332 (19)0.1241 (15)
O40.4067 (6)0.3375 (3)0.9161 (3)0.0938 (10)
O50.2732 (4)0.0877 (2)0.95541 (15)0.0526 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0574 (17)0.0369 (13)0.0581 (17)0.0166 (12)0.0001 (13)0.0063 (12)
C20.0470 (14)0.0389 (13)0.0455 (14)0.0165 (11)0.0033 (11)0.0007 (10)
C30.0292 (10)0.0301 (11)0.0395 (12)0.0063 (8)0.0031 (9)0.0008 (9)
C40.0389 (12)0.0359 (12)0.0459 (13)0.0116 (10)0.0041 (10)0.0010 (10)
C50.0434 (14)0.0511 (15)0.0447 (14)0.0123 (12)0.0060 (11)0.0022 (12)
C60.0290 (10)0.0332 (11)0.0394 (12)0.0055 (9)0.0014 (9)0.0010 (9)
C70.0358 (12)0.0429 (14)0.0553 (16)0.0094 (10)0.0100 (11)0.0155 (12)
C80.085 (2)0.0424 (15)0.0561 (18)0.0112 (15)0.0005 (16)0.0060 (13)
C90.101 (3)0.0553 (18)0.0536 (18)0.0164 (18)0.0149 (17)0.0046 (14)
Cl10.0334 (3)0.0543 (4)0.0474 (4)0.0041 (3)0.0046 (2)0.0162 (3)
N10.0520 (13)0.0465 (13)0.0451 (12)0.0094 (10)0.0022 (10)0.0141 (10)
N20.0279 (10)0.0429 (11)0.0583 (13)0.0093 (8)0.0097 (9)0.0169 (10)
O10.0309 (9)0.0515 (11)0.0599 (12)0.0135 (8)0.0094 (8)0.0047 (9)
O20.0352 (10)0.0632 (13)0.0764 (14)0.0129 (9)0.0019 (9)0.0071 (10)
O30.0714 (18)0.243 (4)0.0419 (14)0.011 (2)0.0133 (12)0.0139 (19)
O40.0700 (16)0.0436 (12)0.174 (3)0.0203 (11)0.0057 (17)0.0286 (15)
O50.0568 (12)0.0467 (11)0.0558 (12)0.0098 (9)0.0161 (9)0.0115 (9)
Geometric parameters (Å, º) top
C1—N11.333 (4)C7—C91.521 (5)
C1—C21.373 (4)C7—H7A0.9800
C1—H1A0.9300C8—H8A0.9600
C2—C31.388 (3)C8—H8B0.9600
C2—H2A0.9300C8—H8C0.9600
C3—C41.387 (3)C9—H9A0.9600
C3—C61.509 (3)C9—H9B0.9600
C4—C51.372 (4)C9—H9C0.9600
C4—H4A0.9300Cl1—O31.389 (3)
C5—N11.337 (3)Cl1—O51.429 (2)
C5—H5A0.9300Cl1—O21.4305 (19)
C6—O11.226 (3)Cl1—O41.450 (3)
C6—N21.329 (3)N1—H1B0.8600
C7—N21.468 (3)N2—H2B0.8600
C7—C81.509 (4)
N1—C1—C2119.3 (2)C7—C8—H8A109.5
N1—C1—H1A120.3C7—C8—H8B109.5
C2—C1—H1A120.3H8A—C8—H8B109.5
C1—C2—C3119.7 (2)C7—C8—H8C109.5
C1—C2—H2A120.1H8A—C8—H8C109.5
C3—C2—H2A120.1H8B—C8—H8C109.5
C4—C3—C2119.0 (2)C7—C9—H9A109.5
C4—C3—C6121.7 (2)C7—C9—H9B109.5
C2—C3—C6119.3 (2)H9A—C9—H9B109.5
C5—C4—C3119.5 (2)C7—C9—H9C109.5
C5—C4—H4A120.3H9A—C9—H9C109.5
C3—C4—H4A120.3H9B—C9—H9C109.5
N1—C5—C4119.5 (2)O3—Cl1—O5110.28 (18)
N1—C5—H5A120.2O3—Cl1—O2112.70 (17)
C4—C5—H5A120.2O5—Cl1—O2109.78 (13)
O1—C6—N2125.5 (2)O3—Cl1—O4109.5 (2)
O1—C6—C3119.7 (2)O5—Cl1—O4106.56 (16)
N2—C6—C3114.83 (19)O2—Cl1—O4107.79 (14)
N2—C7—C8108.7 (2)C1—N1—C5123.0 (2)
N2—C7—C9109.9 (2)C1—N1—H1B118.5
C8—C7—C9112.4 (2)C5—N1—H1B118.5
N2—C7—H7A108.6C6—N2—C7123.7 (2)
C8—C7—H7A108.6C6—N2—H2B118.2
C9—C7—H7A108.6C7—N2—H2B118.2
N1—C1—C2—C30.6 (4)C4—C3—C6—N234.6 (3)
C1—C2—C3—C40.7 (4)C2—C3—C6—N2147.5 (2)
C1—C2—C3—C6178.6 (2)C2—C1—N1—C50.4 (4)
C2—C3—C4—C50.3 (4)C4—C5—N1—C11.4 (4)
C6—C3—C4—C5177.6 (2)O1—C6—N2—C72.7 (4)
C3—C4—C5—N11.3 (4)C3—C6—N2—C7176.5 (2)
C4—C3—C6—O1144.7 (2)C8—C7—N2—C6131.6 (3)
C2—C3—C6—O133.2 (3)C9—C7—N2—C6105.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5i0.862.202.879 (3)136
N1—H1B···O2ii0.862.363.032 (4)135
N1—H1B···O5iii0.862.552.918 (3)107
N2—H2B···O1iv0.862.182.957 (3)150
C1—H1A···O2v0.932.583.491 (4)168
C4—H4A···O4iv0.932.503.171 (3)130
C5—H5A···O4ii0.932.553.426 (4)157
C7—H7A···O10.982.492.863 (3)102
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H13N2O+·ClO4
Mr264.66
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.9342 (3), 8.973 (4), 13.715 (10)
α, β, γ (°)93.046 (12), 91.07 (2), 101.01 (3)
V3)594.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6065, 2708, 2160
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.159, 1.07
No. of reflections2708
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.58

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5i0.862.202.879 (3)136
N1—H1B···O2ii0.862.363.032 (4)135
N2—H2B···O1iii0.862.182.957 (3)150
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+2; (iii) x+1, y, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to purchase X-ray diffractometer.

References

First citationChen, L.-Z. (2009). Acta Cryst. E65, o2626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGholivand, K., Zare, K., Afshar, F., Shariatinia, Z. & Khavasi, H. R. (2007). Acta Cryst. E63, o4027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Wang, X. J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964–2966  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds