metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m767-m768

Di­bromido[1,1′-di­butyl-2,2′-(pentane-1,1-di­yl)di-1H-benzimidazole]­copper(II)

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
*Correspondence e-mail: DZSquared@aol.com

(Received 26 May 2010; accepted 1 June 2010; online 16 June 2010)

In the title compound, [CuBr2(C27H36N4)], the CuII ion exhibits a distorted tetra­hedral coordination geometry provided by two bromide ions and by chelation of two imine N-atom donors from a bis­(benzimidazole) ligand. Chelation results in a six-membered boat-shaped ring which links the benzimidazole groups. Each bis­(benzimidazole) fragment contains three n-butyl substituents, two of which have the expected trans conformation; the third exhibits the higher-energy cis conformation, an orientation consistent with several short intra­molecular C—H⋯Br inter­actions. Essentially planar (r.m.s. deviations of 0.0101 and 0.0183 Å) benzimidazole groups are oriented so as to give the bis­(benzimidazole) fragment a V-shaped appearance in profile with the cis and trans n-butyl groups directed to opposite sides of the planes. In the crystal, columns of mol­ecules along the b-axis direction form layers parallel to the (202) planes. Within a given column, the mol­ecules are linked by C—H⋯Br hydrogen bonds. The mol­ecules in adjacent columns are also linked by inter­molecular C—H⋯π interactions, forming a three-dimensional network.

Related literature

For the applications of bis­(imidazoles), bis­(benzimidazoles), and their complexes with metal ions, see: Stibrany et al. (2002[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-o1144.], 2003[Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584-8586.], 2004[Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.]); Knapp et al. (1990[Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.]). For related structures see: Stibrany (2009[Stibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719-722.]); Stibrany et al. 2005[Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584-8586.]); Stibrany & Potenza (2006[Stibrany, R. T. & Potenza, J. A. (2006). Acta Cryst. E62, m3425-m3428.], 2008[Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213-m216.]); Hou et al. (2006[Hou, J.-J., Guo, C.-H. & Zhang, X.-M. (2006). Inorg. Chim. Acta, 359, 3991-3995.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C27H36N4)]

  • Mr = 639.96

  • Monoclinic, P 21 /n

  • a = 13.521 (2) Å

  • b = 14.604 (3) Å

  • c = 13.881 (2) Å

  • β = 96.636 (3)°

  • V = 2722.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 100 K

  • 0.45 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.644, Tmax = 1.00

  • 25644 measured reflections

  • 5405 independent reflections

  • 4692 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.00

  • 5405 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N23 1.9536 (19)
Cu1—N13 1.994 (2)
Cu1—Br1 2.3563 (5)
Cu1—Br2 2.3608 (5)
N23—Cu1—N13 90.44 (8)
N23—Cu1—Br1 130.64 (6)
N13—Cu1—Br1 106.87 (6)
N23—Cu1—Br2 98.49 (6)
N13—Cu1—Br2 134.58 (6)
Br1—Cu1—Br2 100.523 (16)
C22—C1—C12 110.63 (19)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N11/C11/C13/N13/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Br1 0.95 2.79 3.551 (3) 138
C17—H17⋯Br2i 0.95 2.90 3.606 (3) 132
C18—H18A⋯Br1ii 0.99 2.86 3.741 (3) 148
C5—H5BCg1ii 0.98 2.87 3.631 (3) 135
C2B—H2B1⋯Cg1iii 0.98 2.82 3.777 (3) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound (I) was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008).

The structure of [1,1'-bis(1-butylbenzimidazol-2-yl) pentane]copper(II) dibromide, (I), contains molecules (Fig. 1) in which two essentially planar benzimidazole fragments are linked by the a bridging (bridgehead) carbon atom C1 and a Cu(II) ion, which forms Cu—N(imine) bonds to N13 and N23, to complete a six-membered Cu1—N13—C12—C1—C22—N23- ring. The ring adopts a boat conformation with the copper(II) ion and the bridgehead carbon atom corresponding to the bow and stern, respectively. The angles N23—Cu1—N13 and C22—C1—C12 (Table 1), at the bow and stern, respectively, give the molecule a V-shape in profile (Fig. 2). Two bromine atoms, Br1 and Br2, complete a distorted-teterrahedral coordination geometry at Cu1, as evidenced by the several angles at Cu1 (Table 1) and by the "tetrahedral twist dihedral angle" N13—Cu1—N23/Br1—Cu1—Br2, 65.08 (6)°. Of the three n-butyl groups, two exhibit the trans conformation and extend above the planes of the benzimidazole fragments (Fig. 1), while the third, bonded to the bridgehead carbon atom C1, exhibits the higher-energy cis conformation and is positioned below the planes of the benzimidazole rings. The cis orientation is consistent with several intramolecular C—H···Br interactions whose H···Br (Br2···H2B, 3.1147 Å and Br2···H4A, 3.6145 Å) distances are too long to be considered hydrogen bonds, yet too short to be ignored. Lastly, we note that the complex exhibits an intramolecular C14—H14···Br1 hydrogen bond (Table 2).

In the crystal, molecules of (I) form columns along the b cell direction (Fig. 2) centered about the twofold screw axes at 1/4 b 1/4 and symmetry related positions in space group P21/n. Within a given column, the molecules are linked by C18—H18b···Br1 hydrogen bonds (Fig. 3) to give each column spirial staircase appearance along its length. The columns are arranged in layers parallel to the (2 0 2) planes (Fig.2), and are linked together by intermolecular C17—H17···Br2 hydrogen bonds (Fig. 4) to yield a three-dimensional network structure. The C—H and H···Br distances for the C—H···Br hydrogen bonds in (I) (Table 2) compare favorably with those reported previously for a distorted-tetrahedral Cu(I) bromide complex (Hou et al., 2006).

In related structures, alkyl chains, substituted at the N(amine) and bridgehead positions of bis(benzimidazoles), have been observed in three permutations with respect to the benzimidazole planes: all to one side, two up, bridgehead substituent down as in the present instance, and two up, N(amine) substituent down (Stibrany, 2009). In the structure of the free ligand of (I) (Stibrany et al., 2003), all three alkyl chains assume the trans conformation. Presumably, the way in which these molecules pack in a crystal determines to some extent the conformation of these substituents, or vice versa. In the analogous dichloride complex, the alkyl chains are arranged similarly to those in (I) (Stibrany et al., 2003). In fact, (I) and its dichloro analogue are isomorphous.

Related literature top

For the applications of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions, see: Stibrany et al. (2002, 2003, 2004); Knapp et al. (1990). For related structures see: Stibrany (2009); Stibrany et al. 2005); Stibrany & Potenza (2006, 2008); Hou et al. (2006).

Experimental top

Compound (I) was prepared from the addition of 200 mg (0.48 mmol) of [1,1'-bis(1-butylbenzimidazol-2-yl) pentane] (Stibrany et al., 2003) and 107 mg (0.48 mmol) of CuBr2 to a mixture of 20 ml of ethanol and 2 ml of triethylorthoformate. This mixture was warmed gently for 5 min and then allowed to evaporate slowly. When the volume was reduced by approximately 60%, dark red crystals of (I) had formed and were collected by filtration, and dried in air. Yield 301 mg (yield 98.0%). (m.p. 486 K(melt) IR (KBr pellet, cm-1): 2957 (s), 2930 (m), 22871 (w), 1613 (w), 1509 (m), 1455 (s), 1281 (w), 1015 (w), 755 (s).

Refinement top

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.95 and 1.00 Å, respectively, for n-butyl and benzimidazole H atom, and Uiso(H) = 1.2-1.5 Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. View showing columns of the core structure of (I) along the b axis direction. H atoms and 1-butyl groups have been omitted for clarity.
[Figure 3] Fig. 3. View, showing a column of molecules of (I) extending along the b axis direction.
[Figure 4] Fig. 4. View, approximately along the b axis direction showing the C—H···Br hydrogen bonds which link the columns shown in Fig. 2. Except for those involved in hydrogen bonding, H atoms and 1-butyl C atoms have been omitted for clarity.
Dibromido[1,1'-dibutyl-2,2'-(pentane-1,1-diyl)di-1H- benzimidazole]copper(II) top
Crystal data top
[CuBr2(C27H36N4)]F(000) = 1300
Mr = 639.96Dx = 1.561 Mg m3
Monoclinic, P21/nMelting point: 486 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.521 (2) ÅCell parameters from 982 reflections
b = 14.604 (3) Åθ = 2.2–25.9°
c = 13.881 (2) ŵ = 3.76 mm1
β = 96.636 (3)°T = 100 K
V = 2722.6 (8) Å3Blade, red
Z = 40.45 × 0.18 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5405 independent reflections
Radiation source: fine-focus sealed tube4692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.644, Tmax = 1.00k = 1818
25644 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0324P)2 + 2.745P]
where P = (Fo2 + 2Fc2)/3
5405 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[CuBr2(C27H36N4)]V = 2722.6 (8) Å3
Mr = 639.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.521 (2) ŵ = 3.76 mm1
b = 14.604 (3) ÅT = 100 K
c = 13.881 (2) Å0.45 × 0.18 × 0.07 mm
β = 96.636 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4692 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 1.00Rint = 0.038
25644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.00Δρmax = 0.74 e Å3
5405 reflectionsΔρmin = 0.38 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10186 (2)0.119645 (19)0.230340 (19)0.01124 (8)
Br10.045118 (19)0.023221 (16)0.167330 (18)0.01896 (7)
Br20.049244 (18)0.184464 (17)0.267178 (17)0.01820 (7)
N110.34142 (15)0.24098 (13)0.12023 (14)0.0130 (4)
N130.20969 (15)0.16010 (13)0.15332 (14)0.0122 (4)
N210.30460 (14)0.21513 (13)0.45058 (14)0.0131 (4)
N230.18474 (14)0.15045 (13)0.35070 (13)0.0115 (4)
C10.27426 (17)0.27602 (15)0.27828 (16)0.0116 (5)
H10.33940.30810.29480.014*
C20.18961 (18)0.34819 (16)0.26140 (17)0.0146 (5)
H2A0.20430.38970.20850.018*
H2B0.12650.31620.23950.018*
C30.17497 (19)0.40545 (17)0.35029 (18)0.0188 (5)
H3A0.23190.44790.36400.023*
H3B0.17390.36460.40710.023*
C40.0784 (2)0.46057 (19)0.3362 (2)0.0280 (6)
H4A0.02150.41750.33010.034*
H4B0.07390.49830.39480.034*
C50.0688 (2)0.52288 (19)0.2482 (2)0.0321 (7)
H5A0.06320.48570.18900.048*
H5B0.12790.56210.25030.048*
H5C0.00930.56110.24840.048*
C110.31456 (18)0.18592 (16)0.03975 (17)0.0141 (5)
C120.27675 (17)0.22314 (16)0.18544 (16)0.0118 (5)
C130.23188 (18)0.13538 (16)0.06078 (17)0.0135 (5)
C140.18405 (18)0.07574 (17)0.00812 (17)0.0159 (5)
H140.12760.04110.00490.019*
C150.22204 (19)0.06923 (18)0.09575 (18)0.0206 (5)
H150.19110.02910.14400.025*
C160.3049 (2)0.1202 (2)0.11563 (19)0.0254 (6)
H160.32880.11370.17700.030*
C170.3529 (2)0.17963 (18)0.04871 (18)0.0199 (5)
H170.40910.21440.06220.024*
C180.42282 (19)0.30825 (16)0.12849 (19)0.0175 (5)
H18A0.40430.36050.16820.021*
H18B0.43100.33190.06300.021*
C190.52200 (19)0.26958 (18)0.17390 (19)0.0211 (5)
H19A0.51140.23890.23550.025*
H19B0.56850.32120.19000.025*
C1A0.5710 (2)0.20174 (19)0.1109 (2)0.0250 (6)
H1A10.52470.15030.09360.030*
H1A20.58420.23240.05010.030*
C1B0.6683 (2)0.1643 (2)0.1619 (2)0.0350 (7)
H1B10.65490.12960.21940.053*
H1B20.71340.21510.18150.053*
H1B30.69930.12390.11750.053*
C210.26253 (18)0.14778 (15)0.50387 (17)0.0131 (5)
C220.25617 (17)0.21300 (15)0.35975 (16)0.0112 (5)
C230.18673 (18)0.10799 (16)0.44063 (17)0.0129 (5)
C240.12813 (18)0.03726 (16)0.47082 (17)0.0152 (5)
H240.07590.01070.42820.018*
C250.14950 (19)0.00760 (17)0.56540 (18)0.0187 (5)
H250.11140.04070.58840.022*
C260.2264 (2)0.04736 (17)0.62821 (18)0.0193 (5)
H260.23920.02480.69260.023*
C270.28417 (19)0.11836 (17)0.59950 (17)0.0172 (5)
H270.33570.14550.64250.021*
C290.48784 (19)0.24181 (18)0.46606 (19)0.0216 (6)
H29A0.53890.28770.48960.026*
H29B0.48720.23720.39480.026*
C280.38695 (18)0.27632 (17)0.48784 (18)0.0167 (5)
H28A0.38760.28270.55890.020*
H28B0.37510.33770.45860.020*
C2A0.5186 (2)0.14970 (18)0.5108 (2)0.0226 (6)
H2A10.46890.10290.48650.027*
H2A20.51930.15360.58210.027*
C2B0.6213 (2)0.1199 (2)0.4870 (2)0.0291 (6)
H2B10.67090.16570.51140.044*
H2B20.62030.11410.41660.044*
H2B30.63840.06070.51770.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01029 (15)0.01486 (14)0.00862 (14)0.00107 (11)0.00129 (11)0.00152 (11)
Br10.01931 (14)0.01686 (13)0.02065 (13)0.00290 (10)0.00205 (10)0.00428 (10)
Br20.01408 (13)0.02410 (14)0.01700 (13)0.00417 (10)0.00434 (9)0.00078 (10)
N110.0141 (10)0.0135 (10)0.0115 (10)0.0003 (8)0.0023 (8)0.0012 (8)
N130.0134 (10)0.0129 (9)0.0106 (9)0.0011 (8)0.0025 (8)0.0001 (8)
N210.0134 (10)0.0136 (10)0.0121 (10)0.0023 (8)0.0006 (8)0.0010 (8)
N230.0133 (10)0.0123 (9)0.0088 (9)0.0001 (8)0.0007 (8)0.0007 (7)
C10.0120 (11)0.0123 (11)0.0107 (11)0.0004 (9)0.0019 (9)0.0011 (9)
C20.0169 (13)0.0129 (11)0.0141 (12)0.0003 (9)0.0015 (9)0.0011 (9)
C30.0214 (14)0.0182 (12)0.0172 (13)0.0023 (10)0.0038 (10)0.0035 (10)
C40.0233 (15)0.0259 (14)0.0359 (16)0.0070 (12)0.0078 (12)0.0091 (12)
C50.0291 (16)0.0205 (14)0.0444 (19)0.0098 (12)0.0054 (14)0.0088 (13)
C110.0141 (12)0.0166 (12)0.0116 (11)0.0024 (9)0.0020 (9)0.0021 (9)
C120.0108 (11)0.0142 (11)0.0104 (11)0.0032 (9)0.0011 (9)0.0035 (9)
C130.0141 (12)0.0156 (12)0.0112 (11)0.0057 (9)0.0028 (9)0.0011 (9)
C140.0155 (12)0.0184 (12)0.0136 (12)0.0021 (10)0.0005 (9)0.0002 (10)
C150.0188 (13)0.0277 (14)0.0148 (12)0.0010 (11)0.0005 (10)0.0048 (10)
C160.0232 (14)0.0417 (16)0.0121 (13)0.0002 (12)0.0063 (11)0.0020 (11)
C170.0174 (13)0.0284 (14)0.0151 (12)0.0025 (11)0.0067 (10)0.0003 (10)
C180.0197 (13)0.0150 (12)0.0192 (13)0.0050 (10)0.0078 (10)0.0023 (10)
C190.0161 (13)0.0224 (13)0.0247 (14)0.0059 (10)0.0027 (11)0.0011 (11)
C1A0.0202 (14)0.0263 (14)0.0295 (15)0.0002 (11)0.0073 (12)0.0036 (12)
C1B0.0213 (15)0.0355 (17)0.049 (2)0.0031 (13)0.0057 (14)0.0073 (15)
C210.0140 (12)0.0115 (11)0.0142 (11)0.0002 (9)0.0037 (9)0.0002 (9)
C220.0114 (11)0.0123 (11)0.0103 (11)0.0015 (9)0.0025 (9)0.0009 (9)
C230.0128 (12)0.0144 (11)0.0117 (11)0.0016 (9)0.0019 (9)0.0013 (9)
C240.0150 (12)0.0159 (12)0.0147 (12)0.0028 (10)0.0021 (9)0.0018 (9)
C250.0200 (13)0.0190 (12)0.0181 (13)0.0030 (10)0.0068 (10)0.0010 (10)
C260.0248 (14)0.0213 (13)0.0117 (12)0.0016 (11)0.0021 (10)0.0012 (10)
C270.0211 (13)0.0195 (12)0.0104 (12)0.0013 (10)0.0004 (10)0.0002 (9)
C290.0164 (13)0.0274 (14)0.0201 (13)0.0068 (11)0.0017 (10)0.0035 (11)
C280.0191 (13)0.0158 (12)0.0143 (12)0.0063 (10)0.0029 (10)0.0010 (10)
C2A0.0201 (14)0.0242 (13)0.0233 (14)0.0033 (11)0.0017 (11)0.0019 (11)
C2B0.0227 (15)0.0338 (16)0.0304 (16)0.0012 (12)0.0018 (12)0.0054 (13)
Geometric parameters (Å, º) top
Cu1—N231.9536 (19)C16—C171.377 (4)
Cu1—N131.994 (2)C16—H160.9500
Cu1—Br12.3563 (5)C17—H170.9500
Cu1—Br22.3608 (5)C18—C191.523 (4)
N11—C121.354 (3)C18—H18A0.9900
N11—C111.390 (3)C18—H18B0.9900
N11—C181.470 (3)C19—C1A1.523 (4)
N13—C121.332 (3)C19—H19A0.9900
N13—C131.400 (3)C19—H19B0.9900
N21—C221.352 (3)C1A—C1B1.522 (4)
N21—C211.391 (3)C1A—H1A10.9900
N21—C281.474 (3)C1A—H1A20.9900
N23—C221.325 (3)C1B—H1B10.9800
N23—C231.391 (3)C1B—H1B20.9800
C1—C221.500 (3)C1B—H1B30.9800
C1—C121.506 (3)C21—C271.394 (3)
C1—C21.554 (3)C21—C231.397 (3)
C1—H11.0000C23—C241.395 (3)
C2—C31.522 (3)C24—C251.381 (3)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—C261.403 (4)
C3—C41.527 (4)C25—H250.9500
C3—H3A0.9900C26—C271.384 (4)
C3—H3B0.9900C26—H260.9500
C4—C51.517 (4)C27—H270.9500
C4—H4A0.9900C29—C281.517 (4)
C4—H4B0.9900C29—C2A1.519 (4)
C5—H5A0.9800C29—H29A0.9900
C5—H5B0.9800C29—H29B0.9900
C5—H5C0.9800C28—H28A0.9900
C11—C171.390 (3)C28—H28B0.9900
C11—C131.398 (3)C2A—C2B1.526 (4)
C13—C141.396 (3)C2A—H2A10.9900
C14—C151.377 (3)C2A—H2A20.9900
C14—H140.9500C2B—H2B10.9800
C15—C161.400 (4)C2B—H2B20.9800
C15—H150.9500C2B—H2B30.9800
N23—Cu1—N1390.44 (8)N11—C18—C19113.6 (2)
N23—Cu1—Br1130.64 (6)N11—C18—H18A108.9
N13—Cu1—Br1106.87 (6)C19—C18—H18A108.9
N23—Cu1—Br298.49 (6)N11—C18—H18B108.9
N13—Cu1—Br2134.58 (6)C19—C18—H18B108.9
Br1—Cu1—Br2100.523 (16)H18A—C18—H18B107.7
C12—N11—C11107.27 (19)C18—C19—C1A115.1 (2)
C12—N11—C18127.7 (2)C18—C19—H19A108.5
C11—N11—C18125.0 (2)C1A—C19—H19A108.5
C12—N13—C13105.99 (19)C18—C19—H19B108.5
C12—N13—Cu1122.46 (16)C1A—C19—H19B108.5
C13—N13—Cu1131.53 (16)H19A—C19—H19B107.5
C22—N21—C21107.20 (19)C1B—C1A—C19112.2 (2)
C22—N21—C28127.3 (2)C1B—C1A—H1A1109.2
C21—N21—C28125.5 (2)C19—C1A—H1A1109.2
C22—N23—C23106.50 (19)C1B—C1A—H1A2109.2
C22—N23—Cu1125.43 (15)C19—C1A—H1A2109.2
C23—N23—Cu1127.91 (16)H1A1—C1A—H1A2107.9
C22—C1—C12110.63 (19)C1A—C1B—H1B1109.5
C22—C1—C2110.39 (19)C1A—C1B—H1B2109.5
C12—C1—C2107.92 (18)H1B1—C1B—H1B2109.5
C22—C1—H1109.3C1A—C1B—H1B3109.5
C12—C1—H1109.3H1B1—C1B—H1B3109.5
C2—C1—H1109.3H1B2—C1B—H1B3109.5
C3—C2—C1114.4 (2)N21—C21—C27132.1 (2)
C3—C2—H2A108.7N21—C21—C23106.0 (2)
C1—C2—H2A108.7C27—C21—C23121.9 (2)
C3—C2—H2B108.7N23—C22—N21111.9 (2)
C1—C2—H2B108.7N23—C22—C1122.2 (2)
H2A—C2—H2B107.6N21—C22—C1125.8 (2)
C2—C3—C4112.0 (2)N23—C23—C24130.3 (2)
C2—C3—H3A109.2N23—C23—C21108.4 (2)
C4—C3—H3A109.2C24—C23—C21121.3 (2)
C2—C3—H3B109.2C25—C24—C23117.0 (2)
C4—C3—H3B109.2C25—C24—H24121.5
H3A—C3—H3B107.9C23—C24—H24121.5
C5—C4—C3114.3 (2)C24—C25—C26121.3 (2)
C5—C4—H4A108.7C24—C25—H25119.3
C3—C4—H4A108.7C26—C25—H25119.3
C5—C4—H4B108.7C27—C26—C25122.2 (2)
C3—C4—H4B108.7C27—C26—H26118.9
H4A—C4—H4B107.6C25—C26—H26118.9
C4—C5—H5A109.5C26—C27—C21116.2 (2)
C4—C5—H5B109.5C26—C27—H27121.9
H5A—C5—H5B109.5C21—C27—H27121.9
C4—C5—H5C109.5C28—C29—C2A115.0 (2)
H5A—C5—H5C109.5C28—C29—H29A108.5
H5B—C5—H5C109.5C2A—C29—H29A108.5
C17—C11—N11131.2 (2)C28—C29—H29B108.5
C17—C11—C13122.6 (2)C2A—C29—H29B108.5
N11—C11—C13106.2 (2)H29A—C29—H29B107.5
N13—C12—N11112.1 (2)N21—C28—C29112.9 (2)
N13—C12—C1124.0 (2)N21—C28—H28A109.0
N11—C12—C1123.6 (2)C29—C28—H28A109.0
C14—C13—C11120.3 (2)N21—C28—H28B109.0
C14—C13—N13131.2 (2)C29—C28—H28B109.0
C11—C13—N13108.5 (2)H28A—C28—H28B107.8
C15—C14—C13117.2 (2)C29—C2A—C2B112.2 (2)
C15—C14—H14121.4C29—C2A—H2A1109.2
C13—C14—H14121.4C2B—C2A—H2A1109.2
C14—C15—C16121.8 (2)C29—C2A—H2A2109.2
C14—C15—H15119.1C2B—C2A—H2A2109.2
C16—C15—H15119.1H2A1—C2A—H2A2107.9
C17—C16—C15121.9 (2)C2A—C2B—H2B1109.5
C17—C16—H16119.1C2A—C2B—H2B2109.5
C15—C16—H16119.1H2B1—C2B—H2B2109.5
C16—C17—C11116.3 (2)C2A—C2B—H2B3109.5
C16—C17—H17121.9H2B1—C2B—H2B3109.5
C11—C17—H17121.9H2B2—C2B—H2B3109.5
N23—Cu1—N13—C1227.22 (18)C14—C15—C16—C170.0 (4)
Br1—Cu1—N13—C12160.30 (16)C15—C16—C17—C110.1 (4)
Br2—Cu1—N13—C1275.19 (19)N11—C11—C17—C16176.7 (3)
N23—Cu1—N13—C13154.6 (2)C13—C11—C17—C160.1 (4)
Br1—Cu1—N13—C1321.6 (2)C12—N11—C18—C1991.0 (3)
Br2—Cu1—N13—C13102.9 (2)C11—N11—C18—C1991.9 (3)
N13—Cu1—N23—C2226.70 (19)N11—C18—C19—C1A70.4 (3)
Br1—Cu1—N23—C22139.59 (16)C18—C19—C1A—C1B178.6 (2)
Br2—Cu1—N23—C22108.60 (18)C22—N21—C21—C27178.3 (3)
N13—Cu1—N23—C23147.9 (2)C28—N21—C21—C271.4 (4)
Br1—Cu1—N23—C2335.1 (2)C22—N21—C21—C231.1 (3)
Br2—Cu1—N23—C2376.75 (19)C28—N21—C21—C23179.1 (2)
C22—C1—C2—C356.9 (3)C23—N23—C22—N210.7 (3)
C12—C1—C2—C3178.0 (2)Cu1—N23—C22—N21176.26 (15)
C1—C2—C3—C4168.1 (2)C23—N23—C22—C1177.4 (2)
C2—C3—C4—C556.2 (3)Cu1—N23—C22—C17.0 (3)
C12—N11—C11—C17177.0 (3)C21—N21—C22—N231.1 (3)
C18—N11—C11—C170.6 (4)C28—N21—C22—N23179.1 (2)
C12—N11—C11—C130.1 (3)C21—N21—C22—C1177.7 (2)
C18—N11—C11—C13177.6 (2)C28—N21—C22—C12.5 (4)
C13—N13—C12—N110.2 (3)C12—C1—C22—N2347.6 (3)
Cu1—N13—C12—N11178.77 (15)C2—C1—C22—N2371.8 (3)
C13—N13—C12—C1173.4 (2)C12—C1—C22—N21136.1 (2)
Cu1—N13—C12—C15.2 (3)C2—C1—C22—N21104.5 (3)
C11—N11—C12—N130.2 (3)C22—N23—C23—C24179.5 (2)
C18—N11—C12—N13177.7 (2)Cu1—N23—C23—C244.1 (4)
C11—N11—C12—C1173.5 (2)C22—N23—C23—C210.1 (3)
C18—N11—C12—C14.0 (4)Cu1—N23—C23—C21175.39 (16)
C22—C1—C12—N1346.7 (3)N21—C21—C23—N230.7 (3)
C2—C1—C12—N1374.2 (3)C27—C21—C23—N23178.8 (2)
C22—C1—C12—N11140.4 (2)N21—C21—C23—C24179.7 (2)
C2—C1—C12—N1198.7 (3)C27—C21—C23—C240.7 (4)
C17—C11—C13—C140.1 (4)N23—C23—C24—C25178.5 (2)
N11—C11—C13—C14177.3 (2)C21—C23—C24—C251.0 (4)
C17—C11—C13—N13177.5 (2)C23—C24—C25—C260.3 (4)
N11—C11—C13—N130.1 (3)C24—C25—C26—C270.5 (4)
C12—N13—C13—C14176.8 (2)C25—C26—C27—C210.7 (4)
Cu1—N13—C13—C141.6 (4)N21—C21—C27—C26179.3 (2)
C12—N13—C13—C110.2 (3)C23—C21—C27—C260.1 (4)
Cu1—N13—C13—C11178.54 (16)C22—N21—C28—C2983.8 (3)
C11—C13—C14—C150.2 (3)C21—N21—C28—C2995.9 (3)
N13—C13—C14—C15176.9 (2)C2A—C29—C28—N2161.6 (3)
C13—C14—C15—C160.2 (4)C28—C29—C2A—C2B179.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N11/C11/C13/N13/C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Br10.952.793.551 (3)138
C17—H17···Br2i0.952.903.606 (3)132
C18—H18A···Br1ii0.992.863.741 (3)148
C5—H5B···Cg1ii0.982.873.631 (3)135
C2B—H2B1···Cg1iii0.982.823.777 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuBr2(C27H36N4)]
Mr639.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.521 (2), 14.604 (3), 13.881 (2)
β (°) 96.636 (3)
V3)2722.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.45 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.644, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
25644, 5405, 4692
Rint0.038
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.00
No. of reflections5405
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.38

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N231.9536 (19)Cu1—Br12.3563 (5)
Cu1—N131.994 (2)Cu1—Br22.3608 (5)
N23—Cu1—N1390.44 (8)N13—Cu1—Br2134.58 (6)
N23—Cu1—Br1130.64 (6)Br1—Cu1—Br2100.523 (16)
N13—Cu1—Br1106.87 (6)C22—C1—C12110.63 (19)
N23—Cu1—Br298.49 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N11/C11/C13/N13/C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Br10.952.793.551 (3)138
C17—H17···Br2i0.952.903.606 (3)132
C18—H18A···Br1ii0.992.863.741 (3)148
C5—H5B···Cg1ii0.982.873.631 (3)135
C2B—H2B1···Cg1iii0.982.823.777 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2000). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, J.-J., Guo, C.-H. & Zhang, X.-M. (2006). Inorg. Chim. Acta, 359, 3991–3995.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719–722.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1991–m1994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006). Acta Cryst. E62, m3425–m3428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m767-m768
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds