organic compounds
6-Nitrobenzimidazolium dihydrogen phosphate 6-nitrobenzimidazole solvate dihydrate
aState Key Lab. Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn
In the 7H6N3O2+·H2PO4−·C7H5N3O2·2H2O, the components are connected through O—H⋯O, N—H⋯O and O—H⋯N hydrogen-bonding interactions, forming a sheet-like structure parallel to (101). Adjacent sheets are further linked together by strong O—H⋯O hydrogen-bonds involving the dihydrogenphosphate groups. π–π stacking interactions between neighbouring aromatic constituents [centroid–centroid distance 3.653 (3) Å] help to consolidate the crystal packing.
of the title compound, CRelated literature
For the preparation of inorganic metal phosphates, see: Benard et al. (1996); Jensen et al. (2000). For template synthesis of phosphates, see: Sameski et al. (1993); Lii et al. (1998). For phosphates with organic cations, see: Dakhlaoui et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810023603/wm2359sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023603/wm2359Isup2.hkl
The title compound was obtained by the reaction of phosphoric acid, 6-nitrobenzimidazole and methanol/distilled water under room temperature. Typically, a mixture of phosphoric acid (0.2 ml), analytically pure 6-nitrobenzimidazole (0.164 g) and methanol/distilled water (10 ml/10 ml) was stirred at room temperature before it was filtered. The final filtrate was allowed to evaporate slowly at room temperature for 7 days to obtain yellow crystals.
All H atoms associated with C atoms and N atoms were positioned geometrically and refined as riding model, with N–H = 0.86 Å, C–Haromatic type = 0.93 Å, Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O5, O6, O9 and O10 were discernible from difference Fourier maps. Their Uiso(H) values were fixed at 0.05 Å2 and their coordinates were not refined.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. The layer structure of (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O). Hydrogen bonds are indicated by dashed lines. | |
Fig. 3. A packing diagram for the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds. |
C7H6N3O2+·H2PO4−·C7H5N3O2·2H2O | Z = 2 |
Mr = 460.31 | F(000) = 476 |
Triclinic, P1 | Dx = 1.610 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4683 (19) Å | Cell parameters from 6404 reflections |
b = 9.990 (2) Å | θ = 3.1–27.5° |
c = 11.407 (2) Å | µ = 0.22 mm−1 |
α = 90.73 (3)° | T = 293 K |
β = 107.10 (3)° | Platelet, yellow |
γ = 111.66 (3)° | 0.37 × 0.32 × 0.12 mm |
V = 949.4 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 4286 independent reflections |
Radiation source: fine-focus sealed tube | 2827 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −12→12 |
Tmin = 0.924, Tmax = 0.975 | k = −12→12 |
9332 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7024P] where P = (Fo2 + 2Fc2)/3 |
4286 reflections | (Δ/σ)max = 0.005 |
280 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C7H6N3O2+·H2PO4−·C7H5N3O2·2H2O | γ = 111.66 (3)° |
Mr = 460.31 | V = 949.4 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.4683 (19) Å | Mo Kα radiation |
b = 9.990 (2) Å | µ = 0.22 mm−1 |
c = 11.407 (2) Å | T = 293 K |
α = 90.73 (3)° | 0.37 × 0.32 × 0.12 mm |
β = 107.10 (3)° |
Rigaku R-AXIS RAPID diffractometer | 4286 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2827 reflections with I > 2σ(I) |
Tmin = 0.924, Tmax = 0.975 | Rint = 0.021 |
9332 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.43 e Å−3 |
4286 reflections | Δρmin = −0.47 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.46015 (8) | 0.77962 (7) | 0.52850 (6) | 0.03448 (19) | |
O1 | 1.0279 (3) | 0.6110 (3) | 0.1175 (3) | 0.0759 (8) | |
N1 | 0.4441 (3) | 0.4733 (2) | 0.2701 (2) | 0.0392 (5) | |
H1A | 0.4368 | 0.4114 | 0.3221 | 0.047* | |
C1 | 0.6946 (3) | 0.4893 (3) | 0.2258 (2) | 0.0336 (5) | |
H1B | 0.7181 | 0.4226 | 0.2760 | 0.040* | |
O2 | 0.9605 (3) | 0.4445 (3) | 0.2308 (2) | 0.0638 (6) | |
N2 | 0.3902 (3) | 0.6274 (2) | 0.1497 (2) | 0.0385 (5) | |
H2A | 0.3417 | 0.6800 | 0.1120 | 0.046* | |
C2 | 0.5632 (3) | 0.5227 (3) | 0.2149 (2) | 0.0313 (5) | |
O3 | 1.1886 (3) | 1.0612 (3) | 0.1237 (3) | 0.0771 (8) | |
N3 | 0.9352 (3) | 0.5369 (3) | 0.1686 (2) | 0.0447 (6) | |
C3 | 0.5284 (3) | 0.6217 (3) | 0.1383 (2) | 0.0317 (5) | |
O4 | 1.0632 (3) | 1.1997 (3) | 0.1303 (3) | 0.0762 (8) | |
N4 | 1.0431 (3) | 0.7285 (2) | 0.4511 (2) | 0.0379 (5) | |
C4 | 0.6251 (3) | 0.6929 (3) | 0.0684 (2) | 0.0376 (6) | |
H4B | 0.6011 | 0.7583 | 0.0168 | 0.045* | |
O5 | 0.4699 (3) | 0.8359 (2) | 0.40310 (18) | 0.0489 (5) | |
H5A | 0.4918 | 0.9324 | 0.4014 | 0.050* | |
N5 | 0.8298 (3) | 0.7543 (2) | 0.47608 (19) | 0.0375 (5) | |
H5B | 0.7499 | 0.7403 | 0.5024 | 0.045* | |
C5 | 0.7570 (3) | 0.6616 (3) | 0.0796 (2) | 0.0376 (6) | |
H5C | 0.8259 | 0.7070 | 0.0355 | 0.045* | |
O6 | 0.2931 (2) | 0.6510 (2) | 0.4983 (2) | 0.0471 (5) | |
H6A | 0.1868 | 0.6647 | 0.4826 | 0.050* | |
N6 | 1.0976 (3) | 1.0955 (3) | 0.1613 (2) | 0.0492 (6) | |
C6 | 0.7888 (3) | 0.5623 (3) | 0.1566 (2) | 0.0347 (6) | |
O7 | 0.5822 (2) | 0.7132 (2) | 0.57244 (19) | 0.0456 (5) | |
C7 | 0.3444 (3) | 0.5381 (3) | 0.2287 (3) | 0.0425 (6) | |
H7B | 0.2539 | 0.5234 | 0.2518 | 0.051* | |
O8 | 0.4731 (3) | 0.8988 (2) | 0.61749 (16) | 0.0435 (5) | |
C8 | 1.0885 (3) | 0.9142 (3) | 0.3032 (2) | 0.0367 (6) | |
H8B | 1.1769 | 0.9045 | 0.2902 | 0.044* | |
O9 | 0.2853 (3) | 0.8166 (3) | 0.0119 (2) | 0.0625 (6) | |
H9A | 0.2025 | 0.8421 | 0.0112 | 0.050* | |
H9B | 0.3401 | 0.8590 | −0.0339 | 0.050* | |
C9 | 1.0114 (3) | 0.8331 (3) | 0.3813 (2) | 0.0320 (5) | |
O10 | 0.4652 (3) | 0.9058 (3) | 0.8556 (2) | 0.0754 (8) | |
H10A | 0.4652 | 0.8914 | 0.7771 | 0.050* | |
H10B | 0.5564 | 0.9646 | 0.9008 | 0.050* | |
C10 | 0.8767 (3) | 0.8494 (3) | 0.3970 (2) | 0.0322 (5) | |
C11 | 0.8168 (3) | 0.9477 (3) | 0.3391 (2) | 0.0389 (6) | |
H11A | 0.7279 | 0.9578 | 0.3508 | 0.047* | |
C12 | 0.8942 (3) | 1.0293 (3) | 0.2638 (2) | 0.0401 (6) | |
H12A | 0.8592 | 1.0976 | 0.2244 | 0.048* | |
C13 | 1.0254 (3) | 1.0093 (3) | 0.2469 (2) | 0.0364 (6) | |
C14 | 0.9324 (3) | 0.6863 (3) | 0.5052 (2) | 0.0387 (6) | |
H14A | 0.9253 | 0.6161 | 0.5585 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0389 (4) | 0.0324 (4) | 0.0420 (4) | 0.0175 (3) | 0.0220 (3) | 0.0148 (3) |
O1 | 0.0584 (15) | 0.097 (2) | 0.104 (2) | 0.0408 (15) | 0.0564 (15) | 0.0469 (16) |
N1 | 0.0364 (12) | 0.0418 (13) | 0.0442 (13) | 0.0156 (10) | 0.0187 (10) | 0.0156 (10) |
C1 | 0.0338 (13) | 0.0333 (13) | 0.0338 (13) | 0.0131 (11) | 0.0109 (10) | 0.0113 (10) |
O2 | 0.0587 (14) | 0.0820 (17) | 0.0750 (16) | 0.0482 (14) | 0.0283 (12) | 0.0319 (13) |
N2 | 0.0416 (13) | 0.0427 (13) | 0.0403 (12) | 0.0253 (11) | 0.0146 (10) | 0.0109 (10) |
C2 | 0.0294 (12) | 0.0323 (13) | 0.0327 (13) | 0.0109 (10) | 0.0120 (10) | 0.0063 (10) |
O3 | 0.0843 (18) | 0.103 (2) | 0.0893 (18) | 0.0559 (17) | 0.0655 (16) | 0.0499 (16) |
N3 | 0.0375 (13) | 0.0537 (15) | 0.0484 (14) | 0.0204 (12) | 0.0182 (11) | 0.0078 (11) |
C3 | 0.0347 (13) | 0.0311 (13) | 0.0282 (12) | 0.0131 (11) | 0.0084 (10) | 0.0037 (9) |
O4 | 0.0911 (19) | 0.0713 (16) | 0.101 (2) | 0.0464 (15) | 0.0594 (16) | 0.0566 (15) |
N4 | 0.0334 (12) | 0.0393 (12) | 0.0444 (13) | 0.0156 (10) | 0.0151 (10) | 0.0105 (10) |
C4 | 0.0433 (15) | 0.0337 (13) | 0.0330 (13) | 0.0130 (12) | 0.0107 (11) | 0.0087 (10) |
O5 | 0.0798 (15) | 0.0367 (10) | 0.0441 (11) | 0.0264 (11) | 0.0341 (11) | 0.0164 (8) |
N5 | 0.0325 (12) | 0.0453 (13) | 0.0373 (12) | 0.0135 (10) | 0.0172 (9) | 0.0084 (9) |
C5 | 0.0366 (14) | 0.0419 (15) | 0.0325 (13) | 0.0109 (12) | 0.0144 (11) | 0.0086 (11) |
O6 | 0.0365 (11) | 0.0321 (10) | 0.0764 (14) | 0.0126 (8) | 0.0240 (10) | 0.0171 (9) |
N6 | 0.0469 (14) | 0.0591 (16) | 0.0500 (15) | 0.0219 (13) | 0.0252 (12) | 0.0194 (12) |
C6 | 0.0289 (13) | 0.0423 (14) | 0.0322 (13) | 0.0149 (11) | 0.0078 (10) | 0.0036 (10) |
O7 | 0.0405 (11) | 0.0490 (11) | 0.0649 (13) | 0.0249 (9) | 0.0316 (10) | 0.0280 (10) |
C7 | 0.0383 (15) | 0.0491 (16) | 0.0470 (16) | 0.0212 (13) | 0.0182 (12) | 0.0106 (12) |
O8 | 0.0659 (13) | 0.0377 (10) | 0.0380 (10) | 0.0233 (10) | 0.0281 (9) | 0.0151 (8) |
C8 | 0.0297 (13) | 0.0420 (15) | 0.0407 (14) | 0.0125 (11) | 0.0166 (11) | 0.0042 (11) |
O9 | 0.0635 (14) | 0.0811 (16) | 0.0725 (15) | 0.0465 (13) | 0.0389 (12) | 0.0432 (12) |
C9 | 0.0291 (12) | 0.0320 (13) | 0.0331 (13) | 0.0088 (10) | 0.0116 (10) | 0.0031 (10) |
O10 | 0.0840 (19) | 0.100 (2) | 0.0467 (13) | 0.0308 (16) | 0.0344 (13) | 0.0136 (13) |
C10 | 0.0298 (13) | 0.0349 (13) | 0.0319 (13) | 0.0097 (11) | 0.0133 (10) | 0.0055 (10) |
C11 | 0.0332 (14) | 0.0465 (15) | 0.0410 (15) | 0.0189 (12) | 0.0133 (11) | 0.0054 (11) |
C12 | 0.0376 (14) | 0.0437 (15) | 0.0426 (15) | 0.0183 (12) | 0.0148 (12) | 0.0108 (11) |
C13 | 0.0357 (14) | 0.0355 (14) | 0.0360 (14) | 0.0090 (11) | 0.0150 (11) | 0.0075 (10) |
C14 | 0.0367 (14) | 0.0356 (14) | 0.0417 (15) | 0.0111 (12) | 0.0132 (11) | 0.0093 (11) |
P1—O8 | 1.500 (2) | O5—H5A | 0.9100 |
P1—O7 | 1.504 (2) | N5—C14 | 1.348 (4) |
P1—O5 | 1.5591 (19) | N5—C10 | 1.364 (3) |
P1—O6 | 1.562 (2) | N5—H5B | 0.8600 |
O1—N3 | 1.221 (3) | C5—C6 | 1.391 (4) |
N1—C7 | 1.315 (4) | C5—H5C | 0.9300 |
N1—C2 | 1.388 (3) | O6—H6A | 1.0287 |
N1—H1A | 0.8600 | N6—C13 | 1.463 (3) |
C1—C2 | 1.376 (3) | C7—H7B | 0.9300 |
C1—C6 | 1.378 (3) | C8—C13 | 1.371 (4) |
C1—H1B | 0.9300 | C8—C9 | 1.396 (3) |
O2—N3 | 1.221 (3) | C8—H8B | 0.9300 |
N2—C7 | 1.328 (3) | O9—H9A | 0.9074 |
N2—C3 | 1.374 (3) | O9—H9B | 0.8512 |
N2—H2A | 0.8600 | C9—C10 | 1.405 (3) |
C2—C3 | 1.393 (3) | O10—H10A | 0.9048 |
O3—N6 | 1.215 (3) | O10—H10B | 0.8438 |
N3—C6 | 1.467 (3) | C10—C11 | 1.389 (4) |
C3—C4 | 1.394 (4) | C11—C12 | 1.373 (4) |
O4—N6 | 1.228 (3) | C11—H11A | 0.9300 |
N4—C14 | 1.310 (3) | C12—C13 | 1.395 (4) |
N4—C9 | 1.388 (3) | C12—H12A | 0.9300 |
C4—C5 | 1.367 (4) | C14—H14A | 0.9300 |
C4—H4B | 0.9300 | ||
O8—P1—O7 | 115.73 (13) | C6—C5—H5C | 119.8 |
O8—P1—O5 | 109.95 (10) | P1—O6—H6A | 123.8 |
O7—P1—O5 | 108.51 (11) | O3—N6—O4 | 122.7 (3) |
O8—P1—O6 | 110.30 (12) | O3—N6—C13 | 118.9 (3) |
O7—P1—O6 | 105.62 (11) | O4—N6—C13 | 118.4 (2) |
O5—P1—O6 | 106.23 (13) | C1—C6—C5 | 124.3 (2) |
C7—N1—C2 | 107.7 (2) | C1—C6—N3 | 117.6 (2) |
C7—N1—H1A | 126.2 | C5—C6—N3 | 118.0 (2) |
C2—N1—H1A | 126.2 | N1—C7—N2 | 110.9 (2) |
C2—C1—C6 | 114.8 (2) | N1—C7—H7B | 124.5 |
C2—C1—H1B | 122.6 | N2—C7—H7B | 124.5 |
C6—C1—H1B | 122.6 | C13—C8—C9 | 115.7 (2) |
C7—N2—C3 | 108.4 (2) | C13—C8—H8B | 122.2 |
C7—N2—H2A | 125.8 | C9—C8—H8B | 122.2 |
C3—N2—H2A | 125.8 | H9A—O9—H9B | 116.1 |
C1—C2—N1 | 131.2 (2) | N4—C9—C8 | 130.5 (2) |
C1—C2—C3 | 122.0 (2) | N4—C9—C10 | 109.0 (2) |
N1—C2—C3 | 106.8 (2) | C8—C9—C10 | 120.4 (2) |
O1—N3—O2 | 122.8 (3) | H10A—O10—H10B | 110.3 |
O1—N3—C6 | 118.4 (2) | N5—C10—C11 | 132.1 (2) |
O2—N3—C6 | 118.8 (2) | N5—C10—C9 | 105.6 (2) |
N2—C3—C2 | 106.2 (2) | C11—C10—C9 | 122.3 (2) |
N2—C3—C4 | 131.9 (2) | C12—C11—C10 | 117.3 (2) |
C2—C3—C4 | 121.9 (2) | C12—C11—H11A | 121.4 |
C14—N4—C9 | 104.8 (2) | C10—C11—H11A | 121.4 |
C5—C4—C3 | 116.5 (2) | C11—C12—C13 | 119.7 (3) |
C5—C4—H4B | 121.8 | C11—C12—H12A | 120.1 |
C3—C4—H4B | 121.8 | C13—C12—H12A | 120.1 |
P1—O5—H5A | 115.9 | C8—C13—C12 | 124.6 (2) |
C14—N5—C10 | 107.1 (2) | C8—C13—N6 | 118.7 (2) |
C14—N5—H5B | 126.5 | C12—C13—N6 | 116.7 (2) |
C10—N5—H5B | 126.5 | N4—C14—N5 | 113.5 (2) |
C4—C5—C6 | 120.4 (2) | N4—C14—H14A | 123.3 |
C4—C5—H5C | 119.8 | N5—C14—H14A | 123.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O7i | 0.86 | 1.74 | 2.600 (2) | 179 |
N2—H2A···O9 | 0.86 | 1.92 | 2.752 (2) | 164 |
O6—H6A···N4ii | 1.03 | 1.66 | 2.665 (2) | 165 |
O5—H5A···O8iii | 0.91 | 1.62 | 2.531 (2) | 174 |
N5—H5B···O7 | 0.86 | 1.91 | 2.773 (2) | 176 |
O9—H9A···O3ii | 0.91 | 2.59 | 3.269 (2) | 132 |
O9—H9A···O4iv | 0.91 | 2.43 | 3.161 (2) | 137 |
O9—H9B···O10v | 0.85 | 1.92 | 2.754 (2) | 165 |
O10—H10A···O8 | 0.91 | 1.85 | 2.740 (2) | 169 |
O10—H10B···O9iii | 0.84 | 2.16 | 2.917 (2) | 149 |
O10—H10B···O3vi | 0.84 | 2.61 | 3.106 (2) | 119 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+2, −z; (v) x, y, z−1; (vi) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H6N3O2+·H2PO4−·C7H5N3O2·2H2O |
Mr | 460.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.4683 (19), 9.990 (2), 11.407 (2) |
α, β, γ (°) | 90.73 (3), 107.10 (3), 111.66 (3) |
V (Å3) | 949.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.37 × 0.32 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.924, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9332, 4286, 2827 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.141, 1.14 |
No. of reflections | 4286 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.47 |
Computer programs: RAPID-AUTO (Rigaku, 1998),
(Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008).D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O7i | 0.86 | 1.74 | 2.600 (2) | 179 |
N2—H2A···O9 | 0.86 | 1.92 | 2.752 (2) | 164 |
O6—H6A···N4ii | 1.03 | 1.66 | 2.665 (2) | 165 |
O5—H5A···O8iii | 0.91 | 1.62 | 2.531 (2) | 174 |
N5—H5B···O7 | 0.86 | 1.91 | 2.773 (2) | 176 |
O9—H9A···O4iv | 0.91 | 2.43 | 3.161 (2) | 137 |
O9—H9B···O10v | 0.85 | 1.92 | 2.754 (2) | 165 |
O10—H10A···O8 | 0.91 | 1.85 | 2.740 (2) | 169 |
O10—H10B···O9iii | 0.84 | 2.16 | 2.917 (2) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+2, −z; (v) x, y, z−1. |
Acknowledgements
This work was supported by the Ningbo Natural Science Foundation (grant Nos. 2007 A610022 and 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.
References
Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M. & Quarton, M. (1996). Chem. Mater. 8, 181–188. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dakhlaoui, A., Gmigui, K. & Smiri, L. S. (2007). Acta Cryst. E63, o537–o539. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jensen, T. R., Hazell, R. G., Vosegaard, T. & Jakobsen, H. J. (2000). Inorg. Chem. 39, 2026–2032. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lii, K.-H., Huang, Y.-F., Huang, C.-Y., Lin, H.-M., Jiang, Y.-C., Liao, F.-L. & Wang, S.-L. (1998). Chem. Mater. 10, 2599–2609. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sameski, J. E., Brzezinski, L. J., Anderson, B., Didiuk, M., Manchanda, R., Crabtree, R. H., BrudVig, G. W. & Schulte, G. K. (1993). Inorg. Chem. 32, 3265–3269. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphates are of great interest because of their rich crystal chemistry and practical applications. Up to now, numerous inorganic metal phosphates have been reported (e.g. Benard et al., 1996; Jensen et al., 2000). Furthermore, various of these phosphates were synthesized by structure-orienting templates molecules, most ferquently amines (Sameski et al., 1993; Lii et al., 1998). Compared with these inorganic phosphates, the synthesis of non-metal phosphates was less well explored in the past decades (Dakhlaoui et al., 2007). Herein, we describe the synthesis and crystal structure of the title compound (I), a new non-metal phosphate with formula (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O)
As shown in Fig.1, the structure of (I) consists of one (C7H6N3O2)+ cation, one [H2PO4]- anion, one (C7H5N3O2) solvent molecule and two H2O molecules, viz. one imidazole molecule is protonated, one imidazole molecule acts as an unprotonated solvent and a dihydrogenphosphate group is present. The O—P—O angles are in the range 105.62 (11)—115.73 (13) °. The P—O bond lengths to the terminal O atoms are 1.500 (2) and 1.504 (2) Å while the P—OH bond lengths are considerably longer with 1.5591 (19) and 1.562 (2) Å.
As is well known, hydrogen bonding interactions play an important role in the formation and stability of low-dimensional structures. In the present structure, the [(C7H6N3O2)]+ cations, [H2PO4]- anions, (C7H5N3O2) and H2O molecules are linked together through hydrogen bonds: N1—H1A···O7, N5—H5B···O7; N2—H2A···O9, O6—H6A···N4, O9—H4A···O4, O9—H9B···O10, O10—H10B···O3 (Fig. 2), forming a two-dimensional sheetlike structure parallel to (101). Adjacent sheets are further linked together by strong H-bonding interactions [O5—H5A···O8, O10—H10A···O8, O10—H10B···O9]. π—π stacking interactions between neighboring 6-nitrobenzimidazole molecules with an interplanar distance of 3.653 (3) Å help to consolidate a three-dimensional supramolecular network structure (Fig. 3).