organic compounds
1,3,5,7-Tetrakis(4-iodophenyl)adamantane benzene tetrasolvate
aInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Physikalische und Theoretische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de
The title molecule, C34H28I4·4C6H6, has crystallographic symmetry and crystallizes with four symmetry-related benzene solvent molecules. The phenyl group is eclipsed with one of the adamantane C—C bonds. The tetraphenyladamantane units and the benzene solvent molecules are connected by weak intermolecular phenyl–benzene C—H⋯π and benzene–benzene C—H⋯π interactions. In the crystal, molecules are linked along the c-axis direction via the iodophenyl groups by a combination of weak intermolecular I⋯I [3.944 (1) Å] and I⋯π(phenyl) [3.608 (6) and 3.692 (5) Å] interactions.
Related literature
For the preparation of the title compound, see: Li et al. (2002). For the of a related compound, see: Boldog et al. (2009). For intermolecular interactions of I atoms, see: Pedireddi et al. (1994); Thaimattam et al. (1998)
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1995); cell SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810021744/lh5063sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021744/lh5063Isup2.hkl
The title compound was prepared as described by Li et al. (2002). Single crystals were obtained by recrystallization of the compound from benzene. The crystals rapidly decomposed in the air at room temperature. Therefore a crystal was taken from the mother liquor and was rapidly cooled to 164 K.
The H atoms were positioned geometrically and treated as riding: Cnon-planar—H=0.99 Å, Cplanar—H=0.95Å and Uiso(H)=1.2Ueq(C). The
was determined using 1263 Friedel pairs.Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C34H28I4·4C6H6 | Dx = 1.616 Mg m−3 |
Mr = 1256.60 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 103 reflections |
Hall symbol: P -4 2n | θ = 3–23° |
a = 18.883 (3) Å | µ = 2.45 mm−1 |
c = 7.2442 (19) Å | T = 164 K |
V = 2583.1 (9) Å3 | Rod, colorless |
Z = 2 | 0.60 × 0.20 × 0.12 mm |
F(000) = 1224 |
Siemens SMART 1K CCD diffractometer | 2953 independent reflections |
Radiation source: normal-focus sealed tube | 2365 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −24→24 |
Tmin = 0.509, Tmax = 0.751 | k = −24→24 |
35313 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2953 reflections | Δρmax = 1.76 e Å−3 |
141 parameters | Δρmin = −0.82 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1263 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (4) |
C34H28I4·4C6H6 | Z = 2 |
Mr = 1256.60 | Mo Kα radiation |
Tetragonal, P421c | µ = 2.45 mm−1 |
a = 18.883 (3) Å | T = 164 K |
c = 7.2442 (19) Å | 0.60 × 0.20 × 0.12 mm |
V = 2583.1 (9) Å3 |
Siemens SMART 1K CCD diffractometer | 2953 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2365 reflections with I > 2σ(I) |
Tmin = 0.509, Tmax = 0.751 | Rint = 0.063 |
35313 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.105 | Δρmax = 1.76 e Å−3 |
S = 1.05 | Δρmin = −0.82 e Å−3 |
2953 reflections | Absolute structure: Flack (1983), 1263 Friedel pairs |
141 parameters | Absolute structure parameter: −0.01 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.25295 (2) | 0.30544 (2) | −0.23303 (6) | 0.05317 (17) | |
C1 | 0.5000 | 0.5000 | 0.2564 (9) | 0.0199 (12) | |
H1A | 0.5258 | 0.4664 | 0.1760 | 0.024* | 0.50 |
H1B | 0.4742 | 0.5336 | 0.1760 | 0.024* | 0.50 |
C2 | 0.4466 (2) | 0.4589 (2) | 0.3747 (6) | 0.0195 (9) | |
C3 | 0.4875 (3) | 0.4074 (2) | 0.5016 (6) | 0.0209 (9) | |
H3A | 0.4534 | 0.3815 | 0.5804 | 0.025* | |
H3B | 0.5129 | 0.3723 | 0.4248 | 0.025* | |
C4 | 0.3977 (2) | 0.4186 (2) | 0.2437 (6) | 0.0222 (8) | |
C5 | 0.3250 (2) | 0.4344 (2) | 0.2272 (7) | 0.0274 (10) | |
H5A | 0.3039 | 0.4677 | 0.3087 | 0.033* | |
C6 | 0.2844 (3) | 0.4020 (3) | 0.0937 (6) | 0.0287 (11) | |
H6A | 0.2354 | 0.4131 | 0.0842 | 0.034* | |
C7 | 0.3139 (3) | 0.3534 (3) | −0.0265 (6) | 0.0310 (11) | |
C8 | 0.3848 (3) | 0.3345 (3) | −0.0094 (7) | 0.0282 (11) | |
H8A | 0.4052 | 0.3000 | −0.0885 | 0.034* | |
C9 | 0.4250 (3) | 0.3675 (3) | 0.1261 (6) | 0.0279 (10) | |
H9A | 0.4734 | 0.3544 | 0.1388 | 0.034* | |
C10 | 0.4526 (5) | 0.1182 (4) | 0.7048 (12) | 0.083 (2) | |
H10A | 0.4384 | 0.0903 | 0.8073 | 0.099* | |
C11 | 0.5184 (5) | 0.1096 (5) | 0.6257 (15) | 0.081 (3) | |
H11A | 0.5501 | 0.0748 | 0.6719 | 0.097* | |
C12 | 0.5372 (4) | 0.1500 (4) | 0.4852 (13) | 0.072 (2) | |
H12A | 0.5831 | 0.1449 | 0.4335 | 0.086* | |
C13 | 0.4918 (4) | 0.1992 (4) | 0.4127 (10) | 0.066 (2) | |
H13A | 0.5055 | 0.2268 | 0.3089 | 0.080* | |
C14 | 0.4265 (4) | 0.2084 (4) | 0.4909 (11) | 0.0612 (19) | |
H14A | 0.3947 | 0.2432 | 0.4445 | 0.073* | |
C15 | 0.4085 (5) | 0.1681 (4) | 0.6319 (14) | 0.078 (3) | |
H15A | 0.3628 | 0.1740 | 0.6849 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0530 (2) | 0.0577 (3) | 0.0488 (2) | 0.00188 (19) | −0.0243 (2) | −0.0168 (2) |
C1 | 0.023 (3) | 0.022 (3) | 0.015 (3) | 0.000 (2) | 0.000 | 0.000 |
C2 | 0.021 (2) | 0.023 (2) | 0.015 (2) | −0.0026 (18) | −0.0018 (17) | −0.0024 (17) |
C3 | 0.026 (2) | 0.020 (2) | 0.017 (2) | −0.001 (2) | −0.0010 (18) | −0.0001 (17) |
C4 | 0.026 (2) | 0.026 (2) | 0.015 (2) | −0.0043 (16) | 0.0018 (19) | 0.0027 (19) |
C5 | 0.029 (2) | 0.024 (2) | 0.029 (2) | −0.0014 (17) | 0.006 (2) | 0.005 (2) |
C6 | 0.019 (2) | 0.031 (3) | 0.036 (3) | −0.006 (2) | −0.002 (2) | 0.000 (2) |
C7 | 0.031 (3) | 0.035 (3) | 0.027 (2) | −0.008 (2) | −0.009 (2) | 0.001 (2) |
C8 | 0.030 (3) | 0.029 (3) | 0.026 (2) | 0.002 (2) | −0.002 (2) | −0.004 (2) |
C9 | 0.024 (2) | 0.028 (3) | 0.032 (2) | 0.001 (2) | −0.002 (2) | −0.002 (2) |
C10 | 0.105 (7) | 0.070 (5) | 0.073 (6) | −0.003 (5) | 0.014 (5) | 0.010 (4) |
C11 | 0.071 (5) | 0.066 (5) | 0.106 (7) | −0.001 (5) | −0.030 (5) | 0.012 (5) |
C12 | 0.045 (4) | 0.062 (5) | 0.109 (7) | −0.011 (4) | 0.013 (4) | −0.020 (5) |
C13 | 0.080 (5) | 0.045 (4) | 0.074 (5) | −0.020 (4) | 0.013 (4) | −0.020 (4) |
C14 | 0.065 (5) | 0.029 (4) | 0.089 (5) | −0.007 (3) | −0.004 (4) | −0.008 (3) |
C15 | 0.074 (6) | 0.053 (5) | 0.108 (7) | 0.000 (4) | 0.018 (5) | −0.027 (5) |
I1—C7 | 2.093 (5) | C7—C8 | 1.391 (7) |
C1—C2i | 1.535 (5) | C8—C9 | 1.388 (6) |
C1—C2 | 1.535 (5) | C8—H8A | 0.9500 |
C1—H1A | 0.9900 | C9—H9A | 0.9500 |
C1—H1B | 0.9900 | C10—C15 | 1.364 (11) |
C2—C4 | 1.528 (6) | C10—C11 | 1.378 (12) |
C2—C3ii | 1.540 (6) | C10—H10A | 0.9500 |
C2—C3 | 1.545 (6) | C11—C12 | 1.321 (12) |
C3—C2iii | 1.540 (6) | C11—H11A | 0.9500 |
C3—H3A | 0.9900 | C12—C13 | 1.369 (11) |
C3—H3B | 0.9900 | C12—H12A | 0.9500 |
C4—C9 | 1.387 (6) | C13—C14 | 1.368 (10) |
C4—C5 | 1.409 (6) | C13—H13A | 0.9500 |
C5—C6 | 1.378 (6) | C14—C15 | 1.319 (11) |
C5—H5A | 0.9500 | C14—H14A | 0.9500 |
C6—C7 | 1.382 (7) | C15—H15A | 0.9500 |
C6—H6A | 0.9500 | ||
C2i—C1—C2 | 112.1 (5) | C6—C7—C8 | 120.1 (4) |
C2i—C1—H1A | 109.2 | C6—C7—I1 | 121.1 (4) |
C2—C1—H1A | 109.2 | C8—C7—I1 | 118.8 (4) |
C2i—C1—H1B | 109.2 | C9—C8—C7 | 118.4 (4) |
C2—C1—H1B | 109.2 | C9—C8—H8A | 120.8 |
H1A—C1—H1B | 107.9 | C7—C8—H8A | 120.8 |
C4—C2—C1 | 107.6 (3) | C4—C9—C8 | 122.8 (4) |
C4—C2—C3ii | 113.5 (4) | C4—C9—H9A | 118.6 |
C1—C2—C3ii | 107.9 (3) | C8—C9—H9A | 118.6 |
C4—C2—C3 | 111.0 (4) | C15—C10—C11 | 118.1 (8) |
C1—C2—C3 | 108.7 (3) | C15—C10—H10A | 120.9 |
C3ii—C2—C3 | 107.9 (3) | C11—C10—H10A | 120.9 |
C2iii—C3—C2 | 111.9 (4) | C12—C11—C10 | 119.6 (9) |
C2iii—C3—H3A | 109.2 | C12—C11—H11A | 120.2 |
C2—C3—H3A | 109.2 | C10—C11—H11A | 120.2 |
C2iii—C3—H3B | 109.2 | C11—C12—C13 | 121.3 (8) |
C2—C3—H3B | 109.2 | C11—C12—H12A | 119.3 |
H3A—C3—H3B | 107.9 | C13—C12—H12A | 119.3 |
C9—C4—C5 | 117.3 (4) | C14—C13—C12 | 119.5 (8) |
C9—C4—C2 | 120.2 (4) | C14—C13—H13A | 120.3 |
C5—C4—C2 | 122.4 (4) | C12—C13—H13A | 120.3 |
C6—C5—C4 | 120.5 (4) | C15—C14—C13 | 118.7 (8) |
C6—C5—H5A | 119.7 | C15—C14—H14A | 120.7 |
C4—C5—H5A | 119.7 | C13—C14—H14A | 120.7 |
C5—C6—C7 | 120.8 (5) | C14—C15—C10 | 122.8 (8) |
C5—C6—H6A | 119.6 | C14—C15—H15A | 118.6 |
C7—C6—H6A | 119.6 | C10—C15—H15A | 118.6 |
C2i—C1—C2—C4 | −178.4 (4) | C4—C5—C6—C7 | 0.0 (7) |
C2i—C1—C2—C3ii | 58.7 (3) | C5—C6—C7—C8 | 2.5 (7) |
C2i—C1—C2—C3 | −58.1 (3) | C5—C6—C7—I1 | −178.8 (3) |
C4—C2—C3—C2iii | 175.9 (4) | C6—C7—C8—C9 | −2.3 (7) |
C1—C2—C3—C2iii | 57.7 (5) | I1—C7—C8—C9 | 179.0 (3) |
C3ii—C2—C3—C2iii | −59.1 (3) | C5—C4—C9—C8 | 2.9 (7) |
C1—C2—C4—C9 | 61.9 (5) | C2—C4—C9—C8 | −172.9 (4) |
C3ii—C2—C4—C9 | −178.8 (4) | C7—C8—C9—C4 | −0.5 (7) |
C3—C2—C4—C9 | −57.0 (5) | C15—C10—C11—C12 | 1.1 (14) |
C1—C2—C4—C5 | −113.7 (4) | C10—C11—C12—C13 | −1.9 (13) |
C3ii—C2—C4—C5 | 5.7 (6) | C11—C12—C13—C14 | 2.2 (12) |
C3—C2—C4—C5 | 127.4 (4) | C12—C13—C14—C15 | −1.7 (11) |
C9—C4—C5—C6 | −2.6 (6) | C13—C14—C15—C10 | 0.9 (12) |
C2—C4—C5—C6 | 173.1 (4) | C11—C10—C15—C14 | −0.6 (13) |
Symmetry codes: (i) −x+1, −y+1, z; (ii) y, −x+1, −z+1; (iii) −y+1, x, −z+1. |
Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···Cg1ii | 0.95 | 2.91 | 3.833 (9) | 163 |
C10—H10A···Cg2iv | 0.95 | 2.85 | 3.733 (9) | 156 |
Symmetry codes: (ii) y, −x+1, −z+1; (iv) −y+1/2, −x+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C34H28I4·4C6H6 |
Mr | 1256.60 |
Crystal system, space group | Tetragonal, P421c |
Temperature (K) | 164 |
a, c (Å) | 18.883 (3), 7.2442 (19) |
V (Å3) | 2583.1 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.45 |
Crystal size (mm) | 0.60 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Siemens SMART 1K CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.509, 0.751 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35313, 2953, 2365 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.105, 1.05 |
No. of reflections | 2953 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.76, −0.82 |
Absolute structure | Flack (1983), 1263 Friedel pairs |
Absolute structure parameter | −0.01 (4) |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···Cg1i | 0.95 | 2.91 | 3.833 (9) | 163 |
C10—H10A···Cg2ii | 0.95 | 2.85 | 3.733 (9) | 156 |
Symmetry codes: (i) y, −x+1, −z+1; (ii) −y+1/2, −x+1/2, z+1/2. |
References
Boldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248–o252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O. & Keana, J. F. W. (2002). Org. Lett. 4, 3631–3634. Web of Science CrossRef PubMed CAS Google Scholar
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Thaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). New J. Chem. pp. 143–148. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was prepared as a precursor for the synthesis of EPR-active tetrahedral model systems.
The asymmetric unit contains a quarter of a 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecule and one benzene solvent molecule. The molecular structure is shown in Fig. 1. The substituted adamantane molecule has 4 symmetry. The conformation of the tetraphenyladamantane unit is very similar to the conformation in the crystal structure of 1,3,5,7-tetraphenyladamantane (Boldog et al., 2009), with the phenyl group eclipsed with one of the adamantane C—C bonds (torsion angle C5—C4—C2—C3i = 5.7 (6)° [symmetry i: y, 1 - x, 1 - z]).
The crystal packing is shown in Fig. 2. The tetraphenyladamantane and the benzene solvent molecules are connected by intermolecular C—H···π interactions (Table 1, Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10—C15 ring respectively). There is a C—H···π contact between the phenyl ring and a benzene solvent molecule [angle between planes of rings: 72.9 (2)°]. The Cphenyl—H bond does not point to the center of the benzene ring, but closer to the midpoint of the C13—C14 bond. The benzene solvent molecules are connected along the c direction by an additional C—H···π contact. The angle between the planes of the donor and acceptor benzene molecules is 83.3 (2)° and the donor C—H bond points closely to the center of the acceptor ring.
Each C—I bond points to the iodophenyl group of a neighboring molecule as shown in Fig. 3. The shortest contact distances are: I1···I1i = 3.944 (1) Å, I1···C6i = 3.608 (6)Å and I1···C7i = 3.692 (5)Å (symmetry i: 1/2 - y, 1/2 - x, -1/2 + z). The angles for these contacts are: C7—I1···I1i = 158.6 (1)°, C7—I1···C6i = 153.9 (2)° and C7—I1···C7i = 167.0 (2)°. This combination of weak interactions link the 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecules along the c direction. The significance of these interactions for crystal packing has been discussed by Pedireddi et al. (1994) and Thaimattam et al. (1998).