organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{2-[2-(2-Fluoro­benzyl­­idene)hydrazin­yl]-1,3-thia­zol-4-yl}-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 May 2010; accepted 19 May 2010; online 26 May 2010)

In the title compound, C19H12FN3O2S, the chromene ring system and the thia­zole ring are approximately planar [maximum deviations of 0.023 (3) Å and 0.004 (2) Å, respectively]. The chromene ring system is inclined at angles of 4.78 (10) and 26.51 (10)° with respect to the thia­zole and benzene rings, respectively, while the thia­zole ring makes a dihedral angle of 23.07 (12)° with the benzene ring. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. The crystal packing is consolidated by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into chains parallel to [100], and by C—H⋯π and ππ [centroid–centroid distance = 3.4954 (15) Å] stacking inter­actions.

Related literature

For the synthesis of the title compound, see: Lv et al. (2010[Lv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-L., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 314-319.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161-167.]). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002[Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358-1365.]); Tassies et al. (2002[Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185-1191.]); Mitscher (2002[Mitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819-864. Baltimore: Williams & Wilkinsons.]); Lafitte et al. (2002[Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217-7223.]); Moffett (1964[Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.]); Weber et al. (1998[Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193-206.]). For the biological activity of amino­thia­zoles derivatives, see: Hiremath et al. (1992[Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87-89.]); Habib & Khalil (1984[Habib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci. 73, 982-985.]); Karah et al. (1998[Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758-763.]); Gursoy & Karah (2000[Gursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res. 50, 167-172.]); Lednicer et al. (1990[Lednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J. Wiley & Sons.]); Kim et al. (2002[Kim, K. S., Kimball, S. D., Misra, R. N., Rawlins, D. B., Hunt, J. T., Xiao, S. L., Qian, L., Han, W. C., Shan, W., Mitt, T., Cai, Z. W., Poss, M. A., Zhu, H., Sack, J. S., Torarski, J. S., Chang, C. G., Pavletic, N., Kamath, A., Humphrey, W. G., Marathe, P., Bursuker, J., Kellar, K. A., Rongta, U., Batorsky, R., Mulheron, J. G., Bol, D., Fairchild, C. R., Lee, F. Y. & Webster, K. R. (2002). J. Med. Chem. 45, 3905-3927.]); Wattenberg et al. (1979[Wattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651-1654.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12FN3O2S

  • Mr = 365.38

  • Orthorhombic, P b c n

  • a = 12.303 (2) Å

  • b = 10.4477 (17) Å

  • c = 25.247 (4) Å

  • V = 3245.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.37 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.991

  • 13589 measured reflections

  • 2855 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.04

  • 2855 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.93 2.27 2.823 (3) 118
N2—H12N⋯O2i 0.85 (3) 2.04 (3) 2.852 (3) 161 (3)
C4—H4⋯Cg1ii 0.93 2.96 3.701 (3) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives constitute an important class of heterocyclic compounds having pronounced biological activities. For example, warfarin and cenocoumarol are used as anti-coagulants (Anderson et al., 2002; Tassies et al., 2002). These compounds also possess very good anti-bacterial (Mitscher, 2002; Lafitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxic activities (Weber et al., 1998). On the other hand, aminothiazole derivatives have been reported to exhibit significant anti-fungal (Hiremath et al., 1992), anti-bacterial (Habib & Khalil, 1984), and anti-tuberculosis activities (Karah et al., 1998; Gursoy & Karah, 2000). These compounds also have very important pharmaceutical value because of their anti-inflammatory (Lednicer et al., 1990), enzyme inhibition (Kim et al., 2002) and anti-tumour activities (Wattenberg et al., 1979). Our approach is the synthesis of biologically active compounds based on the combination of different substructures to enhance the biological activity of known compounds. The title compound is a new coumarin derivative having aminothiazole moiety. We present here its crystal structure, Fig. 1.

The chromene (O1/C11–C19) ring system and thiazole (S1/N3/C8–C10) ring are approximately planar, with the maximum deviation of 0.023 (3) Å for atom C19 and 0.004 (2) Å for atom N3, respectively. The chromene ring system is inclined at angles of 4.78 (10) and 26.51 (10) ° with respect to the thiazole and benzene (C1–C6) rings, respectively. The thiazole ring makes a dihedral angle of 23.07 (12) ° with benzene ring. The molecular structure is stabilized by an intramolecular C9—H9···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

The crystal packing is consolidated by intermolecular N2—H12N···O2 hydrogen bonds (Fig. 2) which link the independent molecules into chains parallel to [1 0 0]. The crystal packing is consolidated by C—H···π (Table 1) and ππ stacking interactions between symmetry related S1/N3/C8—C10 (centroid Cg2) and O1/C11—C13/C18/C19 (centroid Cg3) rings, with Cg2···Cg3 distance of 3.4954 (15) Å [symmetry code: 3/2-x, -1/2+y, z].

Related literature top

For the synthesis of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002); Tassies et al. (2002); Mitscher (2002); Lafitte et al. (2002); Moffett (1964); Weber et al. (1998). For the biological activity of aminothiazoles derivatives, see: Hiremath et al. (1992); Habib & Khalil (1984); Karah et al. (1998); Gursoy & Karah (2000); Lednicer et al. (1990); Kim et al. (2002); Wattenberg et al. (1979). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Thiosemicarbazide (5.00 mmol) was slowly added to a solution of 2-fluorobenzaldehyde in hot absolute ethanol (10 ml) while stirring. The resulting solution was refluxed for 2 h and then cooled on an ice bath for 45 minutes to get white precipitates. These precipitates were filtered and recrystallized from ethanol-water to obtain 2-fluorobenzaldehyde thiosemicarbazone (Lv et al., 2010). 3-[ω-Bromoacetyl coumarin] was prepared as reported in the literature (Siddiqui et al., 2009). A solution of 3-[ω-bromoacetyl coumarin] (2.50 mmol) and 2-fluorobenzaldehyde thiosemicarbazone (2.50 mmol) in chloroform-ethanol (2:1) was refluxed for 30 min. Precipitates formed were filtered and boiled in water containing sodium acetate. The product was purified by recrystallization with ethanol-chloroform (8:2).

Refinement top

Atom H12N was located in a difference Fourier map and allowed to refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Coumarin derivatives constitute an important class of heterocyclic compounds having pronounced biological activities. For example, warfarin and cenocoumarol are used as anti-coagulants (Anderson et al., 2002; Tassies et al., 2002). These compounds also possess very good anti-bacterial (Mitscher, 2002; Lafitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxic activities (Weber et al., 1998). On the other hand, aminothiazole derivatives have been reported to exhibit significant anti-fungal (Hiremath et al., 1992), anti-bacterial (Habib & Khalil, 1984), and anti-tuberculosis activities (Karah et al., 1998; Gursoy & Karah, 2000). These compounds also have very important pharmaceutical value because of their anti-inflammatory (Lednicer et al., 1990), enzyme inhibition (Kim et al., 2002) and anti-tumour activities (Wattenberg et al., 1979). Our approach is the synthesis of biologically active compounds based on the combination of different substructures to enhance the biological activity of known compounds. The title compound is a new coumarin derivative having aminothiazole moiety. We present here its crystal structure, Fig. 1.

The chromene (O1/C11–C19) ring system and thiazole (S1/N3/C8–C10) ring are approximately planar, with the maximum deviation of 0.023 (3) Å for atom C19 and 0.004 (2) Å for atom N3, respectively. The chromene ring system is inclined at angles of 4.78 (10) and 26.51 (10) ° with respect to the thiazole and benzene (C1–C6) rings, respectively. The thiazole ring makes a dihedral angle of 23.07 (12) ° with benzene ring. The molecular structure is stabilized by an intramolecular C9—H9···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

The crystal packing is consolidated by intermolecular N2—H12N···O2 hydrogen bonds (Fig. 2) which link the independent molecules into chains parallel to [1 0 0]. The crystal packing is consolidated by C—H···π (Table 1) and ππ stacking interactions between symmetry related S1/N3/C8—C10 (centroid Cg2) and O1/C11—C13/C18/C19 (centroid Cg3) rings, with Cg2···Cg3 distance of 3.4954 (15) Å [symmetry code: 3/2-x, -1/2+y, z].

For the synthesis of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002); Tassies et al. (2002); Mitscher (2002); Lafitte et al. (2002); Moffett (1964); Weber et al. (1998). For the biological activity of aminothiazoles derivatives, see: Hiremath et al. (1992); Habib & Khalil (1984); Karah et al. (1998); Gursoy & Karah (2000); Lednicer et al. (1990); Kim et al. (2002); Wattenberg et al. (1979). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.The intramolecular C–H···O interaction is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the b axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
3-{2-[2-(2-Fluorobenzylidene)hydrazinyl]-1,3-thiazol-4-yl}- 2H-chromen-2-one top
Crystal data top
C19H12FN3O2SF(000) = 1504
Mr = 365.38Dx = 1.496 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1466 reflections
a = 12.303 (2) Åθ = 3.2–27.1°
b = 10.4477 (17) ŵ = 0.23 mm1
c = 25.247 (4) ÅT = 100 K
V = 3245.2 (9) Å3Needle, yellow
Z = 80.37 × 0.08 × 0.04 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2855 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1214
Tmin = 0.919, Tmax = 0.991k = 1212
13589 measured reflectionsl = 2530
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4898P]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C19H12FN3O2SV = 3245.2 (9) Å3
Mr = 365.38Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 12.303 (2) ŵ = 0.23 mm1
b = 10.4477 (17) ÅT = 100 K
c = 25.247 (4) Å0.37 × 0.08 × 0.04 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1971 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.991Rint = 0.082
13589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2855 reflectionsΔρmin = 0.33 e Å3
239 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88953 (5)0.06999 (6)0.02651 (3)0.02149 (19)
F10.54027 (12)0.24735 (15)0.18957 (7)0.0376 (5)
O10.85525 (13)0.52077 (17)0.12371 (7)0.0230 (5)
O20.97044 (14)0.41533 (18)0.07423 (8)0.0309 (5)
N10.72862 (17)0.0844 (2)0.07751 (9)0.0205 (5)
N20.68221 (19)0.0019 (2)0.04366 (9)0.0211 (5)
N30.71706 (16)0.17627 (19)0.01285 (9)0.0179 (5)
C10.8140 (2)0.2887 (2)0.14056 (11)0.0225 (6)
H10.86000.25710.11440.027*
C20.8520 (2)0.3806 (2)0.17528 (11)0.0244 (7)
H20.92320.40970.17250.029*
C30.7845 (2)0.4299 (3)0.21429 (11)0.0293 (7)
H30.80990.49330.23700.035*
C40.6792 (2)0.3843 (3)0.21930 (11)0.0296 (7)
H40.63340.41550.24560.035*
C50.6442 (2)0.2922 (3)0.18451 (12)0.0258 (7)
C60.7077 (2)0.2424 (2)0.14401 (11)0.0214 (6)
C70.6640 (2)0.1475 (2)0.10749 (11)0.0210 (6)
H70.58950.13290.10600.025*
C80.7499 (2)0.0851 (2)0.01854 (10)0.0181 (6)
C90.9051 (2)0.1990 (2)0.01532 (11)0.0216 (6)
H90.97170.23400.02500.026*
C100.80743 (19)0.2424 (2)0.03219 (10)0.0169 (6)
C110.78532 (19)0.3487 (2)0.06865 (11)0.0176 (6)
C120.6839 (2)0.3765 (2)0.08582 (10)0.0181 (6)
H120.62560.32830.07350.022*
C130.6639 (2)0.4783 (2)0.12245 (11)0.0197 (6)
C140.5599 (2)0.5110 (3)0.14162 (11)0.0225 (6)
H140.49930.46570.13000.027*
C150.5474 (2)0.6092 (2)0.17731 (11)0.0244 (7)
H150.47850.63020.18970.029*
C160.6378 (2)0.6774 (3)0.19495 (11)0.0264 (7)
H160.62880.74330.21930.032*
C170.7405 (2)0.6480 (2)0.17669 (11)0.0243 (7)
H170.80080.69400.18810.029*
C180.7515 (2)0.5489 (2)0.14105 (11)0.0197 (6)
C190.8764 (2)0.4266 (2)0.08730 (11)0.0206 (6)
H12N0.615 (2)0.019 (3)0.0458 (11)0.030 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0159 (3)0.0227 (4)0.0259 (4)0.0030 (3)0.0001 (3)0.0013 (3)
F10.0327 (10)0.0392 (10)0.0409 (12)0.0040 (8)0.0141 (8)0.0027 (9)
O10.0179 (10)0.0250 (10)0.0261 (12)0.0044 (8)0.0005 (8)0.0017 (9)
O20.0147 (10)0.0368 (11)0.0413 (14)0.0049 (9)0.0028 (9)0.0075 (10)
N10.0232 (12)0.0150 (11)0.0233 (14)0.0024 (10)0.0011 (10)0.0016 (10)
N20.0160 (12)0.0197 (12)0.0277 (15)0.0023 (11)0.0025 (10)0.0032 (11)
N30.0142 (11)0.0176 (11)0.0219 (14)0.0009 (9)0.0013 (9)0.0004 (10)
C10.0245 (15)0.0192 (13)0.0237 (17)0.0059 (12)0.0010 (12)0.0045 (13)
C20.0299 (16)0.0183 (14)0.0251 (18)0.0026 (12)0.0030 (13)0.0016 (13)
C30.0457 (19)0.0181 (14)0.0240 (18)0.0078 (14)0.0051 (13)0.0032 (14)
C40.0436 (19)0.0239 (15)0.0212 (18)0.0147 (14)0.0058 (14)0.0001 (13)
C50.0262 (16)0.0240 (15)0.0273 (18)0.0067 (13)0.0053 (13)0.0072 (14)
C60.0290 (15)0.0144 (13)0.0207 (17)0.0052 (12)0.0006 (12)0.0050 (12)
C70.0242 (15)0.0159 (13)0.0228 (17)0.0007 (12)0.0038 (12)0.0051 (12)
C80.0171 (13)0.0158 (12)0.0213 (16)0.0024 (11)0.0012 (11)0.0051 (12)
C90.0170 (14)0.0227 (14)0.0252 (17)0.0010 (12)0.0042 (12)0.0024 (12)
C100.0148 (13)0.0177 (12)0.0183 (15)0.0012 (11)0.0001 (11)0.0049 (12)
C110.0165 (14)0.0175 (13)0.0189 (16)0.0013 (11)0.0017 (11)0.0044 (12)
C120.0153 (13)0.0189 (13)0.0202 (16)0.0009 (11)0.0040 (11)0.0034 (12)
C130.0218 (15)0.0182 (13)0.0191 (16)0.0009 (11)0.0026 (11)0.0040 (12)
C140.0219 (15)0.0242 (15)0.0215 (17)0.0026 (12)0.0023 (12)0.0015 (13)
C150.0263 (16)0.0250 (15)0.0220 (18)0.0087 (13)0.0023 (12)0.0016 (13)
C160.0399 (18)0.0188 (14)0.0206 (18)0.0042 (13)0.0005 (13)0.0003 (13)
C170.0310 (16)0.0208 (14)0.0210 (17)0.0051 (13)0.0027 (13)0.0020 (13)
C180.0211 (14)0.0175 (13)0.0206 (16)0.0002 (11)0.0007 (12)0.0051 (12)
C190.0214 (15)0.0183 (13)0.0222 (16)0.0009 (12)0.0004 (11)0.0010 (13)
Geometric parameters (Å, º) top
S1—C91.723 (3)C5—C61.388 (4)
S1—C81.736 (2)C6—C71.456 (4)
F1—C51.367 (3)C7—H70.9300
O1—C191.372 (3)C9—C101.354 (3)
O1—C181.381 (3)C9—H90.9300
O2—C191.209 (3)C10—C111.469 (4)
N1—C71.281 (3)C11—C121.353 (3)
N1—N21.368 (3)C11—C191.462 (4)
N2—C81.361 (3)C12—C131.431 (4)
N2—H12N0.85 (3)C12—H120.9300
N3—C81.303 (3)C13—C181.387 (4)
N3—C101.397 (3)C13—C141.410 (4)
C1—C21.382 (4)C14—C151.374 (4)
C1—C61.397 (4)C14—H140.9300
C1—H10.9300C15—C161.394 (4)
C2—C31.387 (4)C15—H150.9300
C2—H20.9300C16—C171.379 (4)
C3—C41.386 (4)C16—H160.9300
C3—H30.9300C17—C181.379 (4)
C4—C51.372 (4)C17—H170.9300
C4—H40.9300
C9—S1—C888.17 (12)C10—C9—H9124.6
C19—O1—C18122.7 (2)S1—C9—H9124.6
C7—N1—N2116.7 (2)C9—C10—N3115.5 (2)
C8—N2—N1117.2 (2)C9—C10—C11128.0 (2)
C8—N2—H12N119.4 (19)N3—C10—C11116.5 (2)
N1—N2—H12N121 (2)C12—C11—C19119.0 (2)
C8—N3—C10109.1 (2)C12—C11—C10122.3 (2)
C2—C1—C6121.2 (3)C19—C11—C10118.7 (2)
C2—C1—H1119.4C11—C12—C13121.7 (2)
C6—C1—H1119.4C11—C12—H12119.2
C1—C2—C3120.4 (3)C13—C12—H12119.2
C1—C2—H2119.8C18—C13—C14117.4 (2)
C3—C2—H2119.8C18—C13—C12118.7 (2)
C4—C3—C2119.8 (3)C14—C13—C12123.9 (2)
C4—C3—H3120.1C15—C14—C13120.5 (2)
C2—C3—H3120.1C15—C14—H14119.8
C5—C4—C3118.4 (3)C13—C14—H14119.8
C5—C4—H4120.8C14—C15—C16120.1 (2)
C3—C4—H4120.8C14—C15—H15120.0
F1—C5—C4118.3 (2)C16—C15—H15120.0
F1—C5—C6117.8 (3)C17—C16—C15120.7 (3)
C4—C5—C6123.9 (3)C17—C16—H16119.6
C5—C6—C1116.3 (3)C15—C16—H16119.6
C5—C6—C7120.9 (2)C16—C17—C18118.4 (3)
C1—C6—C7122.8 (3)C16—C17—H17120.8
N1—C7—C6119.7 (2)C18—C17—H17120.8
N1—C7—H7120.2C17—C18—O1117.2 (2)
C6—C7—H7120.2C17—C18—C13122.9 (2)
N3—C8—N2124.1 (2)O1—C18—C13119.8 (2)
N3—C8—S1116.36 (19)O2—C19—O1115.7 (2)
N2—C8—S1119.6 (2)O2—C19—C11126.3 (2)
C10—C9—S1110.85 (19)O1—C19—C11118.0 (2)
C7—N1—N2—C8168.7 (2)N3—C10—C11—C124.5 (4)
C6—C1—C2—C30.5 (4)C9—C10—C11—C194.9 (4)
C1—C2—C3—C41.6 (4)N3—C10—C11—C19176.0 (2)
C2—C3—C4—C51.0 (4)C19—C11—C12—C131.2 (4)
C3—C4—C5—F1179.9 (2)C10—C11—C12—C13178.3 (2)
C3—C4—C5—C60.7 (4)C11—C12—C13—C180.7 (4)
F1—C5—C6—C1178.9 (2)C11—C12—C13—C14179.9 (2)
C4—C5—C6—C11.7 (4)C18—C13—C14—C150.0 (4)
F1—C5—C6—C71.3 (4)C12—C13—C14—C15179.2 (3)
C4—C5—C6—C7178.1 (2)C13—C14—C15—C160.1 (4)
C2—C1—C6—C51.0 (4)C14—C15—C16—C170.5 (4)
C2—C1—C6—C7178.7 (2)C15—C16—C17—C180.7 (4)
N2—N1—C7—C6179.2 (2)C16—C17—C18—O1179.5 (2)
C5—C6—C7—N1166.1 (2)C16—C17—C18—C130.6 (4)
C1—C6—C7—N114.2 (4)C19—O1—C18—C17178.3 (2)
C10—N3—C8—N2179.4 (2)C19—O1—C18—C131.6 (4)
C10—N3—C8—S10.9 (3)C14—C13—C18—C170.3 (4)
N1—N2—C8—N3176.7 (2)C12—C13—C18—C17179.5 (2)
N1—N2—C8—S14.9 (3)C14—C13—C18—O1179.8 (2)
C9—S1—C8—N30.9 (2)C12—C13—C18—O10.6 (4)
C9—S1—C8—N2179.4 (2)C18—O1—C19—O2177.4 (2)
C8—S1—C9—C100.5 (2)C18—O1—C19—C113.5 (3)
S1—C9—C10—N30.1 (3)C12—C11—C19—O2177.7 (3)
S1—C9—C10—C11179.0 (2)C10—C11—C19—O22.7 (4)
C8—N3—C10—C90.5 (3)C12—C11—C19—O13.3 (4)
C8—N3—C10—C11179.7 (2)C10—C11—C19—O1176.3 (2)
C9—C10—C11—C12174.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.932.272.823 (3)118
N2—H12N···O2i0.85 (3)2.04 (3)2.852 (3)161 (3)
C4—H4···Cg1ii0.932.963.701 (3)138
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC19H12FN3O2S
Mr365.38
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)12.303 (2), 10.4477 (17), 25.247 (4)
V3)3245.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.37 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13589, 2855, 1971
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.04
No. of reflections2855
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.93002.27002.823 (3)118.00
N2—H12N···O2i0.85 (3)2.04 (3)2.852 (3)161 (3)
C4—H4···Cg1ii0.93002.963.701 (3)138
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for a short-term grant (304/PKIMIA/639004) to conduct this work. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM Fellowship. AA thanks the Pakistan Government and PCSIR for financial support through a scholarship.

References

First citationAnderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358–1365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res. 50, 167–172.  CAS Google Scholar
First citationHabib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci. 73, 982–985.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.  CAS Google Scholar
First citationKarah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758–763.  CAS Google Scholar
First citationKim, K. S., Kimball, S. D., Misra, R. N., Rawlins, D. B., Hunt, J. T., Xiao, S. L., Qian, L., Han, W. C., Shan, W., Mitt, T., Cai, Z. W., Poss, M. A., Zhu, H., Sack, J. S., Torarski, J. S., Chang, C. G., Pavletic, N., Kamath, A., Humphrey, W. G., Marathe, P., Bursuker, J., Kellar, K. A., Rongta, U., Batorsky, R., Mulheron, J. G., Bol, D., Fairchild, C. R., Lee, F. Y. & Webster, K. R. (2002). J. Med. Chem. 45, 3905–3927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J. Wiley & Sons.  Google Scholar
First citationLv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-L., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 314–319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819–864. Baltimore: Williams & Wilkinsons.  Google Scholar
First citationMoffett, R. B. (1964). J. Med. Chem. 7, 446–449.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191.  Web of Science PubMed CAS Google Scholar
First citationWattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651–1654.  PubMed CAS Web of Science Google Scholar
First citationWeber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds