metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(4-acetyl­pyridinium) octa­deca­chlorido­tetra­anti­monate(III)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 10 May 2010; accepted 31 May 2010; online 5 June 2010)

The title compound, (C7H8NO)6[Sb4Cl18], contains centrosymmetric hexa­anions built up from four vertex-sharing alternating SbCl5 square-based pyramids and highly distorted SbCl6 octa­hedra when long (<3.2 Å) `secondary' Sb—Cl inter­actions are taken into account. The inter-polyhedral Sb—Cl bonds define a square-shape. In the crystal, the components are linked by N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For general background to phase transitions in coordination networks, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For crystal structures containing the 4-acetyl­pyridinium cation, see: Fu (2009a[Fu, X. (2009a). Acta Cryst. E65, o1804.],b[Fu, X. (2009b). Acta Cryst. E65, o2385.]); Majerz et al. (1991[Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249, 109-116.]); Pang et al. (1994[Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203-211.]); Steffen & Palenik (1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1128.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H8NO)6[Sb4Cl18]

  • Mr = 1857.96

  • Triclinic, [P \overline 1]

  • a = 9.0589 (18) Å

  • b = 13.838 (3) Å

  • c = 15.128 (3) Å

  • α = 108.29 (3)°

  • β = 98.00 (3)°

  • γ = 107.10 (3)°

  • V = 1664.1 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.430, Tmax = 0.622

  • 17638 measured reflections

  • 7613 independent reflections

  • 6371 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.04

  • 7613 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—Cl4 2.4036 (9)
Sb1—Cl3 2.4107 (10)
Sb1—Cl2 2.4113 (14)
Sb1—Cl1 2.9359 (12)
Sb1—Cl5 3.0214 (12)
Sb1—Cl6i 3.1275 (12)
Sb2—Cl7 2.3516 (12)
Sb2—Cl8 2.4459 (10)
Sb2—Cl9 2.4498 (10)
Sb2—Cl5 2.8352 (11)
Sb2—Cl6 2.8937 (11)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl6 0.86 2.30 3.148 (3) 170
N1—H1D⋯Cl1ii 0.86 2.20 3.056 (3) 174
N3—H3A⋯Cl5iii 0.86 2.35 3.198 (3) 168
C1—H1A⋯O2iv 0.96 2.60 3.506 (5) 158
C5—H5A⋯Cl8v 0.93 2.78 3.585 (4) 146
C13—H13A⋯Cl1i 0.93 2.76 3.661 (4) 162
C19—H19A⋯Cl7iii 0.93 2.67 3.449 (4) 141
C21—H21A⋯O1iii 0.93 2.42 3.349 (4) 177
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) x, y-1, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 400 K, (m.p. 421–423 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. In this article, the crystal structure of (I) has been presented.

4-Acetylpyridine may be used as a ligand in coordination compounds e.g. with Zn (Steffen & Palenik, 1977) or Ni (Pang et al., 1994). The crystal structures of 4-acetylpyridine together with inorganic acids are also known e.g. with sulfuric acid (Fu, 2009b) and perchloric acid (Fu, 2009a).

The cell unit of the title compound is made up of six almost planar protonated 4-acetylpyridinium cations and a [Sb4Cl18]6- anion (Fig. 1.).In the coordinate anion of [Sb4Cl18]6-, antimony(III) atoms have two kinds of coordination pattern. Sb3+(2) coordinated with five Cl ions construct a distorted tetragonal pyramidal structure, composing two briding and three terminal Cl atoms. There are Cl—Sb secondary bonds by the linkage between the Sb3+(1)···Cl5 and Sb3+(1)···Cl6, with the bond lengths of these secondary bonds 3.0210 (11)Å and 3.1280 (11) Å, respectively, compared to the normal coordination bonds of Sb—Cl 2.3516 (12)Å to 2.8937 (11) Å. Owing to these secondary bonds, the coordination number of the central ion Sb3+(1) increases to six, and it adopts a distorted octahedral geometry.

The tridimensional network arrangement in the crystal structure of (I) is mainly determined by relatively strong and directional hydrogen bonds (Table. 1),

Related literature top

For general background to phase transitions in coordination networks, see: Li et al. (2008); Zhang et al. (2009). For crystal structures containing the 4-acetylpyridinium cation, see: Fu (2009a,b); Majerz et al. (1991); Pang et al. (1994); Steffen & Palenik (1977).

Experimental top

2.28 g (10 mmol) SbCl3 was firstly dissolved in 10 ml 1:1 HCl solution, to which 2.42 g (20 mmol) 4-acetylpyridine ethanol solution was then added under stirring. Hydrochloric acid was added until the precipitated substrates disappeared. The acid solution was allowed to slowly evaporate at room temperature until colorless prisms of (I) were grown.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),

Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (all H atoms have been omitted for clarity). Unlabelled atoms are generated by the symmetry operation (2–x, 1–y, 1–z).
[Figure 2] Fig. 2. A view of the packing of (I), stacking along the a axis. Dashed lines indicate hydrogen bonds.
Hexakis(4-acetylpyridinium) octadecachloridotetraantimonate(III) top
Crystal data top
(C7H8NO)6[Sb4Cl18]Z = 1
Mr = 1857.96F(000) = 900
Triclinic, P1Dx = 1.854 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0589 (18) ÅCell parameters from 8056 reflections
b = 13.838 (3) Åθ = 3.1–27.7°
c = 15.128 (3) ŵ = 2.37 mm1
α = 108.29 (3)°T = 298 K
β = 98.00 (3)°Prism, colourless
γ = 107.10 (3)°0.40 × 0.30 × 0.20 mm
V = 1664.1 (6) Å3
Data collection top
Rigaku SCXmini
diffractometer
7613 independent reflections
Radiation source: fine-focus sealed tube6371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.430, Tmax = 0.622l = 1919
17638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.5066P]
where P = (Fo2 + 2Fc2)/3
7613 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C7H8NO)6[Sb4Cl18]γ = 107.10 (3)°
Mr = 1857.96V = 1664.1 (6) Å3
Triclinic, P1Z = 1
a = 9.0589 (18) ÅMo Kα radiation
b = 13.838 (3) ŵ = 2.37 mm1
c = 15.128 (3) ÅT = 298 K
α = 108.29 (3)°0.40 × 0.30 × 0.20 mm
β = 98.00 (3)°
Data collection top
Rigaku SCXmini
diffractometer
7613 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6371 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.622Rint = 0.028
17638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
7613 reflectionsΔρmin = 0.38 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7595 (3)0.1417 (2)0.15768 (17)0.0544 (6)
N10.9897 (4)0.2973 (3)0.0627 (2)0.0573 (8)
H1D1.03770.33890.08980.069*
C30.8404 (4)0.1681 (3)0.0233 (2)0.0408 (7)
C60.9436 (5)0.3405 (3)0.0152 (3)0.0574 (10)
H6A0.96160.41470.03860.069*
C40.8871 (4)0.1248 (3)0.0588 (2)0.0490 (8)
H4A0.86600.05030.08550.059*
C70.8713 (4)0.2783 (3)0.0610 (3)0.0525 (9)
H7A0.84280.30940.11690.063*
C50.9634 (5)0.1912 (3)0.0998 (2)0.0557 (9)
H5A0.99760.16290.15400.067*
C20.7623 (4)0.0986 (3)0.0748 (3)0.0497 (8)
Sb10.86744 (2)0.350428 (15)0.674838 (14)0.03137 (6)
Cl40.83619 (12)0.17158 (6)0.67419 (6)0.0519 (2)
Cl30.74694 (11)0.39130 (8)0.80769 (6)0.0528 (2)
Cl20.61006 (10)0.27520 (7)0.56102 (6)0.0543 (2)
C10.6945 (7)0.0208 (3)0.0234 (4)0.110 (2)
H1A0.64870.05450.06480.165*
H1B0.77750.04670.00540.165*
H1C0.61330.03900.03330.165*
Cl11.15940 (10)0.43033 (7)0.82937 (7)0.0529 (2)
Sb20.93951 (2)0.785682 (15)0.693125 (14)0.03208 (6)
Cl70.67862 (9)0.73910 (7)0.60241 (6)0.0474 (2)
Cl90.83859 (11)0.82021 (8)0.83764 (6)0.0544 (2)
Cl80.99930 (12)0.97530 (7)0.70831 (7)0.0595 (2)
Cl50.86213 (12)0.56019 (7)0.65539 (7)0.0577 (2)
Cl61.00732 (11)0.73440 (8)0.50601 (6)0.0557 (2)
C100.6128 (4)0.9155 (3)0.3188 (2)0.0436 (8)
C140.6375 (4)0.8208 (3)0.2737 (3)0.0525 (9)
H14A0.59130.78140.20820.063*
N20.7927 (4)0.8408 (3)0.4180 (3)0.0584 (8)
H2A0.85110.81720.44930.070*
C120.7702 (5)0.9308 (3)0.4648 (3)0.0595 (10)
H12A0.81500.96690.53080.071*
C110.6807 (4)0.9711 (3)0.4161 (3)0.0512 (9)
H11A0.66591.03550.44840.061*
C130.7289 (5)0.7851 (3)0.3245 (3)0.0610 (10)
H13A0.74710.72160.29390.073*
O20.4633 (4)0.9034 (3)0.1749 (2)0.0794 (9)
C90.5172 (4)0.9568 (3)0.2594 (3)0.0537 (9)
C80.4958 (6)1.0602 (4)0.3054 (3)0.0865 (15)
H8A0.43261.07480.25820.130*
H8B0.59821.11800.33270.130*
H8C0.44241.05550.35530.130*
C180.4716 (4)0.5259 (3)0.7037 (3)0.0540 (9)
H18A0.54030.49880.73130.065*
N30.3089 (4)0.5204 (3)0.5680 (2)0.0584 (8)
H3A0.26740.49050.50690.070*
C170.4345 (4)0.6097 (2)0.7603 (2)0.0418 (7)
C160.4972 (4)0.6600 (3)0.8688 (3)0.0587 (10)
C210.3347 (4)0.6486 (3)0.7166 (3)0.0537 (9)
H21A0.31000.70660.75340.064*
C150.5935 (6)0.6125 (4)0.9162 (3)0.0897 (15)
H15A0.62500.65260.98450.135*
H15B0.68700.61610.89240.135*
H15C0.53140.53770.90270.135*
C200.2716 (5)0.6023 (3)0.6191 (3)0.0588 (10)
H20A0.20350.62800.58920.071*
O30.4681 (4)0.7375 (2)0.9125 (2)0.0803 (9)
C190.4076 (5)0.4828 (3)0.6073 (3)0.0642 (11)
H19A0.43320.42640.56860.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0600 (16)0.0584 (15)0.0478 (14)0.0245 (12)0.0219 (12)0.0173 (12)
N10.068 (2)0.063 (2)0.0528 (19)0.0261 (16)0.0166 (16)0.0331 (17)
C30.0408 (17)0.0425 (18)0.0348 (17)0.0151 (14)0.0048 (13)0.0109 (15)
C60.075 (3)0.046 (2)0.058 (2)0.0281 (19)0.023 (2)0.0205 (19)
C40.065 (2)0.0417 (19)0.0358 (18)0.0204 (17)0.0090 (16)0.0096 (15)
C70.060 (2)0.049 (2)0.050 (2)0.0259 (17)0.0191 (17)0.0118 (17)
C50.076 (3)0.060 (2)0.0344 (18)0.031 (2)0.0144 (18)0.0157 (18)
C20.050 (2)0.047 (2)0.048 (2)0.0174 (16)0.0158 (16)0.0107 (17)
Sb10.03433 (11)0.03025 (11)0.03262 (11)0.01447 (8)0.00818 (8)0.01327 (9)
Cl40.0760 (6)0.0343 (4)0.0502 (5)0.0230 (4)0.0131 (4)0.0206 (4)
Cl30.0535 (5)0.0654 (6)0.0479 (5)0.0294 (4)0.0235 (4)0.0201 (4)
Cl20.0417 (4)0.0604 (5)0.0524 (5)0.0143 (4)0.0025 (4)0.0199 (4)
C10.156 (5)0.050 (3)0.100 (4)0.001 (3)0.076 (4)0.012 (3)
Cl10.0454 (5)0.0531 (5)0.0556 (5)0.0120 (4)0.0120 (4)0.0201 (4)
Sb20.03311 (11)0.03102 (11)0.03265 (11)0.01310 (8)0.00899 (8)0.01088 (9)
Cl70.0387 (4)0.0537 (5)0.0463 (5)0.0207 (4)0.0039 (3)0.0133 (4)
Cl90.0555 (5)0.0718 (6)0.0403 (4)0.0266 (4)0.0207 (4)0.0195 (4)
Cl80.0743 (6)0.0327 (4)0.0724 (6)0.0173 (4)0.0249 (5)0.0198 (4)
Cl50.0680 (6)0.0411 (5)0.0661 (6)0.0207 (4)0.0095 (5)0.0252 (4)
Cl60.0632 (6)0.0692 (6)0.0527 (5)0.0359 (5)0.0274 (4)0.0295 (5)
C100.0378 (17)0.0436 (18)0.050 (2)0.0115 (14)0.0189 (15)0.0174 (16)
C140.049 (2)0.045 (2)0.054 (2)0.0113 (16)0.0148 (17)0.0098 (17)
N20.0512 (18)0.062 (2)0.074 (2)0.0242 (16)0.0188 (17)0.0363 (19)
C120.060 (2)0.066 (3)0.051 (2)0.021 (2)0.0104 (19)0.024 (2)
C110.058 (2)0.0444 (19)0.048 (2)0.0174 (17)0.0160 (17)0.0134 (17)
C130.062 (2)0.045 (2)0.084 (3)0.0245 (19)0.032 (2)0.025 (2)
O20.086 (2)0.097 (2)0.0539 (18)0.0350 (18)0.0098 (16)0.0284 (18)
C90.049 (2)0.064 (2)0.054 (2)0.0180 (18)0.0191 (18)0.029 (2)
C80.115 (4)0.073 (3)0.086 (3)0.058 (3)0.019 (3)0.029 (3)
C180.052 (2)0.050 (2)0.063 (2)0.0253 (17)0.0139 (18)0.0182 (19)
N30.0535 (19)0.059 (2)0.0435 (17)0.0063 (15)0.0064 (14)0.0091 (15)
C170.0345 (16)0.0369 (17)0.0491 (19)0.0089 (13)0.0141 (14)0.0118 (15)
C160.043 (2)0.062 (2)0.054 (2)0.0087 (18)0.0123 (17)0.011 (2)
C210.057 (2)0.056 (2)0.060 (2)0.0328 (18)0.0253 (19)0.0211 (19)
C150.084 (3)0.105 (4)0.068 (3)0.033 (3)0.005 (3)0.028 (3)
C200.055 (2)0.072 (3)0.062 (3)0.030 (2)0.0186 (19)0.034 (2)
O30.082 (2)0.0704 (19)0.0608 (18)0.0244 (16)0.0179 (15)0.0077 (15)
C190.081 (3)0.046 (2)0.057 (2)0.026 (2)0.020 (2)0.0038 (19)
Geometric parameters (Å, º) top
O1—C21.215 (4)C14—C131.350 (5)
N1—C61.327 (4)C14—H14A0.9300
N1—C51.329 (5)N2—C121.316 (5)
N1—H1D0.8600N2—C131.325 (5)
C3—C71.374 (4)N2—H2A0.8600
C3—C41.381 (4)C12—C111.367 (5)
C3—C21.502 (5)C12—H12A0.9300
C6—C71.348 (5)C11—H11A0.9300
C6—H6A0.9300C13—H13A0.9300
C4—C51.345 (5)O2—C91.200 (4)
C4—H4A0.9300C9—C81.464 (5)
C7—H7A0.9300C8—H8A0.9600
C5—H5A0.9300C8—H8B0.9600
C2—C11.476 (5)C8—H8C0.9600
C1—H1A0.9600C18—C191.354 (5)
C1—H1B0.9600C18—C171.370 (4)
C1—H1C0.9600C18—H18A0.9300
Sb1—Cl42.4036 (9)N3—C201.320 (5)
Sb1—Cl32.4107 (10)N3—C191.320 (5)
Sb1—Cl22.4113 (14)N3—H3A0.8600
Sb1—Cl12.9359 (12)C17—C211.374 (5)
Sb1—Cl53.0214 (12)C17—C161.514 (5)
Sb1—Cl6i3.1275 (12)C16—O31.194 (4)
Sb2—Cl72.3516 (12)C16—C151.473 (6)
Sb2—Cl82.4459 (10)C21—C201.367 (5)
Sb2—Cl92.4498 (10)C21—H21A0.9300
Sb2—Cl52.8352 (11)C15—H15A0.9600
Sb2—Cl62.8937 (11)C15—H15B0.9600
C10—C141.373 (4)C15—H15C0.9600
C10—C111.378 (5)C20—H20A0.9300
C10—C91.511 (5)C19—H19A0.9300
C6—N1—C5121.5 (3)C12—N2—H2A118.7
C6—N1—H1D119.2C13—N2—H2A118.7
C5—N1—H1D119.2N2—C12—C11119.7 (4)
C7—C3—C4119.3 (3)N2—C12—H12A120.1
C7—C3—C2118.9 (3)C11—C12—H12A120.1
C4—C3—C2121.8 (3)C12—C11—C10119.3 (3)
N1—C6—C7121.0 (3)C12—C11—H11A120.3
N1—C6—H6A119.5C10—C11—H11A120.3
C7—C6—H6A119.5N2—C13—C14119.8 (3)
C5—C4—C3119.5 (3)N2—C13—H13A120.1
C5—C4—H4A120.2C14—C13—H13A120.1
C3—C4—H4A120.2O2—C9—C8122.4 (4)
C6—C7—C3118.6 (3)O2—C9—C10117.8 (4)
C6—C7—H7A120.7C8—C9—C10119.7 (3)
C3—C7—H7A120.7C9—C8—H8A109.5
N1—C5—C4120.0 (3)C9—C8—H8B109.5
N1—C5—H5A120.0H8A—C8—H8B109.5
C4—C5—H5A120.0C9—C8—H8C109.5
O1—C2—C1121.9 (4)H8A—C8—H8C109.5
O1—C2—C3119.5 (3)H8B—C8—H8C109.5
C1—C2—C3118.6 (3)C19—C18—C17119.5 (4)
Cl4—Sb1—Cl392.15 (4)C19—C18—H18A120.2
Cl4—Sb1—Cl289.42 (5)C17—C18—H18A120.2
Cl3—Sb1—Cl290.96 (4)C20—N3—C19122.4 (3)
C2—C1—H1A109.5C20—N3—H3A118.8
C2—C1—H1B109.5C19—N3—H3A118.8
H1A—C1—H1B109.5C18—C17—C21118.4 (3)
C2—C1—H1C109.5C18—C17—C16122.7 (3)
H1A—C1—H1C109.5C21—C17—C16118.8 (3)
H1B—C1—H1C109.5O3—C16—C15122.5 (4)
Cl7—Sb2—Cl890.05 (5)O3—C16—C17118.7 (4)
Cl7—Sb2—Cl987.97 (4)C15—C16—C17118.8 (4)
Cl8—Sb2—Cl990.76 (4)C20—C21—C17120.2 (3)
Cl7—Sb2—Cl586.83 (5)C20—C21—H21A119.9
Cl8—Sb2—Cl5174.29 (3)C17—C21—H21A119.9
Cl9—Sb2—Cl593.90 (4)C16—C15—H15A109.5
Cl7—Sb2—Cl683.07 (4)C16—C15—H15B109.5
Cl8—Sb2—Cl689.72 (4)H15A—C15—H15B109.5
Cl9—Sb2—Cl6171.03 (3)C16—C15—H15C109.5
Cl5—Sb2—Cl685.17 (4)H15A—C15—H15C109.5
C14—C10—C11118.7 (3)H15B—C15—H15C109.5
C14—C10—C9118.9 (3)N3—C20—C21119.0 (4)
C11—C10—C9122.4 (3)N3—C20—H20A120.5
C13—C14—C10119.9 (4)C21—C20—H20A120.5
C13—C14—H14A120.0N3—C19—C18120.4 (3)
C10—C14—H14A120.0N3—C19—H19A119.8
C12—N2—C13122.5 (3)C18—C19—H19A119.8
C5—N1—C6—C71.5 (6)C12—N2—C13—C140.3 (6)
C7—C3—C4—C50.7 (5)C10—C14—C13—N20.9 (6)
C2—C3—C4—C5176.9 (3)C14—C10—C9—O21.7 (5)
N1—C6—C7—C32.4 (6)C11—C10—C9—O2179.5 (3)
C4—C3—C7—C61.3 (5)C14—C10—C9—C8177.2 (4)
C2—C3—C7—C6179.0 (3)C11—C10—C9—C80.6 (5)
C6—N1—C5—C40.6 (6)C19—C18—C17—C211.1 (5)
C3—C4—C5—N11.7 (6)C19—C18—C17—C16178.2 (4)
C7—C3—C2—O116.1 (5)C18—C17—C16—O3175.1 (4)
C4—C3—C2—O1161.5 (3)C21—C17—C16—O35.6 (5)
C7—C3—C2—C1165.5 (4)C18—C17—C16—C154.1 (5)
C4—C3—C2—C116.9 (5)C21—C17—C16—C15175.1 (4)
C11—C10—C14—C131.0 (5)C18—C17—C21—C201.6 (5)
C9—C10—C14—C13176.9 (3)C16—C17—C21—C20177.7 (3)
C13—N2—C12—C111.4 (6)C19—N3—C20—C211.3 (6)
N2—C12—C11—C101.2 (6)C17—C21—C20—N30.4 (6)
C14—C10—C11—C120.0 (5)C20—N3—C19—C181.9 (6)
C9—C10—C11—C12177.8 (3)C17—C18—C19—N30.6 (6)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl60.862.303.148 (3)170
N1—H1D···Cl1ii0.862.203.056 (3)174
N3—H3A···Cl5iii0.862.353.198 (3)168
C1—H1A···O2iv0.962.603.506 (5)158
C5—H5A···Cl8v0.932.783.585 (4)146
C13—H13A···Cl1i0.932.763.661 (4)162
C19—H19A···Cl7iii0.932.673.449 (4)141
C21—H21A···O1iii0.932.423.349 (4)177
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y1, z1.

Experimental details

Crystal data
Chemical formula(C7H8NO)6[Sb4Cl18]
Mr1857.96
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.0589 (18), 13.838 (3), 15.128 (3)
α, β, γ (°)108.29 (3), 98.00 (3), 107.10 (3)
V3)1664.1 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.430, 0.622
No. of measured, independent and
observed [I > 2σ(I)] reflections
17638, 7613, 6371
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.04
No. of reflections7613
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sb1—Cl42.4036 (9)Sb2—Cl72.3516 (12)
Sb1—Cl32.4107 (10)Sb2—Cl82.4459 (10)
Sb1—Cl22.4113 (14)Sb2—Cl92.4498 (10)
Sb1—Cl12.9359 (12)Sb2—Cl52.8352 (11)
Sb1—Cl53.0214 (12)Sb2—Cl62.8937 (11)
Sb1—Cl6i3.1275 (12)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl60.862.303.148 (3)170
N1—H1D···Cl1ii0.862.203.056 (3)174
N3—H3A···Cl5iii0.862.353.198 (3)168
C1—H1A···O2iv0.962.603.506 (5)158
C5—H5A···Cl8v0.932.783.585 (4)146
C13—H13A···Cl1i0.932.763.661 (4)162
C19—H19A···Cl7iii0.932.673.449 (4)141
C21—H21A···O1iii0.932.423.349 (4)177
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y1, z1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationFu, X. (2009a). Acta Cryst. E65, o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, X. (2009b). Acta Cryst. E65, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationMajerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249, 109–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1128.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds