organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­pyridinium 2-carb­­oxy-4,5-di­chloro­benzoate monohydrate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 8 April 2010; accepted 27 April 2010; online 8 May 2010)

In the structure of the 1:1 proton-transfer compound of 4-methyl­pyridine (γ-picoline) with 4,5-dichloro­phthalic acid, C6H8N+·C8H3Cl2O4·H2O, determined at 200 K, the 4,5-dichloro­phthalate anions are bridged by the water mol­ecule through O—H⋯Ocarbox­yl hydrogen bonds, giving zigzag chains which extend along the c-axis direction. The 4-methyl­pyridinium cations are linked to the chains through single N—H⋯Owater hydrogen bonds and occupy the voids within the chains in the one-dimensional structure. The anions have the common `planar' conformation with a short intra­molecular O—H⋯Ocarbox­yl hydrogen bond.

Related literature

For the structures of other hydrogen 4,5-dichloro­phthalate salts, see: Mallinson et al. (2003[Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259-4270.]); Bozkurt et al. (2006[Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258-o4260.]); Smith et al. (2007[Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276-o4277.], 2008a[Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180-o183.],b[Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532-o536.], 2009[Smith, G., Wermuth, U. D. & Sagatys, D. S. (2009). Acta Cryst. C65, o131-o133.], 2009a[Smith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103-o107.],b[Smith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133.],b[Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. E66, o235.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·C8H3Cl2O4·H2O

  • Mr = 346.15

  • Monoclinic, P 21 /n

  • a = 3.8398 (3) Å

  • b = 29.5531 (17) Å

  • c = 12.9855 (7) Å

  • β = 90.054 (6)°

  • V = 1473.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 200 K

  • 0.30 × 0.20 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.930, Tmax = 0.980

  • 8898 measured reflections

  • 2579 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.29

  • 2579 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1W 0.85 (5) 1.82 (5) 2.663 (5) 170 (5)
O1W—H11W⋯O21 0.79 (5) 2.02 (5) 2.793 (4) 168 (5)
O1W—H12W⋯O11i 0.78 (5) 2.03 (5) 2.806 (4) 170 (4)
O21—H21⋯O12 1.00 (6) 1.38 (6) 2.376 (4) 180 (8)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2007, 2008a, 2008b, 2009a, 2009b; Smith et al., 2009; Smith & Wermuth, 2010a, 2010b). With the majority of these structures, e.g. the brucinium salt (Smith et al., 2007), the DCPA anions are essentially planar (the 'planar' conformation) with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were also found in the structure of the hydrated 1:1 proton-transfer compound of DCPA with 4-methylpyridine (γ-picoline), the title compound C6H8N+ C8H3Cl2O4- . H2O (I), reported here.

In (I) (Fig. 1), the 4,5-dichlorophthalate anions are bridged by the water molecule through O–H···Ocarboxyl hydrogen bonds giving zig-zag chains which extend along the c axial direction of the unit cell (Fig. 2). The 4-methylpyridine cations are linked to the chains through single N–H···Owater hydrogen bonds and occupy the voids formed within the chains, in the one-dimensional structure. There are no cation–anion ππ ring stacking interactions such as are present in some of the DCPA compounds.

The DCPA anion has the 'planar' conformation [torsion angles C2–C1–C11–O11, -173.2 (3)°: C1–C2–C21–O22, 169.9 (3)°], with the short intramolecular O–H···Ocarboxyl hydrogen bond [2.376 (4) Å]. Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.9 (3)° and C2–C1–C11, 128.8 (3)°]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.527 (5) and 1.531 (5) Å] are features inherent in the 'planar' DCPA anions in the overall series of 1:1 proton-transfer compounds.

Related literature top

For the structures of other hydrogen 4,5-dichlorophthalate salts, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2007, 2008a,b, 2009, 2009a,b); Smith & Wermuth (2010a,b).

Experimental top

The title compound (I) was synthesized by heating together for 10 min under reflux 1 mmol quantities of γ-picoline and 4,5-dichlorophthalic acid in 50 ml of methanol. The product after complete room-temperature evaporation of the hot-filtered solution was microcrystalline. Recrystallization from water gave colourless flat needles (m.p. 445 K) from which a specimen suitable for X-ray analysis was cleaved.

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–Haromatic = 0.93 Å and C–Haliphatic = 0.98 Å] and treated as riding models with Uiso(H) = 1.2Ueq(C).

Structure description top

The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Mallinson et al., 2003; Bozkurt et al., 2006; Smith et al., 2007, 2008a, 2008b, 2009a, 2009b; Smith et al., 2009; Smith & Wermuth, 2010a, 2010b). With the majority of these structures, e.g. the brucinium salt (Smith et al., 2007), the DCPA anions are essentially planar (the 'planar' conformation) with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were also found in the structure of the hydrated 1:1 proton-transfer compound of DCPA with 4-methylpyridine (γ-picoline), the title compound C6H8N+ C8H3Cl2O4- . H2O (I), reported here.

In (I) (Fig. 1), the 4,5-dichlorophthalate anions are bridged by the water molecule through O–H···Ocarboxyl hydrogen bonds giving zig-zag chains which extend along the c axial direction of the unit cell (Fig. 2). The 4-methylpyridine cations are linked to the chains through single N–H···Owater hydrogen bonds and occupy the voids formed within the chains, in the one-dimensional structure. There are no cation–anion ππ ring stacking interactions such as are present in some of the DCPA compounds.

The DCPA anion has the 'planar' conformation [torsion angles C2–C1–C11–O11, -173.2 (3)°: C1–C2–C21–O22, 169.9 (3)°], with the short intramolecular O–H···Ocarboxyl hydrogen bond [2.376 (4) Å]. Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.9 (3)° and C2–C1–C11, 128.8 (3)°]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.527 (5) and 1.531 (5) Å] are features inherent in the 'planar' DCPA anions in the overall series of 1:1 proton-transfer compounds.

For the structures of other hydrogen 4,5-dichlorophthalate salts, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2007, 2008a,b, 2009, 2009a,b); Smith & Wermuth (2010a,b).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the 4-methylpyridinium cation, the hydrogen 4,5-dichlorophthalate anion and the water molecule of hydration (O1W) in (I). Non-H atoms are shown as 50% probability displacement ellipsoids with inter-species hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structures extending down the c direction in the unit cell of (I). For symmetry code see Table 1.
4-Methylpyridinium 2-carboxy-4,5-dichlorobenzoate monohydrate top
Crystal data top
C6H8N+·C8H3Cl2O4·H2OF(000) = 712
Mr = 346.15Dx = 1.560 Mg m3
Monoclinic, P21/nMelting point: 445 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 3.8398 (3) ÅCell parameters from 4516 reflections
b = 29.5531 (17) Åθ = 3.1–28.7°
c = 12.9855 (7) ŵ = 0.46 mm1
β = 90.054 (6)°T = 200 K
V = 1473.57 (16) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2579 independent reflections
Radiation source: Enhance (Mo) X-ray source2156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.08 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3531
Tmin = 0.930, Tmax = 0.980l = 1515
8898 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: geom'
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.29 w = 1/[σ2(Fo2) + (0.042P)2 + 1.7305P]
where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H8N+·C8H3Cl2O4·H2OV = 1473.57 (16) Å3
Mr = 346.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8398 (3) ŵ = 0.46 mm1
b = 29.5531 (17) ÅT = 200 K
c = 12.9855 (7) Å0.30 × 0.20 × 0.08 mm
β = 90.054 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2156 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.980Rint = 0.021
8898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.24 e Å3
2579 reflectionsΔρmin = 0.33 e Å3
215 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.1942 (3)0.02601 (3)0.63754 (7)0.0379 (3)
Cl50.1079 (2)0.00515 (3)0.85706 (7)0.0372 (3)
O110.0394 (8)0.17470 (9)0.8599 (2)0.0471 (10)
O120.2068 (8)0.20432 (9)0.7127 (2)0.0490 (10)
O210.4257 (8)0.18118 (9)0.5499 (2)0.0504 (10)
O220.6118 (7)0.11959 (9)0.47323 (19)0.0399 (9)
C10.1694 (8)0.12249 (11)0.7262 (2)0.0233 (10)
C20.3066 (8)0.10876 (11)0.6304 (2)0.0225 (10)
C30.3086 (8)0.06268 (11)0.6068 (2)0.0249 (10)
C40.1817 (8)0.03024 (11)0.6731 (3)0.0252 (10)
C50.0513 (8)0.04386 (11)0.7687 (2)0.0252 (10)
C60.0428 (8)0.08917 (11)0.7929 (2)0.0254 (10)
C110.1371 (9)0.17020 (12)0.7704 (3)0.0328 (11)
C210.4622 (9)0.13795 (12)0.5446 (3)0.0291 (11)
N1A1.1032 (8)0.19332 (11)0.2708 (3)0.0411 (11)
C2A1.2276 (11)0.21031 (13)0.1826 (3)0.0447 (14)
C3A1.3735 (9)0.18251 (13)0.1103 (3)0.0370 (12)
C4A1.3940 (8)0.13645 (12)0.1288 (2)0.0282 (10)
C5A1.2671 (9)0.12034 (12)0.2211 (3)0.0333 (11)
C6A1.1180 (9)0.14896 (14)0.2913 (3)0.0369 (11)
C41A1.5391 (10)0.10520 (15)0.0494 (3)0.0463 (14)
O1W0.7863 (9)0.23983 (11)0.4193 (2)0.0462 (10)
H30.399300.053500.543800.0300*
H60.050700.098000.855800.0300*
H210.334 (15)0.191 (2)0.618 (5)0.100 (19)*
H1A1.012 (12)0.211 (2)0.315 (4)0.049 (10)*
H2A1.214700.241300.170400.0540*
H3A1.458500.194500.049000.0450*
H5A1.282800.089600.235800.0400*
H6A1.028100.137700.352700.0440*
H41A1.617100.122400.008900.0560*
H42A1.361700.084300.027900.0560*
H43A1.731700.088700.078100.0560*
H11W0.666 (13)0.2227 (18)0.449 (4)0.065 (17)*
H12W0.694 (11)0.2626 (17)0.405 (3)0.046 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0516 (6)0.0224 (4)0.0396 (5)0.0018 (4)0.0113 (4)0.0043 (4)
Cl50.0483 (5)0.0316 (5)0.0318 (5)0.0034 (4)0.0108 (4)0.0091 (4)
O110.074 (2)0.0310 (15)0.0363 (16)0.0029 (13)0.0195 (14)0.0095 (12)
O120.084 (2)0.0225 (14)0.0406 (16)0.0024 (13)0.0133 (15)0.0012 (12)
O210.083 (2)0.0280 (15)0.0403 (17)0.0001 (14)0.0222 (15)0.0098 (12)
O220.0534 (16)0.0394 (15)0.0269 (14)0.0010 (12)0.0122 (12)0.0059 (11)
C10.0232 (17)0.0233 (17)0.0234 (17)0.0009 (13)0.0027 (13)0.0001 (13)
C20.0225 (16)0.0244 (17)0.0206 (17)0.0021 (13)0.0019 (13)0.0042 (13)
C30.0273 (17)0.0264 (18)0.0209 (16)0.0014 (13)0.0039 (13)0.0017 (13)
C40.0281 (17)0.0212 (17)0.0264 (17)0.0023 (13)0.0023 (13)0.0015 (13)
C50.0268 (17)0.0249 (17)0.0240 (17)0.0002 (13)0.0028 (13)0.0057 (14)
C60.0256 (17)0.0327 (19)0.0179 (16)0.0014 (14)0.0017 (13)0.0036 (14)
C110.039 (2)0.0253 (19)0.034 (2)0.0018 (15)0.0015 (16)0.0026 (15)
C210.0315 (19)0.032 (2)0.0237 (18)0.0023 (14)0.0016 (14)0.0051 (15)
N1A0.0374 (18)0.043 (2)0.043 (2)0.0010 (14)0.0022 (15)0.0190 (16)
C2A0.046 (2)0.029 (2)0.059 (3)0.0040 (17)0.001 (2)0.0014 (19)
C3A0.037 (2)0.040 (2)0.034 (2)0.0036 (16)0.0039 (16)0.0114 (17)
C4A0.0237 (17)0.038 (2)0.0228 (17)0.0011 (14)0.0019 (13)0.0018 (15)
C5A0.0339 (19)0.032 (2)0.034 (2)0.0021 (15)0.0002 (16)0.0050 (16)
C6A0.036 (2)0.050 (2)0.0248 (19)0.0044 (17)0.0016 (15)0.0032 (17)
C41A0.037 (2)0.059 (3)0.043 (2)0.0042 (19)0.0065 (18)0.013 (2)
O1W0.078 (2)0.0254 (16)0.0352 (16)0.0033 (16)0.0159 (15)0.0043 (13)
Geometric parameters (Å, º) top
Cl4—C41.726 (3)C3—C41.378 (5)
Cl5—C51.732 (3)C4—C51.398 (5)
O11—C111.229 (5)C5—C61.376 (5)
O12—C111.285 (5)C3—H30.9300
O21—C211.287 (4)C6—H60.9300
O22—C211.218 (5)C2A—C3A1.368 (5)
O21—H211.00 (6)C3A—C4A1.385 (5)
O1W—H12W0.78 (5)C4A—C5A1.379 (5)
O1W—H11W0.79 (5)C4A—C41A1.493 (5)
N1A—C6A1.339 (5)C5A—C6A1.369 (5)
N1A—C2A1.339 (5)C2A—H2A0.9300
N1A—H1A0.85 (5)C3A—H3A0.9300
C1—C111.527 (5)C5A—H5A0.9300
C1—C61.399 (4)C6A—H6A0.9300
C1—C21.411 (4)C41A—H43A0.9600
C2—C31.396 (5)C41A—H41A0.9600
C2—C211.531 (5)C41A—H42A0.9600
C21—O21—H21112 (3)C4—C3—H3119.00
H11W—O1W—H12W114 (5)C2—C3—H3119.00
C2A—N1A—C6A121.5 (4)C1—C6—H6119.00
C2A—N1A—H1A120 (4)C5—C6—H6119.00
C6A—N1A—H1A119 (4)N1A—C2A—C3A120.6 (4)
C2—C1—C11128.9 (3)C2A—C3A—C4A119.7 (3)
C6—C1—C11112.9 (3)C3A—C4A—C41A120.7 (3)
C2—C1—C6118.3 (3)C3A—C4A—C5A118.1 (3)
C1—C2—C21128.8 (3)C5A—C4A—C41A121.3 (3)
C3—C2—C21112.8 (3)C4A—C5A—C6A120.9 (3)
C1—C2—C3118.4 (3)N1A—C6A—C5A119.4 (4)
C2—C3—C4122.7 (3)C3A—C2A—H2A120.00
C3—C4—C5118.8 (3)N1A—C2A—H2A120.00
Cl4—C4—C3119.5 (3)C2A—C3A—H3A120.00
Cl4—C4—C5121.7 (3)C4A—C3A—H3A120.00
Cl5—C5—C4121.7 (3)C6A—C5A—H5A120.00
C4—C5—C6119.4 (3)C4A—C5A—H5A120.00
Cl5—C5—C6118.9 (2)N1A—C6A—H6A120.00
C1—C6—C5122.4 (3)C5A—C6A—H6A120.00
O12—C11—C1119.2 (3)C4A—C41A—H42A109.00
O11—C11—C1118.7 (3)C4A—C41A—H43A109.00
O11—C11—O12122.1 (3)C4A—C41A—H41A110.00
O21—C21—O22122.3 (3)H41A—C41A—H43A110.00
O21—C21—C2118.5 (3)H42A—C41A—H43A109.00
O22—C21—C2119.2 (3)H41A—C41A—H42A109.00
C2A—N1A—C6A—C5A0.7 (5)C1—C2—C21—O22169.9 (3)
C6A—N1A—C2A—C3A0.2 (6)C1—C2—C3—C40.1 (5)
C6—C1—C2—C21179.6 (3)C2—C3—C4—C51.2 (5)
C11—C1—C2—C210.3 (5)C2—C3—C4—Cl4180.0 (3)
C2—C1—C6—C50.7 (5)C3—C4—C5—Cl5179.2 (2)
C11—C1—C6—C5179.1 (3)Cl4—C4—C5—Cl50.4 (4)
C2—C1—C11—O11173.2 (3)Cl4—C4—C5—C6179.2 (2)
C2—C1—C11—O128.0 (5)C3—C4—C5—C62.0 (5)
C6—C1—C11—O116.7 (4)C4—C5—C6—C11.8 (5)
C11—C1—C2—C3180.0 (3)Cl5—C5—C6—C1179.4 (2)
C6—C1—C11—O12172.2 (3)N1A—C2A—C3A—C4A0.3 (6)
C6—C1—C2—C30.1 (4)C2A—C3A—C4A—C5A0.5 (5)
C21—C2—C3—C4179.9 (3)C2A—C3A—C4A—C41A177.6 (3)
C1—C2—C21—O2111.1 (5)C41A—C4A—C5A—C6A176.6 (3)
C3—C2—C21—O21169.2 (3)C3A—C4A—C5A—C6A1.5 (5)
C3—C2—C21—O229.8 (4)C4A—C5A—C6A—N1A1.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1W0.85 (5)1.82 (5)2.663 (5)170 (5)
O1W—H11W···O210.79 (5)2.02 (5)2.793 (4)168 (5)
O1W—H12W···O11i0.78 (5)2.03 (5)2.806 (4)170 (4)
O21—H21···O121.00 (6)1.38 (6)2.376 (4)180 (8)
C2A—H2A···O12i0.932.593.243 (5)128
C2A—H2A···O12ii0.932.543.147 (5)123
C6A—H6A···O220.932.303.181 (5)158
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H8N+·C8H3Cl2O4·H2O
Mr346.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)3.8398 (3), 29.5531 (17), 12.9855 (7)
β (°) 90.054 (6)
V3)1473.57 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.20 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.930, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8898, 2579, 2156
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.29
No. of reflections2579
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1W0.85 (5)1.82 (5)2.663 (5)170 (5)
O1W—H11W···O210.79 (5)2.02 (5)2.793 (4)168 (5)
O1W—H12W···O11i0.78 (5)2.03 (5)2.806 (4)170 (4)
O21—H21···O121.00 (6)1.38 (6)2.376 (4)180 (8)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the Faculty of Science and Technology, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). Acta Cryst. E66, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Sagatys, D. S. (2009). Acta Cryst. C65, o131–o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276–o4277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180–o183.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532–o536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds