organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Bis(4-chloro­benzo­yl)-7-meth­­oxy­naphthalen-2-ol ethanol monosolvate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 8 June 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound, C25H16Cl2O4·C2H6O, the two 4-chloro­benzoyl groups are in syn orientations with respect to the naphthalene ring system and are approximately parallel to each other: the dihedral angle between the benzene rings is 11.43 (16)°. The conformation around each of the carbonyl C—(C=O)—C groups forms a larger angle to the plane of the naphthalene ring system than that to the benzene ring; the angles of the C=O bond vector with the naphthalene ring system and the benzene ring are 55.4 (3) versus 13.5 (3)° and 52.2 (3) versus 17.9 (3)°. An intra­molecular O—H⋯O=C hydrogen bond generates a six-membered ring. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds including the ethanol solvent mol­ecule are observed. A C—H⋯O inter­action also occurs. The ethyl group of the ethanol mol­ecule is disordered over two positions with site occupancies of 0.63 and 0.37. The crystal studied was an inversion twin.

Related literature

For the structures of closely related compounds, see: Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16Cl2O4·C2H6O

  • Mr = 497.35

  • Tetragonal, [I \overline 4]

  • a = 25.2992 (5) Å

  • c = 7.3068 (2) Å

  • V = 4676.71 (18) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.81 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.283, Tmax = 0.766

  • 43771 measured reflections

  • 4272 independent reflections

  • 3676 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.11

  • 4272 reflections

  • 322 parameters

  • 50 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1951 Friedel pairs

  • Flack parameter: 0.425 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2 0.82 2.21 2.900 (4) 141
O4—H4O⋯O5i 0.82 2.32 2.919 (5) 131
O5—H5O⋯O4ii 0.90 (1) 1.83 (1) 2.636 (4) 147 (2)
C21—H21⋯O2iii 0.95 2.58 3.374 (5) 141
Symmetry codes: (i) x, y, z+1; (ii) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported the crystal structures of aroylated 2,7-dimethoxynaphthalenes, 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene, (I) (Nakaema et al., 2007) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 1,8-bis(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene, (II). The title compound was prepared by electrophilic aromatic aroylation reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with 4-chlorobenzoyl chloride.

An ORTEPIII (Burnett & Johnson, 1996) plot of (II) is shown in Fig. 1. In analogous aroylated naphthalenes, for example compound (I) shown in Fig. 2, has two methoxy groups on the naphthalene ring, and the two 4-chlorobenzoyl groups that are in an anti orientation against the naphthalene ring system. In contrast, compound (II) has one hydroxy group instead of methoxy group, and the conformation of 4-chlorobenzoyl groups in compound (II) are in a syn orientation. The two benzene rings are nearly parallel, the dihedral angle between the benzene rings are 11.43 (16)°. The conformation around the central carbonyl C—(CO)—C group is such that the CO bond vector forms a larger angle to the plane of the naphthalene ring system [C1/C2/C3/C4/C5/C10 ring and C5/C6/C7/C8/C9/C10 ring] than that to the plane of the benzene ring [C12/C13/C14/C15/C16/C17 ring and C19/C20/C21/C22/C23/C24 ring], viz. 55.4 (3)° versus 13.5 (3)° and 52.2 (3)° versus 17.9 (3)°, respectively. The intramolecular O—H···OC hydrogen bond generates a six-membered ring (Figs. 1 and 4, Table 1).

In the crystal structure, Cl1 and Cl2 interact with each other [Cl1···Cl2 = 3.4305 (14) Å] and the 4-chlorobenzoyl groups interact with the carbonyl groups (H21···O1 = 2.64 Å, H21···O2 = 2.58 Å) along the c axis (Fig. 3 and Table 1). The hydroxy groups in the compound (II) and the ethanol molecule act as a hydrogen-bond donor [H5O···O4 = 1.833 (11) Å, H4O···O5 = 2.32 Å], and these intermolecular O—H···O hydrogen bonds connecting the compound (II) and the ethanol molecule contribute to the stabilization of the molecular conformation and crystal structure (Fig. 4 and Table 1).

Related literature top

For the structures of closely related compounds, see: Mitsui et al. (2008); Nakaema et al. (2007).

Experimental top

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (62 mg, 0.20 mmol) in dichloromethane (0.1 ml) was added 4-chlorobenzoyl chloride (77 mg, 0.44 mmol) and titanium tetrachloride (250 mg, 1.32 mmol). The reaction mixture was heated at reflux for 3 h, then poured into H2O (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with saturated NaHCO3 (3 × 30 ml) and brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by column chromatography (silica gel, 1:1 EtOAc:hexane) to give the title compound (yield 73 mg, 81%). Single crystals suitable for X-ray diffraction analysis were obtained from EtOH as yellow platelet (m.p. 505.5–506.5 K).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 9.34 (s, 1H), 7.94–7.86 (m, 2H), 7.33 (d, 2H), 7.20–7.10 (m, 6H), 6.91 (d, 2H), 3.60 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.8, 195.1, 159.5, 157.6, 139.7, 138.4, 136.8, 136.3, 135.0, 133.7, 132.6, 131.9, 130.5, 128.5, 127.7, 124.6, 121.3, 117.3, 110.6, 56.0; IR (KBr): 1643, 1612, 1587, 1510, 1278, 1089, 831; HRMS (m/z): [M + H]+ calcd for C25H17O4Cl2, 451.0504; found, 451.0520. Anal. Calcd for C25H16O4Cl2: C 66.53, H 3.57. Found: C 66.31, H 3.76.

Refinement top

All H atom were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) Å and O—H = 0.83 Å, and with Uiso (H) = 1.2Ueq (C, O). The ethyl chain of the ethanol molecule is disordered over two positions with occupancies of 0.63 and 0.37. In the ethanol molecule, C—C, C—O and O—H distances were restrained to 1.50 (1), 1.40 (1) and 0.90 (1) Å [5 restraints with the DFIX command in SHELXL97 (Sheldrick, 2008)]. C27A—H5O and C27B—H5O distances were restrained to 1.90 (1) Å (2 restraints with DANG command in SHLEXL97). Rigid bond restraints were applied to the Uij values of the methoxy group (C25 and O3) and the ethanol molecule (C26, C27A, C27B, O5) (7 restraints with the DELU command in SHELXL97). Further restraints were used to generate similar Uij values for the atoms of ethanol molecule (36 restraints with the SIMU command in SHELXL97).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (II), showing 30% probability displacement ellipsoids. Only major parts of the disordered atoms are shown. The intramolecular O—H···OC hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The asymmetric unit of compound (I), showing 30% probability displacement ellipsoids.
[Figure 3] Fig. 3. Partial crystal packing diagram of compound (II), viewed down the b axis. Intermolecular C—H···O hydrogen bonds and Cl···Cl and H···O interactions are shown as dashed lines.
[Figure 4] Fig. 4. Partial crystal packing diagram of compound (II), viewed down the c axis. The intramolecular O—H···OC hydrogen bond and the intermolecular O—H···O hydrogen bonds are shown as dashed lines.
1,8-Bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol monosolvate top
Crystal data top
C25H16Cl2O4·C2H6ODx = 1.413 Mg m3
Mr = 497.35Melting point = 505.5–506.5 K
Tetragonal, I4Cu Kα radiation, λ = 1.54187 Å
Hall symbol: I -4Cell parameters from 34431 reflections
a = 25.2992 (5) Åθ = 3.5–68.2°
c = 7.3068 (2) ŵ = 2.81 mm1
V = 4676.71 (18) Å3T = 193 K
Z = 8Platelet, yellow
F(000) = 20640.60 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4272 independent reflections
Radiation source: rotating anode3676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 3030
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2930
Tmin = 0.283, Tmax = 0.766l = 88
43771 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0883P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.41 e Å3
4272 reflectionsΔρmin = 0.24 e Å3
322 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
50 restraintsExtinction coefficient: 0.00147 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1951 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.425 (17)
Crystal data top
C25H16Cl2O4·C2H6OZ = 8
Mr = 497.35Cu Kα radiation
Tetragonal, I4µ = 2.81 mm1
a = 25.2992 (5) ÅT = 193 K
c = 7.3068 (2) Å0.60 × 0.10 × 0.10 mm
V = 4676.71 (18) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4272 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3676 reflections with I > 2σ(I)
Tmin = 0.283, Tmax = 0.766Rint = 0.059
43771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146Δρmax = 0.41 e Å3
S = 1.11Δρmin = 0.24 e Å3
4272 reflectionsAbsolute structure: Flack (1983), 1951 Friedel pairs
322 parametersAbsolute structure parameter: 0.425 (17)
50 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.05719 (3)0.03898 (3)0.17865 (14)0.0621 (3)
Cl20.02496 (4)0.16783 (4)0.08841 (16)0.0770 (3)
O10.11592 (9)0.21618 (9)0.8263 (4)0.0551 (6)
O20.04808 (10)0.31611 (10)0.8034 (4)0.0612 (6)
O30.23047 (8)0.17133 (9)0.6041 (4)0.0598 (6)
O40.07574 (10)0.41241 (9)0.6105 (4)0.0678 (7)
H4O0.05660.39550.67950.081*
C10.17824 (11)0.24765 (13)0.6109 (5)0.0479 (7)
C20.22785 (13)0.22437 (13)0.5843 (5)0.0522 (8)
C30.27296 (13)0.25544 (15)0.5449 (5)0.0566 (9)
H30.30630.23930.52400.068*
C40.26750 (14)0.30881 (15)0.5375 (5)0.0584 (9)
H40.29790.32980.51530.070*
C50.21886 (14)0.33392 (14)0.5614 (5)0.0545 (8)
C60.21545 (15)0.39011 (14)0.5502 (5)0.0612 (9)
H60.24670.40990.52870.073*
C70.16923 (16)0.41585 (14)0.5690 (6)0.0645 (10)
H70.16810.45330.56090.077*
C80.12273 (14)0.38691 (13)0.6008 (5)0.0560 (8)
C90.12359 (12)0.33224 (12)0.6194 (5)0.0506 (8)
C100.17206 (12)0.30356 (13)0.5983 (5)0.0489 (7)
C110.13535 (12)0.21062 (13)0.6754 (5)0.0488 (7)
C120.11815 (12)0.16695 (12)0.5514 (5)0.0464 (7)
C130.13067 (13)0.16708 (13)0.3672 (5)0.0521 (8)
H130.15270.19420.31940.063*
C140.11142 (14)0.12794 (14)0.2511 (5)0.0548 (8)
H140.11900.12880.12380.066*
C150.08117 (12)0.08796 (12)0.3244 (5)0.0501 (7)
C160.06922 (13)0.08626 (13)0.5068 (5)0.0535 (8)
H160.04880.05790.55450.064*
C170.08686 (12)0.12576 (13)0.6207 (5)0.0527 (8)
H170.07780.12520.74690.063*
C180.07059 (13)0.30794 (12)0.6591 (5)0.0513 (8)
C190.04529 (13)0.27497 (13)0.5116 (5)0.0510 (8)
C200.06054 (14)0.27961 (14)0.3330 (6)0.0572 (8)
H200.08680.30470.30000.069*
C210.03752 (15)0.24741 (15)0.1975 (6)0.0625 (9)
H210.04780.25030.07290.075*
C220.00009 (14)0.21190 (14)0.2508 (6)0.0588 (9)
C230.01677 (14)0.20716 (14)0.4298 (6)0.0610 (9)
H230.04300.18200.46220.073*
C240.00536 (13)0.23966 (13)0.5612 (6)0.0560 (8)
H240.00650.23800.68440.067*
C250.28018 (15)0.14558 (17)0.5787 (7)0.0720 (11)
H25A0.27560.10730.59300.086*
H25B0.30540.15850.67000.086*
H25C0.29360.15320.45560.086*
C260.10138 (18)0.4338 (3)0.0813 (9)0.1041 (17)
H26A0.11900.43170.20040.125*0.63
H26B0.10410.47000.03390.125*0.63
H26C0.11830.40930.00450.125*0.63
H26D0.12260.46260.13300.125*0.37
H26E0.11930.41930.02640.125*0.37
H26F0.09690.40590.17310.125*0.37
C27A0.0461 (3)0.4197 (4)0.1019 (11)0.092 (2)0.63
H27A0.04450.38390.15570.111*0.63
H27B0.03020.44430.19190.111*0.63
C27B0.0485 (4)0.4546 (5)0.028 (2)0.092 (4)0.37
H27C0.03130.46890.13940.110*0.37
H27D0.05390.48450.05710.110*0.37
O50.01506 (14)0.42004 (17)0.0507 (6)0.1179 (14)
H5O0.0194 (3)0.4263 (11)0.026 (3)0.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0672 (5)0.0567 (5)0.0624 (6)0.0070 (4)0.0069 (4)0.0074 (4)
Cl20.0848 (6)0.0637 (5)0.0826 (7)0.0000 (4)0.0310 (6)0.0117 (5)
O10.0530 (12)0.0687 (14)0.0436 (13)0.0058 (10)0.0053 (11)0.0048 (11)
O20.0612 (14)0.0643 (14)0.0580 (16)0.0030 (11)0.0122 (13)0.0105 (13)
O30.0514 (12)0.0651 (14)0.0630 (16)0.0046 (10)0.0009 (12)0.0015 (12)
O40.0671 (15)0.0577 (14)0.0787 (19)0.0015 (11)0.0040 (14)0.0011 (13)
C10.0464 (15)0.0612 (18)0.0363 (17)0.0059 (13)0.0009 (13)0.0056 (14)
C20.0526 (18)0.063 (2)0.0414 (18)0.0029 (14)0.0019 (15)0.0039 (16)
C30.0462 (17)0.078 (2)0.0453 (19)0.0041 (15)0.0027 (15)0.0040 (17)
C40.055 (2)0.077 (2)0.0428 (19)0.0147 (17)0.0010 (16)0.0027 (17)
C50.0551 (18)0.066 (2)0.0423 (18)0.0132 (15)0.0018 (15)0.0058 (16)
C60.069 (2)0.063 (2)0.052 (2)0.0227 (17)0.0005 (18)0.0029 (17)
C70.074 (2)0.0544 (19)0.065 (2)0.0153 (17)0.002 (2)0.0025 (18)
C80.0626 (19)0.0550 (18)0.051 (2)0.0080 (15)0.0049 (17)0.0070 (16)
C90.0531 (17)0.0539 (17)0.0447 (18)0.0067 (13)0.0020 (15)0.0040 (15)
C100.0501 (17)0.0591 (18)0.0374 (17)0.0100 (13)0.0018 (14)0.0068 (14)
C110.0437 (15)0.0582 (18)0.0446 (18)0.0023 (13)0.0004 (15)0.0016 (16)
C120.0424 (15)0.0536 (17)0.0431 (18)0.0012 (12)0.0031 (14)0.0002 (14)
C130.0530 (17)0.0567 (18)0.047 (2)0.0071 (13)0.0036 (15)0.0008 (15)
C140.0595 (19)0.062 (2)0.0432 (18)0.0040 (16)0.0029 (15)0.0015 (16)
C150.0479 (16)0.0499 (16)0.0527 (19)0.0020 (13)0.0034 (15)0.0039 (16)
C160.0545 (18)0.0499 (18)0.056 (2)0.0046 (14)0.0048 (15)0.0036 (15)
C170.0553 (17)0.0524 (17)0.050 (2)0.0004 (14)0.0052 (15)0.0027 (15)
C180.0519 (17)0.0506 (17)0.051 (2)0.0009 (13)0.0021 (16)0.0004 (15)
C190.0485 (17)0.0518 (18)0.053 (2)0.0015 (14)0.0018 (15)0.0007 (15)
C200.0587 (19)0.0565 (19)0.056 (2)0.0049 (15)0.0040 (17)0.0011 (17)
C210.071 (2)0.066 (2)0.050 (2)0.0013 (17)0.0074 (18)0.0045 (18)
C220.058 (2)0.0518 (19)0.066 (2)0.0023 (15)0.0163 (17)0.0054 (17)
C230.0553 (19)0.0515 (18)0.076 (3)0.0047 (14)0.0056 (19)0.0023 (18)
C240.0534 (18)0.0540 (18)0.061 (2)0.0039 (14)0.0014 (16)0.0005 (17)
C250.068 (2)0.080 (3)0.067 (3)0.0053 (18)0.006 (2)0.002 (2)
C260.078 (3)0.140 (5)0.095 (4)0.015 (3)0.018 (3)0.023 (4)
C27A0.104 (5)0.093 (5)0.080 (6)0.009 (4)0.002 (4)0.002 (4)
C27B0.080 (7)0.095 (9)0.102 (11)0.004 (6)0.001 (7)0.012 (8)
O50.0704 (19)0.158 (3)0.125 (4)0.016 (2)0.007 (2)0.054 (3)
Geometric parameters (Å, º) top
Cl1—C151.743 (3)C16—C171.375 (5)
Cl2—C221.746 (4)C16—H160.9500
O1—C111.215 (4)C17—H170.9500
O2—C181.216 (4)C18—C191.506 (5)
O3—C21.351 (4)C19—C201.366 (6)
O3—C251.428 (4)C19—C241.396 (5)
O4—C81.354 (4)C20—C211.408 (5)
O4—H4O0.8200C20—H200.9500
C1—C21.400 (5)C21—C221.365 (5)
C1—C101.426 (5)C21—H210.9500
C1—C111.509 (4)C22—C231.379 (6)
C2—C31.415 (5)C23—C241.383 (5)
C3—C41.358 (5)C23—H230.9500
C3—H30.9500C24—H240.9500
C4—C51.396 (5)C25—H25A0.9800
C4—H40.9500C25—H25B0.9800
C5—C61.427 (5)C25—H25C0.9800
C5—C101.437 (4)C26—C27A1.451 (7)
C6—C71.345 (6)C26—C27B1.488 (8)
C6—H60.9500C26—H26A0.9800
C7—C81.405 (5)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
C8—C91.390 (5)C26—H26D0.9800
C9—C101.433 (5)C26—H26E0.9800
C9—C181.503 (4)C26—H26F0.9800
C11—C121.494 (5)C27A—O51.364 (7)
C12—C131.382 (5)C27A—H27A0.9900
C12—C171.403 (4)C27A—H27B0.9900
C13—C141.392 (5)C27B—O51.347 (8)
C13—H130.9500C27B—H27C0.9900
C14—C151.377 (5)C27B—H27D0.9900
C14—H140.9500O5—H5O0.904 (10)
C15—C161.367 (5)
C2—O3—C25118.8 (3)O2—C18—C9121.0 (3)
C8—O4—H4O107.7O2—C18—C19121.1 (3)
C2—C1—C10120.4 (3)C9—C18—C19117.9 (3)
C2—C1—C11115.3 (3)C20—C19—C24120.5 (3)
C10—C1—C11123.9 (3)C20—C19—C18121.1 (3)
O3—C2—C1116.5 (3)C24—C19—C18118.4 (3)
O3—C2—C3122.3 (3)C19—C20—C21120.3 (3)
C1—C2—C3121.2 (3)C19—C20—H20119.8
C4—C3—C2118.6 (3)C21—C20—H20119.8
C4—C3—H3120.7C22—C21—C20117.9 (4)
C2—C3—H3120.7C22—C21—H21121.0
C3—C4—C5122.5 (3)C20—C21—H21121.0
C3—C4—H4118.8C21—C22—C23122.7 (3)
C5—C4—H4118.8C21—C22—Cl2118.5 (3)
C4—C5—C6120.0 (3)C23—C22—Cl2118.6 (3)
C4—C5—C10120.4 (3)C22—C23—C24118.9 (3)
C6—C5—C10119.6 (3)C22—C23—H23120.6
C7—C6—C5121.9 (3)C24—C23—H23120.6
C7—C6—H6119.0C23—C24—C19119.5 (4)
C5—C6—H6119.0C23—C24—H24120.2
C6—C7—C8119.5 (3)C19—C24—H24120.2
C6—C7—H7120.2O3—C25—H25A109.5
C8—C7—H7120.2O3—C25—H25B109.5
O4—C8—C9118.9 (3)H25A—C25—H25B109.5
O4—C8—C7119.7 (3)O3—C25—H25C109.5
C9—C8—C7121.4 (3)H25A—C25—H25C109.5
C8—C9—C10120.4 (3)H25B—C25—H25C109.5
C8—C9—C18114.3 (3)C27A—C26—H26A109.5
C10—C9—C18125.2 (3)C27A—C26—H26B109.5
C1—C10—C9126.1 (3)H26A—C26—H26B109.5
C1—C10—C5116.9 (3)C27A—C26—H26C109.5
C9—C10—C5117.0 (3)H26A—C26—H26C109.5
O1—C11—C12121.2 (3)H26B—C26—H26C109.5
O1—C11—C1120.2 (3)C27B—C26—H26D109.3
C12—C11—C1118.6 (3)C27B—C26—H26E109.9
C13—C12—C17118.8 (3)H26D—C26—H26E109.5
C13—C12—C11121.5 (3)C27B—C26—H26F109.2
C17—C12—C11119.6 (3)H26D—C26—H26F109.5
C12—C13—C14120.8 (3)H26E—C26—H26F109.5
C12—C13—H13119.6O5—C27A—C26117.9 (6)
C14—C13—H13119.6O5—C27A—H27A107.8
C15—C14—C13118.7 (3)C26—C27A—H27A107.8
C15—C14—H14120.7O5—C27A—H27B107.8
C13—C14—H14120.7C26—C27A—H27B107.8
C16—C15—C14121.7 (3)H27A—C27A—H27B107.2
C16—C15—Cl1119.8 (3)O5—C27B—C26116.6 (8)
C14—C15—Cl1118.5 (3)O5—C27B—H27C108.1
C15—C16—C17119.7 (3)C26—C27B—H27C108.1
C15—C16—H16120.2O5—C27B—H27D108.1
C17—C16—H16120.2C26—C27B—H27D108.1
C16—C17—C12120.3 (3)H27C—C27B—H27D107.3
C16—C17—H17119.9C27B—O5—H5O114.2 (14)
C12—C17—H17119.9C27A—O5—H5O113.4 (14)
C25—O3—C2—C1179.9 (3)O1—C11—C12—C13165.1 (3)
C25—O3—C2—C32.0 (5)C1—C11—C12—C1315.8 (5)
C10—C1—C2—O3178.1 (3)O1—C11—C12—C1712.4 (5)
C11—C1—C2—O35.4 (5)C1—C11—C12—C17166.7 (3)
C10—C1—C2—C30.1 (5)C17—C12—C13—C141.8 (5)
C11—C1—C2—C3172.5 (3)C11—C12—C13—C14175.7 (3)
O3—C2—C3—C4176.3 (3)C12—C13—C14—C152.3 (5)
C1—C2—C3—C41.6 (5)C13—C14—C15—C160.8 (5)
C2—C3—C4—C52.2 (5)C13—C14—C15—Cl1179.9 (3)
C3—C4—C5—C6179.3 (4)C14—C15—C16—C171.1 (5)
C3—C4—C5—C101.1 (5)Cl1—C15—C16—C17178.1 (2)
C4—C5—C6—C7178.8 (4)C15—C16—C17—C121.6 (5)
C10—C5—C6—C71.6 (6)C13—C12—C17—C160.2 (5)
C5—C6—C7—C80.0 (6)C11—C12—C17—C16177.8 (3)
C6—C7—C8—O4176.6 (4)C8—C9—C18—O267.1 (4)
C6—C7—C8—C92.2 (6)C10—C9—C18—O2113.8 (4)
O4—C8—C9—C10176.0 (3)C8—C9—C18—C19110.5 (4)
C7—C8—C9—C102.8 (6)C10—C9—C18—C1968.6 (5)
O4—C8—C9—C183.2 (5)O2—C18—C19—C20157.9 (4)
C7—C8—C9—C18178.1 (4)C9—C18—C19—C2019.7 (5)
C2—C1—C10—C9178.9 (3)O2—C18—C19—C2421.6 (5)
C11—C1—C10—C99.1 (5)C9—C18—C19—C24160.9 (3)
C2—C1—C10—C51.2 (5)C24—C19—C20—C212.3 (5)
C11—C1—C10—C5170.8 (3)C18—C19—C20—C21178.2 (3)
C8—C9—C10—C1178.9 (3)C19—C20—C21—C220.0 (5)
C18—C9—C10—C10.2 (6)C20—C21—C22—C231.2 (6)
C8—C9—C10—C51.2 (5)C20—C21—C22—Cl2174.6 (3)
C18—C9—C10—C5179.8 (3)C21—C22—C23—C240.0 (6)
C4—C5—C10—C10.6 (5)Cl2—C22—C23—C24175.8 (3)
C6—C5—C10—C1179.0 (3)C22—C23—C24—C192.4 (5)
C4—C5—C10—C9179.4 (3)C20—C19—C24—C233.5 (5)
C6—C5—C10—C90.9 (5)C18—C19—C24—C23177.0 (3)
C2—C1—C11—O1114.4 (4)C27B—C26—C27A—O549.3 (9)
C10—C1—C11—O158.0 (5)C27A—C26—C27B—O549.3 (9)
C2—C1—C11—C1264.7 (4)C26—C27B—O5—C27A48.9 (9)
C10—C1—C11—C12122.9 (3)C26—C27A—O5—C27B51.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O20.822.212.900 (4)141
O4—H4O···O5i0.822.322.919 (5)131
O5—H5O···O4ii0.90 (1)1.83 (1)2.636 (4)147 (2)
C21—H21···O2iii0.952.583.374 (5)141
Symmetry codes: (i) x, y, z+1; (ii) y1/2, x+1/2, z+1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC25H16Cl2O4·C2H6O
Mr497.35
Crystal system, space groupTetragonal, I4
Temperature (K)193
a, c (Å)25.2992 (5), 7.3068 (2)
V3)4676.71 (18)
Z8
Radiation typeCu Kα
µ (mm1)2.81
Crystal size (mm)0.60 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.283, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
43771, 4272, 3676
Rint0.059
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.11
No. of reflections4272
No. of parameters322
No. of restraints50
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.24
Absolute structureFlack (1983), 1951 Friedel pairs
Absolute structure parameter0.425 (17)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O20.822.212.900 (4)141
O4—H4O···O5i0.822.322.919 (5)131
O5—H5O···O4ii0.904 (11)1.833 (11)2.636 (4)147 (2)
C21—H21···O2iii0.952.583.374 (5)141
Symmetry codes: (i) x, y, z+1; (ii) y1/2, x+1/2, z+1/2; (iii) x, y, z1.
 

Acknowledgements

This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds