organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R,S)-3-Carb­­oxy-2-(isoquinolinium-2-yl)propanoate monohydrate

aLaboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102 A, HR-10000 Zagreb, Croatia, and bDepartment of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia
*Correspondence e-mail: kaitner@chem.pmf.hr

(Received 15 April 2010; accepted 18 May 2010; online 22 May 2010)

The title compound, C13H11NO4·H2O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino­line group and a deprotonated carboxyl group. In the crystal, mol­ecules are connected via short O—H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti­omers along [001]. These chains are additionally connected by hydrogen bonding between water mol­ecules and the deprotonated carb­oxy groups of neighbouring mol­ecules.

Related literature

For the structure of a co-crystal of a quinoline derivative betaine, see: Szafran et al. (2002[Szafran, M., Katrusiak, A., Dega-Szafran, Z., Dymarska, S. & Grundwald-Wyspiańska, M. (2002). J. Mol. Struct. 609, 19-28.]) and for the structure of a 4-dithio­carboxyl­isoquinoline betaine, see: Matthews et al. (1973[Matthews, B. W., Colman, P. M., Selzer, J. O., Weaver, L. H. & Duncan, J. A. (1973). Acta Cryst. B29, 2939-2947.]). For possible applications of isoquinoline derivatives, see: Katritsky & Pozharskii (2000[Katritsky, A. R. & Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.]). For the preparation of the title compound, see: Flett & Gardner (1952[Flett, L. H. & Gardner, W. H. (1952). Maleic Anhydride Derivatives: Reactions of the Double Bond, p. 121. New York: John Wiley & Sons, Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO4·H2O

  • Mr = 263.24

  • Monoclinic, P c

  • a = 10.1030 (15) Å

  • b = 8.0706 (8) Å

  • c = 7.8911 (10) Å

  • β = 104.282 (14)°

  • V = 623.53 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.43 × 0.19 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • 7142 measured reflections

  • 1659 independent reflections

  • 994 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.222

  • S = 1.02

  • 1659 reflections

  • 178 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O2 0.86 (6) 2.05 (6) 2.851 (7) 156 (6)
O5—H2⋯O2i 0.86 (6) 2.08 (7) 2.874 (7) 153 (6)
O4—H4⋯O1ii 0.82 1.70 2.518 (7) 172
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Isoquinoline derivatives are of interest in synthesizing new fungicides, insecticides, textile assistants, corrosion inhibitors, dye stabilizers, and pharmaceuticals (Katritsky & Pozharskii, 2000) The molecular structure of I is given in Figure 1. The molecule of 3-carboxy-2-isoquinolinium-2-ylpropanoate is a betaine, i.e. a zwitterion containing a quaternary nitrogen atom and a deprotonated carboxyl group. It is the first betaine derived from isoquinoline to be structurally characterised, the only two similar compounds being a quinoline derivative (Szafran et al., 2002) and a 4-dithiocarboxylisoquinoline derivative (Matthews et al., 1973)

The compound crystallises in the space group Pc with two formula units per unit cell. Molecules of 3-carboxy-2-isoquinolinium-2-ylpropanoate are connected via strong hydrogen bonds between protonated and deprotonated carboxyl groups (O4—H4···O1 2.518 (7) Å, (x, y, -1+z)) along the c axis. Water molecules bridge two deprotonated carboxyl groups of neighbouring molecules along chains (O5—H2···O2 2.874 (7) Å, (x, 2- y, 1/2 + z) and O5—H1···O2 2.851 (7) Å). Chains consist of either R or S enantiomers and each chain is interconnected by water molecules to a neighbouring chain in which the molecules are of opposite chirality, thus forming double chains about the glide plane.

Related literature top

For the structure of a co-crystal of a quinoline derivative betaine, see: Szafran et al. (2002) and for the structure of a 4-dithiocarboxylisoquinoline betaine, see: Matthews et al. (1973). For possible applications of isoquinoline derivatives, see: Katritsky & Pozharskii (2000). For the preparation of the title compound, see: Flett & Gardner (1952).

Experimental top

The title compound (I) was prepared according to a method described earlier (Flett & Gardner, 1952). Separate solutions are prepared of isoquinoline (1.17 ml; 10 mmol) and maleic acid (1.16 g; 10 mmol) in anhydrous ether. Upon mixing, isoquinolinium maleate precipitates. This precipitate is separated by filtration, washed, and dried. It is then rapidly heated to its melting point at 103 °C and held at this temperature for a few minutes. Rapid conversion to the betaine takes place. The betaine is then purified by dissolving it in hot water and treatment with animal charcoal. The solution was set aside for the formation of crystals, yield is 79 %. Crystals suitable for crystallographic study were grown from a solution of (I) in water by slow evaporation at room temperature.

Refinement top

The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically with the O–H distance restrained to 0.857 (2) Å. All other H atoms were placed geometrically and included in the refinement in the riding-model approximation with Uiso = 1.2 Ueq for hydrogen atoms bonded to carbon and Uiso = 1.5 Ueq for the hydroxyl hydrogen. To the quinolinium subunit rigid bond restraints were applied. Since there are no heavy atoms in the structure the Flack parameter was meaningless due to a large s.u., and the Friedel pairs were merged for the final refinement.

Structure description top

Isoquinoline derivatives are of interest in synthesizing new fungicides, insecticides, textile assistants, corrosion inhibitors, dye stabilizers, and pharmaceuticals (Katritsky & Pozharskii, 2000) The molecular structure of I is given in Figure 1. The molecule of 3-carboxy-2-isoquinolinium-2-ylpropanoate is a betaine, i.e. a zwitterion containing a quaternary nitrogen atom and a deprotonated carboxyl group. It is the first betaine derived from isoquinoline to be structurally characterised, the only two similar compounds being a quinoline derivative (Szafran et al., 2002) and a 4-dithiocarboxylisoquinoline derivative (Matthews et al., 1973)

The compound crystallises in the space group Pc with two formula units per unit cell. Molecules of 3-carboxy-2-isoquinolinium-2-ylpropanoate are connected via strong hydrogen bonds between protonated and deprotonated carboxyl groups (O4—H4···O1 2.518 (7) Å, (x, y, -1+z)) along the c axis. Water molecules bridge two deprotonated carboxyl groups of neighbouring molecules along chains (O5—H2···O2 2.874 (7) Å, (x, 2- y, 1/2 + z) and O5—H1···O2 2.851 (7) Å). Chains consist of either R or S enantiomers and each chain is interconnected by water molecules to a neighbouring chain in which the molecules are of opposite chirality, thus forming double chains about the glide plane.

For the structure of a co-crystal of a quinoline derivative betaine, see: Szafran et al. (2002) and for the structure of a 4-dithiocarboxylisoquinoline betaine, see: Matthews et al. (1973). For possible applications of isoquinoline derivatives, see: Katritsky & Pozharskii (2000). For the preparation of the title compound, see: Flett & Gardner (1952).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom labeling scheme. Displacement ellipsoids of are shown at 30% probability. Hydrogen atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the x axis.
(R,S)-3-Carboxy-2-(isoquinolin-2-ium-2-yl)propanoate monohydrate top
Crystal data top
C13H11NO4·H2OF(000) = 276
Mr = 263.24Dx = 1.402 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 275 reflections
a = 10.1030 (15) Åθ = 4.6–52.0°
b = 8.0706 (8) ŵ = 0.11 mm1
c = 7.8911 (10) ÅT = 295 K
β = 104.282 (14)°Prism, colourless
V = 623.53 (14) Å30.43 × 0.19 × 0.17 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
994 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 29°, θmin = 3.9°
ω scanh = 1313
7142 measured reflectionsk = 1111
1659 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1361P)2]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H11NO4·H2OV = 623.53 (14) Å3
Mr = 263.24Z = 2
Monoclinic, PcMo Kα radiation
a = 10.1030 (15) ŵ = 0.11 mm1
b = 8.0706 (8) ÅT = 295 K
c = 7.8911 (10) Å0.43 × 0.19 × 0.17 mm
β = 104.282 (14)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
994 reflections with I > 2σ(I)
7142 measured reflectionsRint = 0.054
1659 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0766 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
1659 reflectionsΔρmin = 0.23 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.9214 (4)0.9884 (8)0.9683 (6)0.0817 (17)
H10.865 (6)0.928 (9)0.895 (8)0.085*
H20.885 (7)1.014 (11)1.052 (7)0.086*
O30.5000 (5)0.8301 (5)0.0404 (6)0.0581 (12)
O10.5719 (5)0.7025 (7)0.6870 (6)0.0664 (14)
O40.6768 (5)0.6788 (6)0.0104 (6)0.0576 (12)
H40.64390.69550.0940.086*
C20.5675 (6)0.8088 (7)0.4031 (6)0.0340 (11)
H2A0.56610.92730.37560.041*
N10.4242 (5)0.7538 (5)0.3583 (6)0.0375 (10)
C40.6005 (6)0.7514 (6)0.1025 (7)0.0372 (12)
C10.6317 (6)0.7933 (7)0.6011 (7)0.0384 (12)
O20.7403 (5)0.8672 (6)0.6568 (6)0.0584 (12)
C120.2584 (7)0.5400 (7)0.3023 (7)0.0448 (13)
C30.6546 (6)0.7251 (7)0.2928 (7)0.0415 (13)
H3A0.74690.76840.32770.05*
H3B0.65890.60710.31670.05*
C130.3918 (7)0.5934 (7)0.3442 (8)0.0446 (13)
H130.46160.51530.36320.054*
C70.1528 (8)0.6561 (9)0.2716 (11)0.0632 (18)
C60.1918 (8)0.8250 (10)0.287 (2)0.115 (5)
H60.12460.90640.26870.137*
C100.0902 (11)0.3265 (12)0.251 (2)0.121 (5)
H100.06790.21450.24470.146*
C80.0157 (8)0.6063 (11)0.2240 (15)0.088 (3)
H80.05450.68390.19920.105*
C110.2251 (9)0.3727 (10)0.2954 (16)0.093 (3)
H110.29350.29280.32090.112*
C90.0115 (9)0.4417 (12)0.2152 (14)0.089 (3)
H90.1020.40650.1840.107*
C50.3220 (8)0.8692 (9)0.3285 (14)0.083 (3)
H50.34440.98120.33730.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.058 (3)0.088 (4)0.093 (4)0.004 (3)0.009 (3)0.029 (3)
O30.070 (3)0.058 (3)0.044 (2)0.011 (3)0.010 (2)0.012 (2)
O10.087 (4)0.088 (3)0.0270 (19)0.019 (3)0.020 (2)0.006 (2)
O40.074 (3)0.068 (3)0.032 (2)0.004 (2)0.0153 (19)0.004 (2)
C20.050 (3)0.035 (3)0.0162 (18)0.003 (2)0.0079 (19)0.0013 (18)
N10.049 (3)0.030 (2)0.031 (2)0.0015 (19)0.0078 (18)0.0013 (17)
C40.045 (3)0.036 (3)0.030 (3)0.011 (2)0.008 (2)0.013 (2)
C10.040 (3)0.042 (3)0.034 (3)0.000 (2)0.009 (2)0.002 (2)
O20.056 (3)0.077 (3)0.037 (2)0.020 (2)0.0025 (18)0.002 (2)
C120.045 (3)0.047 (3)0.039 (3)0.004 (3)0.003 (2)0.004 (2)
C30.048 (3)0.043 (3)0.029 (3)0.000 (3)0.002 (2)0.007 (2)
C130.049 (4)0.035 (3)0.048 (3)0.002 (3)0.007 (3)0.003 (2)
C70.043 (4)0.054 (4)0.090 (5)0.003 (3)0.013 (3)0.012 (3)
C60.037 (5)0.043 (4)0.244 (15)0.004 (3)0.002 (6)0.030 (6)
C100.066 (6)0.059 (5)0.215 (15)0.022 (4)0.010 (7)0.032 (7)
C80.039 (4)0.073 (5)0.142 (8)0.008 (4)0.006 (4)0.010 (6)
C110.067 (6)0.042 (4)0.152 (9)0.010 (4)0.008 (6)0.001 (5)
C90.047 (5)0.085 (6)0.126 (8)0.029 (4)0.003 (4)0.006 (5)
C50.045 (4)0.034 (3)0.157 (8)0.008 (3)0.004 (4)0.024 (4)
Geometric parameters (Å, º) top
O5—H10.86 (6)C12—C71.396 (9)
O5—H20.86 (6)C3—H3A0.97
O3—C41.195 (7)C3—H3B0.97
O1—C11.250 (7)C13—H130.93
O4—C41.320 (7)C7—C81.402 (11)
O4—H40.82C7—C61.416 (11)
C2—N11.471 (7)C6—C51.324 (11)
C2—C31.538 (7)C6—H60.93
C2—C11.543 (6)C10—C91.364 (13)
C2—H2A0.98C10—C111.372 (12)
N1—C131.333 (7)C10—H100.93
N1—C51.368 (8)C8—C91.354 (12)
C4—C31.481 (7)C8—H80.93
C1—O21.231 (7)C11—H110.93
C12—C131.375 (8)C9—H90.93
C12—C111.389 (10)C5—H50.93
H1—O5—H2109 (7)H3A—C3—H3B107.8
C4—O4—H4109.5N1—C13—C12122.0 (5)
N1—C2—C3113.5 (4)N1—C13—H13119
N1—C2—C1111.2 (4)C12—C13—H13119
C3—C2—C1112.4 (4)C12—C7—C8121.1 (7)
N1—C2—H2A106.4C12—C7—C6116.5 (7)
C3—C2—H2A106.4C8—C7—C6122.3 (7)
C1—C2—H2A106.4C5—C6—C7121.3 (7)
C13—N1—C5119.2 (6)C5—C6—H6119.3
C13—N1—C2121.3 (5)C7—C6—H6119.3
C5—N1—C2119.5 (5)C9—C10—C11121.2 (8)
O3—C4—O4124.2 (5)C9—C10—H10119.4
O3—C4—C3123.8 (5)C11—C10—H10119.4
O4—C4—C3112.0 (5)C9—C8—C7118.0 (8)
O2—C1—O1126.7 (5)C9—C8—H8121
O2—C1—C2116.0 (5)C7—C8—H8121
O1—C1—C2117.2 (5)C10—C11—C12119.3 (8)
C13—C12—C11121.9 (6)C10—C11—H11120.3
C13—C12—C7119.5 (6)C12—C11—H11120.3
C11—C12—C7118.6 (7)C8—C9—C10121.7 (8)
C4—C3—C2113.0 (4)C8—C9—H9119.2
C4—C3—H3A109C10—C9—H9119.2
C2—C3—H3A109C6—C5—N1121.4 (7)
C4—C3—H3B109C6—C5—H5119.3
C2—C3—H3B109N1—C5—H5119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O20.86 (6)2.05 (6)2.851 (7)156 (6)
O5—H2···O2i0.86 (6)2.08 (7)2.874 (7)153 (6)
O4—H4···O1ii0.821.702.518 (7)172
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H11NO4·H2O
Mr263.24
Crystal system, space groupMonoclinic, Pc
Temperature (K)295
a, b, c (Å)10.1030 (15), 8.0706 (8), 7.8911 (10)
β (°) 104.282 (14)
V3)623.53 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.19 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7142, 1659, 994
Rint0.054
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.222, 1.02
No. of reflections1659
No. of parameters178
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O20.86 (6)2.05 (6)2.851 (7)156 (6)
O5—H2···O2i0.86 (6)2.08 (7)2.874 (7)153 (6)
O4—H4···O1ii0.821.702.518 (7)172
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y, z1.
 

Acknowledgements

The authors would like to thank the Ministry of Science, Education and Sport, Republic of Croatia, for financial support of this work through grant Nos. 119–1193079-3069, 119–1191342-2960 and 098–0982904-29121.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlett, L. H. & Gardner, W. H. (1952). Maleic Anhydride Derivatives: Reactions of the Double Bond, p. 121. New York: John Wiley & Sons, Inc.  Google Scholar
First citationKatritsky, A. R. & Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatthews, B. W., Colman, P. M., Selzer, J. O., Weaver, L. H. & Duncan, J. A. (1973). Acta Cryst. B29, 2939–2947.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafran, M., Katrusiak, A., Dega-Szafran, Z., Dymarska, S. & Grundwald-Wyspiańska, M. (2002). J. Mol. Struct. 609, 19–28.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds