organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5,7-Tetra­kis(4-iodo­phen­yl)adamantane benzene tetra­solvate

aInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Physikalische und Theoretische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 2 June 2010; accepted 7 June 2010; online 16 June 2010)

The title mol­ecule, C34H28I4·4C6H6, has crystallographic [\overline{4}] symmetry and crystallizes with four symmetry-related benzene solvent mol­ecules. The phenyl group is eclipsed with one of the adamantane C—C bonds. The tetra­phenyl­adamantane units and the benzene solvent mol­ecules are connected by weak inter­molecular phen­yl–benzene C—H⋯π and benzene–benzene C—H⋯π inter­actions. In the crystal, mol­ecules are linked along the c-axis direction via the iodo­phenyl groups by a combination of weak inter­molecular I⋯I [3.944 (1) Å] and I⋯π(phen­yl) [3.608 (6) and 3.692 (5) Å] inter­actions.

Related literature

For the preparation of the title compound, see: Li et al. (2002[Li, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O. & Keana, J. F. W. (2002). Org. Lett. 4, 3631-3634.]). For the crystal structure of a related compound, see: Boldog et al. (2009[Boldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248-o252.]). For inter­molecular inter­actions of I atoms, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]); Thaimattam et al. (1998[Thaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). New J. Chem. pp. 143-148.])

[Scheme 1]

Experimental

Crystal data
  • C34H28I4·4C6H6

  • Mr = 1256.60

  • Tetragonal, [P \overline 42_1 c ]

  • a = 18.883 (3) Å

  • c = 7.2442 (19) Å

  • V = 2583.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 164 K

  • 0.60 × 0.20 × 0.12 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.509, Tmax = 0.751

  • 35313 measured reflections

  • 2953 independent reflections

  • 2365 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.05

  • 2953 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1263 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1i 0.95 2.91 3.833 (9) 163
C10—H10ACg2ii 0.95 2.85 3.733 (9) 156
Symmetry codes: (i) y, -x+1, -z+1; (ii) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared as a precursor for the synthesis of EPR-active tetrahedral model systems.

The asymmetric unit contains a quarter of a 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecule and one benzene solvent molecule. The molecular structure is shown in Fig. 1. The substituted adamantane molecule has 4 symmetry. The conformation of the tetraphenyladamantane unit is very similar to the conformation in the crystal structure of 1,3,5,7-tetraphenyladamantane (Boldog et al., 2009), with the phenyl group eclipsed with one of the adamantane C—C bonds (torsion angle C5—C4—C2—C3i = 5.7 (6)° [symmetry i: y, 1 - x, 1 - z]).

The crystal packing is shown in Fig. 2. The tetraphenyladamantane and the benzene solvent molecules are connected by intermolecular C—H···π interactions (Table 1, Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10—C15 ring respectively). There is a C—H···π contact between the phenyl ring and a benzene solvent molecule [angle between planes of rings: 72.9 (2)°]. The Cphenyl—H bond does not point to the center of the benzene ring, but closer to the midpoint of the C13—C14 bond. The benzene solvent molecules are connected along the c direction by an additional C—H···π contact. The angle between the planes of the donor and acceptor benzene molecules is 83.3 (2)° and the donor C—H bond points closely to the center of the acceptor ring.

Each C—I bond points to the iodophenyl group of a neighboring molecule as shown in Fig. 3. The shortest contact distances are: I1···I1i = 3.944 (1) Å, I1···C6i = 3.608 (6)Å and I1···C7i = 3.692 (5)Å (symmetry i: 1/2 - y, 1/2 - x, -1/2 + z). The angles for these contacts are: C7—I1···I1i = 158.6 (1)°, C7—I1···C6i = 153.9 (2)° and C7—I1···C7i = 167.0 (2)°. This combination of weak interactions link the 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecules along the c direction. The significance of these interactions for crystal packing has been discussed by Pedireddi et al. (1994) and Thaimattam et al. (1998).

Related literature top

For the preparation of the title compound, see: Li et al. (2002). For the crystal structure of a related compound, see: Boldog et al. (2009). For intermolecular interactions of I atoms, see: Pedireddi et al. (1994); Thaimattam et al. (1998).

Experimental top

The title compound was prepared as described by Li et al. (2002). Single crystals were obtained by recrystallization of the compound from benzene. The crystals rapidly decomposed in the air at room temperature. Therefore a crystal was taken from the mother liquor and was rapidly cooled to 164 K.

Refinement top

The H atoms were positioned geometrically and treated as riding: Cnon-planar—H=0.99 Å, Cplanar—H=0.95Å and Uiso(H)=1.2Ueq(C). The absolute structure was determined using 1263 Friedel pairs.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. Unlabelled atoms are related to labelled atoms by 4 symmetry.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. C—H···π contacts are shown as dotted lines.
[Figure 3] Fig. 3. Section of the crystal structure showing the linking of the 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecules by intermolecular contacts between the iodophenyl groups. The symmetry codes are i: 1/2 - y, 1/2 - x, -1/2 + z and ii: 1/2 - y, 1/2 - x, 1/2 + z.
1,3,5,7-Tetrakis(4-iodophenyl)adamantane benzene tetrasolvate top
Crystal data top
C34H28I4·4C6H6Dx = 1.616 Mg m3
Mr = 1256.60Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 103 reflections
Hall symbol: P -4 2nθ = 3–23°
a = 18.883 (3) ŵ = 2.45 mm1
c = 7.2442 (19) ÅT = 164 K
V = 2583.1 (9) Å3Rod, colorless
Z = 20.60 × 0.20 × 0.12 mm
F(000) = 1224
Data collection top
Siemens SMART 1K CCD
diffractometer
2953 independent reflections
Radiation source: normal-focus sealed tube2365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2424
Tmin = 0.509, Tmax = 0.751k = 2424
35313 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2953 reflectionsΔρmax = 1.76 e Å3
141 parametersΔρmin = 0.82 e Å3
0 restraintsAbsolute structure: Flack (1983), 1263 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C34H28I4·4C6H6Z = 2
Mr = 1256.60Mo Kα radiation
Tetragonal, P421cµ = 2.45 mm1
a = 18.883 (3) ÅT = 164 K
c = 7.2442 (19) Å0.60 × 0.20 × 0.12 mm
V = 2583.1 (9) Å3
Data collection top
Siemens SMART 1K CCD
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2365 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.751Rint = 0.063
35313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105Δρmax = 1.76 e Å3
S = 1.05Δρmin = 0.82 e Å3
2953 reflectionsAbsolute structure: Flack (1983), 1263 Friedel pairs
141 parametersAbsolute structure parameter: 0.01 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.25295 (2)0.30544 (2)0.23303 (6)0.05317 (17)
C10.50000.50000.2564 (9)0.0199 (12)
H1A0.52580.46640.17600.024*0.50
H1B0.47420.53360.17600.024*0.50
C20.4466 (2)0.4589 (2)0.3747 (6)0.0195 (9)
C30.4875 (3)0.4074 (2)0.5016 (6)0.0209 (9)
H3A0.45340.38150.58040.025*
H3B0.51290.37230.42480.025*
C40.3977 (2)0.4186 (2)0.2437 (6)0.0222 (8)
C50.3250 (2)0.4344 (2)0.2272 (7)0.0274 (10)
H5A0.30390.46770.30870.033*
C60.2844 (3)0.4020 (3)0.0937 (6)0.0287 (11)
H6A0.23540.41310.08420.034*
C70.3139 (3)0.3534 (3)0.0265 (6)0.0310 (11)
C80.3848 (3)0.3345 (3)0.0094 (7)0.0282 (11)
H8A0.40520.30000.08850.034*
C90.4250 (3)0.3675 (3)0.1261 (6)0.0279 (10)
H9A0.47340.35440.13880.034*
C100.4526 (5)0.1182 (4)0.7048 (12)0.083 (2)
H10A0.43840.09030.80730.099*
C110.5184 (5)0.1096 (5)0.6257 (15)0.081 (3)
H11A0.55010.07480.67190.097*
C120.5372 (4)0.1500 (4)0.4852 (13)0.072 (2)
H12A0.58310.14490.43350.086*
C130.4918 (4)0.1992 (4)0.4127 (10)0.066 (2)
H13A0.50550.22680.30890.080*
C140.4265 (4)0.2084 (4)0.4909 (11)0.0612 (19)
H14A0.39470.24320.44450.073*
C150.4085 (5)0.1681 (4)0.6319 (14)0.078 (3)
H15A0.36280.17400.68490.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0530 (2)0.0577 (3)0.0488 (2)0.00188 (19)0.0243 (2)0.0168 (2)
C10.023 (3)0.022 (3)0.015 (3)0.000 (2)0.0000.000
C20.021 (2)0.023 (2)0.015 (2)0.0026 (18)0.0018 (17)0.0024 (17)
C30.026 (2)0.020 (2)0.017 (2)0.001 (2)0.0010 (18)0.0001 (17)
C40.026 (2)0.026 (2)0.015 (2)0.0043 (16)0.0018 (19)0.0027 (19)
C50.029 (2)0.024 (2)0.029 (2)0.0014 (17)0.006 (2)0.005 (2)
C60.019 (2)0.031 (3)0.036 (3)0.006 (2)0.002 (2)0.000 (2)
C70.031 (3)0.035 (3)0.027 (2)0.008 (2)0.009 (2)0.001 (2)
C80.030 (3)0.029 (3)0.026 (2)0.002 (2)0.002 (2)0.004 (2)
C90.024 (2)0.028 (3)0.032 (2)0.001 (2)0.002 (2)0.002 (2)
C100.105 (7)0.070 (5)0.073 (6)0.003 (5)0.014 (5)0.010 (4)
C110.071 (5)0.066 (5)0.106 (7)0.001 (5)0.030 (5)0.012 (5)
C120.045 (4)0.062 (5)0.109 (7)0.011 (4)0.013 (4)0.020 (5)
C130.080 (5)0.045 (4)0.074 (5)0.020 (4)0.013 (4)0.020 (4)
C140.065 (5)0.029 (4)0.089 (5)0.007 (3)0.004 (4)0.008 (3)
C150.074 (6)0.053 (5)0.108 (7)0.000 (4)0.018 (5)0.027 (5)
Geometric parameters (Å, º) top
I1—C72.093 (5)C7—C81.391 (7)
C1—C2i1.535 (5)C8—C91.388 (6)
C1—C21.535 (5)C8—H8A0.9500
C1—H1A0.9900C9—H9A0.9500
C1—H1B0.9900C10—C151.364 (11)
C2—C41.528 (6)C10—C111.378 (12)
C2—C3ii1.540 (6)C10—H10A0.9500
C2—C31.545 (6)C11—C121.321 (12)
C3—C2iii1.540 (6)C11—H11A0.9500
C3—H3A0.9900C12—C131.369 (11)
C3—H3B0.9900C12—H12A0.9500
C4—C91.387 (6)C13—C141.368 (10)
C4—C51.409 (6)C13—H13A0.9500
C5—C61.378 (6)C14—C151.319 (11)
C5—H5A0.9500C14—H14A0.9500
C6—C71.382 (7)C15—H15A0.9500
C6—H6A0.9500
C2i—C1—C2112.1 (5)C6—C7—C8120.1 (4)
C2i—C1—H1A109.2C6—C7—I1121.1 (4)
C2—C1—H1A109.2C8—C7—I1118.8 (4)
C2i—C1—H1B109.2C9—C8—C7118.4 (4)
C2—C1—H1B109.2C9—C8—H8A120.8
H1A—C1—H1B107.9C7—C8—H8A120.8
C4—C2—C1107.6 (3)C4—C9—C8122.8 (4)
C4—C2—C3ii113.5 (4)C4—C9—H9A118.6
C1—C2—C3ii107.9 (3)C8—C9—H9A118.6
C4—C2—C3111.0 (4)C15—C10—C11118.1 (8)
C1—C2—C3108.7 (3)C15—C10—H10A120.9
C3ii—C2—C3107.9 (3)C11—C10—H10A120.9
C2iii—C3—C2111.9 (4)C12—C11—C10119.6 (9)
C2iii—C3—H3A109.2C12—C11—H11A120.2
C2—C3—H3A109.2C10—C11—H11A120.2
C2iii—C3—H3B109.2C11—C12—C13121.3 (8)
C2—C3—H3B109.2C11—C12—H12A119.3
H3A—C3—H3B107.9C13—C12—H12A119.3
C9—C4—C5117.3 (4)C14—C13—C12119.5 (8)
C9—C4—C2120.2 (4)C14—C13—H13A120.3
C5—C4—C2122.4 (4)C12—C13—H13A120.3
C6—C5—C4120.5 (4)C15—C14—C13118.7 (8)
C6—C5—H5A119.7C15—C14—H14A120.7
C4—C5—H5A119.7C13—C14—H14A120.7
C5—C6—C7120.8 (5)C14—C15—C10122.8 (8)
C5—C6—H6A119.6C14—C15—H15A118.6
C7—C6—H6A119.6C10—C15—H15A118.6
C2i—C1—C2—C4178.4 (4)C4—C5—C6—C70.0 (7)
C2i—C1—C2—C3ii58.7 (3)C5—C6—C7—C82.5 (7)
C2i—C1—C2—C358.1 (3)C5—C6—C7—I1178.8 (3)
C4—C2—C3—C2iii175.9 (4)C6—C7—C8—C92.3 (7)
C1—C2—C3—C2iii57.7 (5)I1—C7—C8—C9179.0 (3)
C3ii—C2—C3—C2iii59.1 (3)C5—C4—C9—C82.9 (7)
C1—C2—C4—C961.9 (5)C2—C4—C9—C8172.9 (4)
C3ii—C2—C4—C9178.8 (4)C7—C8—C9—C40.5 (7)
C3—C2—C4—C957.0 (5)C15—C10—C11—C121.1 (14)
C1—C2—C4—C5113.7 (4)C10—C11—C12—C131.9 (13)
C3ii—C2—C4—C55.7 (6)C11—C12—C13—C142.2 (12)
C3—C2—C4—C5127.4 (4)C12—C13—C14—C151.7 (11)
C9—C4—C5—C62.6 (6)C13—C14—C15—C100.9 (12)
C2—C4—C5—C6173.1 (4)C11—C10—C15—C140.6 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+1; (iii) y+1, x, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1ii0.952.913.833 (9)163
C10—H10A···Cg2iv0.952.853.733 (9)156
Symmetry codes: (ii) y, x+1, z+1; (iv) y+1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H28I4·4C6H6
Mr1256.60
Crystal system, space groupTetragonal, P421c
Temperature (K)164
a, c (Å)18.883 (3), 7.2442 (19)
V3)2583.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.60 × 0.20 × 0.12
Data collection
DiffractometerSiemens SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.509, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
35313, 2953, 2365
Rint0.063
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.05
No. of reflections2953
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 0.82
Absolute structureFlack (1983), 1263 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.952.913.833 (9)163
C10—H10A···Cg2ii0.952.853.733 (9)156
Symmetry codes: (i) y, x+1, z+1; (ii) y+1/2, x+1/2, z+1/2.
 

References

First citationBoldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248–o252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O. & Keana, J. F. W. (2002). Org. Lett. 4, 3631–3634.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). New J. Chem. pp. 143–148.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds