organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-2-[(2-hy­droxy­phen­yl)iminiometh­yl]phenolate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 5 April 2010; accepted 26 April 2010; online 8 May 2010)

The title compound, C13H10BrNO2, crystallizes in a zwitterionic form. The zwitterion exists in a trans configuration about the C=N bond and is almost planar, the dihedral angle between the two benzene rings being 2.29 (9)°. An intra­molecular N—H⋯O hydrogen bond formed between the iminium NH+ and the phenolate O atoms generates an S(6) ring motif. In the crystal, the zwitterions are linked through O—H⋯O hydrogen bonds into chains along [101] and these chains are further connected through C—H⋯Br inter­actions into a two-dimensional network perpendicular to (101). C⋯C [3.572 (3)–3.592 (3) Å] and C⋯Br [3.5633 (19)–3.7339 (18) Å] short contacts are observed. The crystal studied was a twin with twin law [\overline{1}]00, 0[\overline{1}]0, 001 with a domain ratio of 0.09919 (2):0.90081 (2).

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff bases and their applications, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Kagkelari et al. (2009[Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279-3283.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Wei & Atwood (1998[Wei, P. & Atwood, D. A. (1998). Inorg. Chem. 37, 4934-4938.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.]; 2010[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934-o935.]); Tan & Liu (2009[Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO2

  • Mr = 291.12

  • Monoclinic, P 21

  • a = 4.6387 (3) Å

  • b = 18.9379 (13) Å

  • c = 6.2270 (4) Å

  • β = 90.144 (3)°

  • V = 547.02 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.74 mm−1

  • T = 100 K

  • 0.43 × 0.14 × 0.14 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.295, Tmax = 0.628

  • 8575 measured reflections

  • 3120 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.041

  • S = 1.02

  • 3120 reflections

  • 191 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1480 Friedel pairs

  • Flack parameter: 0.027 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.82 1.76 2.5641 (19) 169
N1—H1N1⋯O1 0.89 (3) 1.84 (3) 2.6129 (18) 143 (3)
C7—H7A⋯O2 0.95 (2) 2.12 (2) 2.794 (2) 127.1 (18)
C11—H11A⋯Br1ii 0.96 (3) 2.89 (3) 3.6982 (19) 143.1 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Much attention has been given to Schiff base ligands due to their applications such as in coordination chemistry (Kagkelari et al., 2009), chelated boron catalyst (Wei & Atwood, 1998), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. We have reported the crystal structures of Schiff base ligands which existed in a zwitterionic form i.e 2-((E)-{2-[(E)-2,3-dihydroxybenzylideneamino]-5-methylphenyl}- iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) and (E)-4-allyl-2-{[(2-hydroxyphenyl)iminio]methyl}-6-methoxyphenolate (Eltayeb et al., 2010). Herein we report the crystal structure of the title zwitterionic Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the CN bond [1.310 (2) Å]; the torsion angle C8–N1–C7–C6 is 179.25 (17)°. The molecule is almost planar with the dihedral angle between the two benzene rings of 2.31 (9)°. The hydroxy group is co-planar with the attached C8–C13 benzene ring with the r.m.s. of 0.0102 (2) Å for the seven non H atoms. Intramolecular N—H···O hydrogen bond between the NH+ and the phenolate O- generates an S(6) ring motif (Fig. 1; Table 1) which help to stabilize the planarity of the molecule (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with those found in related structures (Eltayeb et al., 2009, 2010; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterions are linked through O2–H1O2···O1 hydrogen bonds into chains along the [101] and these chains are further connected through C11—H11A···Br1 interactions into a 2-D network perpendicular to the (101)-plane. The crystal is stabilized by O—H···O and weak C—H···Br interactions (Table 1). C···C [3.572 (3)-3.592 (3) Å] and C···Br [3.5633 (19)-3.7339 (18) Å] short contacts are observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sriram et al. (2006); Wei & Atwood (1998). For related structures, see: Eltayeb et al. (2009; 2010); Tan & Liu (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde (0.402 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after nine days.

Refinement top

Hydroxyl H atom was placed in calculated positions with d(O—H) = 0.82 Å and the Uiso values was constrained to be 1.5Ueq of the carrier atom. The remaining H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.80 Å from Br1 and the deepest hole is located at 0.99 Å from Br1. The crystal studied was a twin with twin law 1 0 0, 0 1 0, 0 0 1, leading to a distribution (refined BASF parameter) of 0.09919/0.90081 (2).

Structure description top

Much attention has been given to Schiff base ligands due to their applications such as in coordination chemistry (Kagkelari et al., 2009), chelated boron catalyst (Wei & Atwood, 1998), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. We have reported the crystal structures of Schiff base ligands which existed in a zwitterionic form i.e 2-((E)-{2-[(E)-2,3-dihydroxybenzylideneamino]-5-methylphenyl}- iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) and (E)-4-allyl-2-{[(2-hydroxyphenyl)iminio]methyl}-6-methoxyphenolate (Eltayeb et al., 2010). Herein we report the crystal structure of the title zwitterionic Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the CN bond [1.310 (2) Å]; the torsion angle C8–N1–C7–C6 is 179.25 (17)°. The molecule is almost planar with the dihedral angle between the two benzene rings of 2.31 (9)°. The hydroxy group is co-planar with the attached C8–C13 benzene ring with the r.m.s. of 0.0102 (2) Å for the seven non H atoms. Intramolecular N—H···O hydrogen bond between the NH+ and the phenolate O- generates an S(6) ring motif (Fig. 1; Table 1) which help to stabilize the planarity of the molecule (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with those found in related structures (Eltayeb et al., 2009, 2010; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterions are linked through O2–H1O2···O1 hydrogen bonds into chains along the [101] and these chains are further connected through C11—H11A···Br1 interactions into a 2-D network perpendicular to the (101)-plane. The crystal is stabilized by O—H···O and weak C—H···Br interactions (Table 1). C···C [3.572 (3)-3.592 (3) Å] and C···Br [3.5633 (19)-3.7339 (18) Å] short contacts are observed.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sriram et al. (2006); Wei & Atwood (1998). For related structures, see: Eltayeb et al. (2009; 2010); Tan & Liu (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing showing 2-D networks perpendicular to the (101)-plane.
(E)-4-Bromo-2-[(2-hydroxyphenyl)iminiomethyl]phenolate top
Crystal data top
C13H10BrNO2F(000) = 292
Mr = 291.12Dx = 1.773 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3120 reflections
a = 4.6387 (3) Åθ = 1.1–30.0°
b = 18.9379 (13) ŵ = 3.74 mm1
c = 6.2270 (4) ÅT = 100 K
β = 90.144 (3)°Needle, yellow
V = 547.02 (6) Å30.43 × 0.14 × 0.14 mm
Z = 2
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3120 independent reflections
Radiation source: sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.295, Tmax = 0.628k = 2626
8575 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0035P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3120 reflectionsΔρmax = 0.59 e Å3
191 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1480 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (7)
Crystal data top
C13H10BrNO2V = 547.02 (6) Å3
Mr = 291.12Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6387 (3) ŵ = 3.74 mm1
b = 18.9379 (13) ÅT = 100 K
c = 6.2270 (4) Å0.43 × 0.14 × 0.14 mm
β = 90.144 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3034 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 0.628Rint = 0.026
8575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.59 e Å3
S = 1.02Δρmin = 0.29 e Å3
3120 reflectionsAbsolute structure: Flack (1983), 1480 Friedel pairs
191 parametersAbsolute structure parameter: 0.027 (7)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00526 (4)0.442840 (15)0.87673 (2)0.01554 (4)
O10.5191 (3)0.66300 (7)0.29008 (19)0.0152 (2)
O21.1314 (3)0.70088 (8)1.0194 (2)0.0166 (3)
H1O21.26970.69251.09760.025*
N10.8565 (3)0.69973 (8)0.6076 (2)0.0121 (3)
H1N10.802 (6)0.6976 (16)0.470 (5)0.026 (7)*
C10.4132 (4)0.61426 (10)0.4149 (3)0.0126 (3)
C20.1934 (4)0.56695 (10)0.3446 (3)0.0140 (3)
H2A0.133 (6)0.5756 (14)0.207 (4)0.020 (6)*
C30.0797 (4)0.51628 (10)0.4781 (3)0.0138 (3)
H3A0.064 (6)0.4852 (14)0.440 (4)0.021 (6)*
C40.1776 (4)0.51058 (9)0.6919 (3)0.0129 (3)
C50.3894 (4)0.55482 (9)0.7685 (3)0.0125 (3)
H5A0.450 (6)0.5535 (16)0.905 (4)0.026 (7)*
C60.5112 (4)0.60653 (9)0.6331 (3)0.0122 (3)
C70.7261 (4)0.65154 (9)0.7227 (3)0.0123 (3)
H7A0.787 (5)0.6470 (12)0.868 (4)0.009 (5)*
C81.0707 (4)0.74911 (9)0.6695 (3)0.0117 (3)
C91.2064 (4)0.74952 (9)0.8722 (3)0.0125 (3)
C101.4149 (4)0.80132 (10)0.9137 (3)0.0148 (3)
H10A1.494 (6)0.8047 (15)1.048 (5)0.022 (6)*
C111.4940 (4)0.84982 (10)0.7569 (3)0.0159 (3)
H11A1.639 (6)0.8847 (13)0.786 (4)0.018 (6)*
C121.3635 (4)0.84799 (10)0.5548 (3)0.0160 (3)
H12A1.427 (7)0.8788 (17)0.453 (5)0.036 (8)*
C131.1523 (4)0.79797 (9)0.5130 (3)0.0139 (3)
H13A1.045 (5)0.7956 (13)0.368 (3)0.014 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01876 (7)0.01522 (7)0.01262 (6)0.00425 (9)0.00307 (5)0.00324 (8)
O10.0161 (6)0.0183 (6)0.0113 (5)0.0031 (5)0.0034 (5)0.0033 (5)
O20.0167 (6)0.0224 (7)0.0106 (6)0.0044 (5)0.0054 (5)0.0042 (5)
N10.0122 (7)0.0140 (7)0.0102 (7)0.0004 (5)0.0033 (5)0.0003 (5)
C10.0122 (7)0.0150 (8)0.0106 (7)0.0001 (6)0.0012 (5)0.0002 (6)
C20.0156 (8)0.0172 (8)0.0092 (8)0.0007 (6)0.0030 (6)0.0007 (6)
C30.0136 (8)0.0141 (8)0.0137 (8)0.0022 (6)0.0024 (6)0.0018 (6)
C40.0142 (8)0.0120 (7)0.0126 (8)0.0007 (6)0.0003 (6)0.0015 (6)
C50.0150 (8)0.0137 (8)0.0087 (8)0.0011 (6)0.0030 (6)0.0007 (6)
C60.0116 (7)0.0140 (7)0.0109 (7)0.0014 (6)0.0014 (6)0.0021 (6)
C70.0123 (8)0.0139 (8)0.0108 (8)0.0003 (6)0.0020 (6)0.0007 (6)
C80.0114 (7)0.0114 (7)0.0122 (7)0.0001 (6)0.0033 (5)0.0010 (6)
C90.0127 (7)0.0146 (8)0.0103 (7)0.0003 (6)0.0012 (6)0.0007 (6)
C100.0146 (8)0.0174 (9)0.0123 (8)0.0012 (6)0.0044 (6)0.0020 (6)
C110.0141 (8)0.0154 (8)0.0182 (8)0.0021 (7)0.0016 (7)0.0017 (6)
C120.0172 (9)0.0147 (8)0.0161 (8)0.0007 (7)0.0011 (6)0.0022 (7)
C130.0128 (8)0.0160 (8)0.0129 (8)0.0008 (6)0.0026 (6)0.0011 (6)
Geometric parameters (Å, º) top
Br1—C41.9011 (18)C5—C61.411 (2)
O1—C11.304 (2)C5—H5A0.89 (2)
O2—C91.346 (2)C6—C71.424 (2)
O2—H1O20.8200C7—H7A0.95 (2)
N1—C71.310 (2)C8—C131.397 (2)
N1—C81.417 (2)C8—C91.409 (2)
N1—H1N10.89 (3)C9—C101.401 (2)
C1—C21.425 (2)C10—C111.391 (3)
C1—C61.439 (2)C10—H10A0.92 (3)
C2—C31.376 (3)C11—C121.396 (3)
C2—H2A0.91 (3)C11—H11A0.96 (3)
C3—C41.409 (2)C12—C131.387 (3)
C3—H3A0.92 (3)C12—H12A0.91 (3)
C4—C51.376 (3)C13—H13A1.03 (2)
C9—O2—H1O2109.5N1—C7—C6121.74 (16)
C7—N1—C8129.42 (16)N1—C7—H7A116.6 (14)
C7—N1—H1N1111.3 (19)C6—C7—H7A121.6 (14)
C8—N1—H1N1119.2 (18)C13—C8—C9120.02 (16)
O1—C1—C2122.15 (15)C13—C8—N1115.98 (15)
O1—C1—C6121.08 (16)C9—C8—N1123.97 (16)
C2—C1—C6116.76 (16)O2—C9—C10122.23 (15)
C3—C2—C1121.85 (16)O2—C9—C8119.39 (15)
C3—C2—H2A125.0 (16)C10—C9—C8118.39 (16)
C1—C2—H2A113.1 (17)C11—C10—C9121.08 (16)
C2—C3—C4120.08 (16)C11—C10—H10A119.3 (18)
C2—C3—H3A124.6 (16)C9—C10—H10A119.6 (17)
C4—C3—H3A115.3 (16)C10—C11—C12120.15 (17)
C5—C4—C3120.59 (16)C10—C11—H11A120.5 (15)
C5—C4—Br1120.14 (13)C12—C11—H11A119.4 (15)
C3—C4—Br1119.24 (13)C13—C12—C11119.38 (17)
C4—C5—C6120.14 (16)C13—C12—H12A122 (2)
C4—C5—H5A122 (2)C11—C12—H12A118 (2)
C6—C5—H5A118 (2)C12—C13—C8120.94 (16)
C5—C6—C7117.51 (15)C12—C13—H13A122.2 (13)
C5—C6—C1120.57 (16)C8—C13—H13A116.8 (13)
C7—C6—C1121.89 (16)
O1—C1—C2—C3179.04 (17)C1—C6—C7—N13.8 (3)
C6—C1—C2—C30.1 (3)C7—N1—C8—C13175.04 (17)
C1—C2—C3—C40.8 (3)C7—N1—C8—C97.1 (3)
C2—C3—C4—C50.8 (3)C13—C8—C9—O2178.12 (16)
C2—C3—C4—Br1177.31 (14)N1—C8—C9—O20.3 (3)
C3—C4—C5—C60.0 (3)C13—C8—C9—C102.3 (3)
Br1—C4—C5—C6178.09 (13)N1—C8—C9—C10179.92 (17)
C4—C5—C6—C7178.93 (16)O2—C9—C10—C11178.26 (18)
C4—C5—C6—C10.8 (3)C8—C9—C10—C112.1 (3)
O1—C1—C6—C5178.25 (17)C9—C10—C11—C120.6 (3)
C2—C1—C6—C50.8 (2)C10—C11—C12—C130.8 (3)
O1—C1—C6—C70.2 (3)C11—C12—C13—C80.6 (3)
C2—C1—C6—C7178.85 (16)C9—C8—C13—C120.9 (3)
C8—N1—C7—C6179.25 (17)N1—C8—C13—C12178.91 (16)
C5—C6—C7—N1178.12 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.821.762.5641 (19)169
N1—H1N1···O10.89 (3)1.84 (3)2.6129 (18)143 (3)
C7—H7A···O20.95 (2)2.12 (2)2.794 (2)127.1 (18)
C11—H11A···Br1ii0.96 (3)2.89 (3)3.6982 (19)143.1 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC13H10BrNO2
Mr291.12
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.6387 (3), 18.9379 (13), 6.2270 (4)
β (°) 90.144 (3)
V3)547.02 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.74
Crystal size (mm)0.43 × 0.14 × 0.14
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.295, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
8575, 3120, 3034
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 1.02
No. of reflections3120
No. of parameters191
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.29
Absolute structureFlack (1983), 1480 Friedel pairs
Absolute structure parameter0.027 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.821.762.5641 (19)169
N1—H1N1···O10.89 (3)1.84 (3)2.6129 (18)143 (3)
C7—H7A···O20.95 (2)2.12 (2)2.794 (2)127.1 (18)
C11—H11A···Br1ii0.96 (3)2.89 (3)3.6982 (19)143.1 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+2.
 

Footnotes

On study leave from Department of Chemistry, International University of Africa, Khartoum, Sudan; e-mail: nasertaha90@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002 and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship. The Inter­national University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934–o935.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, P. & Atwood, D. A. (1998). Inorg. Chem. 37, 4934–4938.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds