metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m769-m770

Dicylo­penta­dien­yl[4-(4-vinyl­benz­yl­oxy)pyridine-2,6-di­carboxyl­ato]titanium(IV) monohydrate

aResearch Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China, and bCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: fanghuazhu@sina.com

(Received 8 April 2010; accepted 3 June 2010; online 16 June 2010)

The title compound, [Ti(C5H5)2(C16H11NO5)]·H2O, exhibits a titanocene unit coordinated to a styrene-substituted pyridine-2,6-dicarboxyl­ate ligand synthesized for use as a monomer for polymerization or copolymerization yielding metallocene-containing polymers. The compound crystallized as a monohydrate and the solvent water mol­ecule forms strong O—H⋯O hydrogen bonds with the carboxyl­ate O atoms of the Ti complex, which play an important role in the connection of adjacent mol­ecules. In addition, weak inter­molecular C—H⋯O hydrogen bonds also contribute to the crystal packing arrangement.

Related literature

For applications of metallocene-based polymers, see: Caldwell et al. (2000[Caldwell, G., Meirim, M. G., Neuse, E. W. & Beloussow, K. (2000). J. Inorg. Organomet. Polym. 10, 93-101.]); Peckham et al. (2001[Peckham, T., Nguyen, P., Bourke, S. C., Wang, Q., Harrison, D. G., Zoricak, P., Russell, C., Liable-Sands, L. M., Rheingold, A. L., Lough, A. J. & Manners, I. (2001). Organometallics, 20, 3035-3043.]). For a similar structure, see: Dalir Kheirollahi et al. (2005[Dalir Kheirollahi, P., Aghabozorg, H. & Moghimi, A. (2005). X-Ray Struct. Anal. Online, 21, x153-x154.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C5H5)2(C16H11NO5)]·H2O

  • Mr = 493.35

  • Monoclinic, P 21 /n

  • a = 7.1696 (7) Å

  • b = 13.7884 (13) Å

  • c = 22.419 (2) Å

  • β = 97.460 (1)°

  • V = 2197.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 153 K

  • 0.32 × 0.28 × 0.23 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.907

  • 13494 measured reflections

  • 5269 independent reflections

  • 3775 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.03

  • 5269 reflections

  • 315 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O1⋯O2i 0.97 (4) 1.89 (4) 2.833 (2) 164 (3)
O6—H6O2⋯O2ii 1.08 (5) 1.79 (5) 2.847 (3) 165 (4)
C9—H9A⋯O6iii 0.99 2.59 3.464 (3) 148
C14—H14⋯O6ii 0.95 2.42 3.303 (3) 155
C17—H17⋯O6 1.00 2.59 3.227 (4) 121
C22—H22⋯O3iv 1.00 2.50 3.420 (3) 152
C23—H23⋯O4v 1.00 2.44 3.437 (3) 174
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Metallocene-based polymers have attracted considerable attention and research interest in the areas of catalysts, photosensitizers, heat resisting materials, anticancer medicines and optical materials because of their excellent properties such as a high dielectric constant, high thermal stability and special rheological (Caldwell et al., 2000; Peckham et al., 2001). A number of pyridinecarboxylic acid titanocene-containing complexes have been synthesized (Dalir Kheirollahi et al., 2005).

In the current contribution we would like to report the crystal structure of the title titanocene-containing complex, which also features a styrene functionality and might thus be polymerized or co-polymerized to yield metallocene-containing polymers. The compound crystallized as a monohydrate and the solvate water molecule forms strong O—H···O hydrogen bonds with the carboxylate O atoms of the Ti complex that play an important role in the connection of adjacent molecules (Figure 2). The water molecules are hydrogen bonded towards two symmetry dependent uncoordinated carboxylate oxygen atoms (O2) in neighboring molecules, with two water molecules bridging between two carboxylate O atoms so as to form a quadrilateral ring, thus connecting the complexes into hydrogen bonded dimers (Table 1, Figure 2). In addition, weak intermolecular C—H···O hydrogen bonds also contribute to the crystal packing arrangement (Table 1).

Related literature top

For applications of metallocene-based polymers, see: Caldwell et al. (2000); Peckham et al. (2001). For a similar structure, see: Dalir Kheirollahi et al. (2005).

Experimental top

A solution of 4-(4-vinylbenzyloxy)pyridine-2,6-dicarboxylic acid (0.594 g, 2 mmol) and sodium carbonate (0.212 g, 2 mmol) in 20 ml water was added to a solution of bis(cyclopentadienyl) titanium dichloride (0.498 g, 2 mmol) in 30 ml water at 298 K. Then the mixture was stirred at 298 K for 10 min. After the reaction was completed, the solution was extracted with CHCl3 several times. The combined CHCl3 layers were dried over anhydrous Na2SO4. The product was obtained in 94.8% yield as a yellow powder after solvent removal under vacuum. The single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of a dichloromethane/hexane solution (5/1, v/v) over a period of several days. 1H NMR (500 MHz, CDCl3) δ (ppm): 7.73 (s, 2H), 7.47 (d 2H), 7.39 (d, 2H), 6.73 (q, 2H), 6.18 (s, 10H), 5.78 (d, 1H), 5.32 (s, 2H), 5.29 (d, 1H). IR (cm-1): 1652 (C=O), 1447 (Py), 993 (C=C), 825 (Cp). Elemental analysis calculated(%): C, 65.68; H, 4.42; N, 2.95. Found(%): C, 65.61; H, 4.49; N, 3.01.

Refinement top

Carbon bound H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.95, 0.99 and 1.00 Å, and with Uiso(H) = 1.2 Ueq(C). The water H-atoms were located in a difference Fourier map and were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing in the title compound as viewed down the a-axis. Dashed lines indicate H-bonds but H atoms are omitted for clarity
Dicylopentadienyl[4-(4-vinylbenzyloxy)pyridine-2,6-dicarboxylato]titanium(IV) monohydrate top
Crystal data top
[Ti(C5H5)2(C16H11NO5)]·H2OF(000) = 1024
Mr = 493.35Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4730 reflections
a = 7.1696 (7) Åθ = 2.4–27.3°
b = 13.7884 (13) ŵ = 0.44 mm1
c = 22.419 (2) ÅT = 153 K
β = 97.460 (1)°Block, colourless
V = 2197.6 (4) Å30.32 × 0.28 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
5269 independent reflections
Radiation source: sealed tube3775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.873, Tmax = 0.907k = 1818
13494 measured reflectionsl = 2918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ti(C5H5)2(C16H11NO5)]·H2OV = 2197.6 (4) Å3
Mr = 493.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1696 (7) ŵ = 0.44 mm1
b = 13.7884 (13) ÅT = 153 K
c = 22.419 (2) Å0.32 × 0.28 × 0.23 mm
β = 97.460 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
5269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3775 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.907Rint = 0.098
13494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
5269 reflectionsΔρmin = 0.48 e Å3
315 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.69524 (4)0.37174 (2)0.697730 (16)0.03351 (13)
O10.4408 (2)0.37378 (10)0.63473 (7)0.0461 (4)
N10.6958 (2)0.49830 (11)0.63954 (7)0.0314 (3)
O41.1293 (2)0.58056 (11)0.70963 (7)0.0501 (4)
O50.68376 (18)0.73586 (10)0.52883 (6)0.0433 (4)
O30.95114 (17)0.45046 (10)0.72073 (6)0.0388 (3)
C110.8521 (3)0.63889 (14)0.60863 (8)0.0334 (4)
H110.95980.67970.61330.040*
C160.9911 (2)0.53006 (14)0.69565 (9)0.0340 (4)
O20.2441 (2)0.45197 (13)0.56604 (7)0.0581 (5)
C120.8425 (2)0.55837 (13)0.64445 (8)0.0306 (4)
C100.6995 (3)0.65870 (15)0.56549 (9)0.0354 (4)
C60.7905 (3)0.88739 (15)0.49283 (10)0.0405 (5)
C150.3962 (3)0.44286 (16)0.59832 (9)0.0406 (5)
C140.5456 (3)0.59511 (15)0.55972 (9)0.0371 (4)
H140.44050.60640.53010.045*
C130.5488 (2)0.51691 (14)0.59710 (8)0.0338 (4)
C30.7158 (3)1.04503 (17)0.41498 (10)0.0455 (5)
C90.8416 (3)0.80338 (17)0.53390 (10)0.0476 (5)
H9A0.95470.77050.52270.057*
H9B0.87010.82640.57590.057*
C20.6819 (3)1.12760 (19)0.37223 (12)0.0559 (6)
H20.65521.11100.33090.067*
C220.4196 (3)0.39584 (17)0.74867 (11)0.0468 (5)
H220.28630.39580.72890.056*
C230.5186 (3)0.31475 (17)0.77295 (10)0.0484 (5)
H230.46680.24780.77590.058*
C40.7219 (3)1.05683 (18)0.47672 (11)0.0524 (6)
H40.70021.11900.49280.063*
C10.6844 (3)1.2187 (2)0.38448 (14)0.0651 (7)
H1A0.71021.23990.42500.078*
H1B0.66041.26490.35300.078*
C260.5322 (3)0.47828 (17)0.76070 (10)0.0475 (5)
H260.49320.54680.75120.057*
C190.7826 (4)0.20477 (17)0.71147 (13)0.0595 (7)
H190.76230.16330.74660.071*
C70.7802 (3)0.87685 (17)0.43084 (11)0.0514 (6)
H70.79910.81460.41440.062*
C210.9291 (4)0.29268 (19)0.64666 (12)0.0599 (7)
H211.03110.32590.62800.072*
C250.6991 (3)0.44875 (18)0.79528 (10)0.0497 (6)
H250.79990.49280.81480.060*
C80.7433 (3)0.95444 (18)0.39290 (10)0.0539 (6)
H80.73680.94510.35070.065*
C240.6946 (3)0.34904 (18)0.80199 (10)0.0503 (6)
H240.78810.30970.82880.060*
C50.7596 (3)0.97820 (17)0.51504 (10)0.0477 (5)
H50.76420.98720.55720.057*
C200.9456 (3)0.25547 (16)0.70441 (12)0.0551 (6)
H201.06210.25730.73420.066*
C180.6618 (4)0.21283 (18)0.65783 (15)0.0706 (8)
H180.54030.17720.64770.085*
C170.7549 (5)0.26670 (19)0.61727 (13)0.0701 (8)
H170.71000.27680.57360.084*
O60.8910 (3)0.38835 (15)0.50777 (9)0.0714 (6)
H6O11.011 (5)0.400 (3)0.5321 (15)0.117 (12)*
H6O20.864 (6)0.452 (4)0.4802 (18)0.163 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0321 (2)0.0242 (2)0.0433 (2)0.00074 (13)0.00121 (14)0.00586 (14)
O10.0431 (8)0.0374 (9)0.0543 (9)0.0118 (6)0.0071 (7)0.0121 (7)
N10.0303 (8)0.0267 (8)0.0361 (8)0.0017 (6)0.0007 (6)0.0031 (7)
O40.0366 (7)0.0377 (9)0.0708 (10)0.0081 (6)0.0129 (7)0.0107 (8)
O50.0438 (8)0.0369 (8)0.0470 (8)0.0072 (6)0.0028 (6)0.0157 (7)
O30.0323 (7)0.0329 (8)0.0495 (8)0.0001 (6)0.0016 (6)0.0107 (6)
C110.0328 (9)0.0290 (10)0.0381 (10)0.0031 (7)0.0038 (8)0.0017 (8)
C160.0310 (9)0.0285 (10)0.0418 (11)0.0037 (8)0.0022 (8)0.0015 (8)
O20.0432 (9)0.0624 (11)0.0622 (10)0.0167 (7)0.0184 (7)0.0183 (8)
C120.0296 (9)0.0255 (9)0.0364 (10)0.0011 (7)0.0028 (7)0.0009 (8)
C100.0393 (10)0.0311 (10)0.0358 (10)0.0015 (8)0.0050 (8)0.0051 (8)
C60.0356 (10)0.0369 (12)0.0490 (12)0.0066 (9)0.0049 (9)0.0083 (9)
C150.0382 (11)0.0394 (12)0.0421 (11)0.0070 (9)0.0026 (9)0.0011 (9)
C140.0366 (10)0.0359 (11)0.0370 (10)0.0030 (8)0.0025 (8)0.0052 (9)
C130.0323 (9)0.0315 (11)0.0361 (10)0.0031 (8)0.0008 (8)0.0020 (8)
C30.0358 (11)0.0494 (14)0.0512 (13)0.0056 (9)0.0046 (9)0.0136 (11)
C90.0428 (11)0.0417 (13)0.0565 (13)0.0095 (9)0.0001 (10)0.0135 (11)
C20.0525 (13)0.0530 (16)0.0617 (15)0.0024 (11)0.0058 (11)0.0115 (12)
C220.0347 (11)0.0464 (13)0.0602 (14)0.0028 (9)0.0099 (10)0.0091 (11)
C230.0474 (12)0.0392 (12)0.0614 (14)0.0036 (10)0.0176 (10)0.0147 (11)
C40.0506 (13)0.0377 (13)0.0711 (16)0.0000 (10)0.0153 (11)0.0018 (11)
C10.0554 (15)0.0520 (17)0.087 (2)0.0061 (12)0.0068 (13)0.0186 (14)
C260.0511 (13)0.0399 (13)0.0536 (13)0.0071 (10)0.0147 (10)0.0019 (10)
C190.0695 (16)0.0265 (12)0.0847 (19)0.0092 (11)0.0188 (14)0.0112 (12)
C70.0635 (14)0.0387 (13)0.0526 (14)0.0015 (11)0.0107 (11)0.0002 (10)
C210.0680 (16)0.0430 (15)0.0737 (18)0.0082 (12)0.0277 (14)0.0096 (13)
C250.0497 (13)0.0539 (15)0.0467 (13)0.0078 (11)0.0106 (10)0.0068 (11)
C80.0642 (15)0.0524 (16)0.0451 (13)0.0051 (12)0.0071 (11)0.0061 (11)
C240.0451 (12)0.0600 (16)0.0462 (12)0.0070 (11)0.0067 (10)0.0176 (11)
C50.0521 (13)0.0463 (14)0.0459 (12)0.0030 (10)0.0111 (10)0.0039 (10)
C200.0525 (13)0.0373 (13)0.0761 (17)0.0127 (11)0.0112 (12)0.0029 (12)
C180.0653 (16)0.0295 (13)0.113 (2)0.0026 (11)0.0046 (16)0.0176 (14)
C170.109 (2)0.0436 (15)0.0559 (16)0.0176 (15)0.0047 (15)0.0135 (12)
O60.0559 (11)0.0731 (14)0.0798 (13)0.0169 (10)0.0114 (10)0.0203 (11)
Geometric parameters (Å, º) top
Ti1—O32.1365 (13)C9—H9A0.9900
Ti1—O12.1573 (14)C9—H9B0.9900
Ti1—N12.1792 (15)C2—C11.286 (3)
Ti1—C242.359 (2)C2—H20.9500
Ti1—C182.367 (2)C22—C231.397 (3)
Ti1—C232.371 (2)C22—C261.400 (3)
Ti1—C172.395 (3)C22—H221.0000
Ti1—C192.395 (2)C23—C241.423 (3)
Ti1—C202.397 (2)C23—H231.0000
Ti1—C212.410 (2)C4—C51.388 (3)
Ti1—C252.428 (2)C4—H40.9500
Ti1—C222.430 (2)C1—H1A0.9500
O1—C151.268 (2)C1—H1B0.9500
N1—C121.332 (2)C26—C251.399 (3)
N1—C131.349 (2)C26—H261.0000
O4—C161.218 (2)C19—C201.388 (3)
O5—C101.340 (2)C19—C181.392 (4)
O5—C91.458 (2)C19—H191.0000
O3—C161.282 (2)C7—C81.371 (3)
C11—C121.377 (3)C7—H70.9500
C11—C101.390 (3)C21—C171.382 (4)
C11—H110.9500C21—C201.383 (4)
C16—C121.512 (2)C21—H211.0000
O2—C151.235 (2)C25—C241.384 (3)
C10—C141.402 (3)C25—H251.0000
C6—C51.376 (3)C8—H80.9500
C6—C71.390 (3)C24—H241.0000
C6—C91.495 (3)C5—H50.9500
C15—C131.499 (3)C20—H201.0000
C14—C131.364 (3)C18—C171.408 (4)
C14—H140.9500C18—H181.0000
C3—C81.367 (3)C17—H171.0000
C3—C41.389 (3)O6—H6O10.97 (4)
C3—C21.488 (3)O6—H6O21.08 (5)
O3—Ti1—O1141.08 (5)C10—C14—H14120.4
O3—Ti1—N170.70 (5)N1—C13—C14122.19 (17)
O1—Ti1—N170.40 (5)N1—C13—C15111.25 (16)
O3—Ti1—C2486.58 (7)C14—C13—C15126.54 (17)
O1—Ti1—C24122.70 (7)C8—C3—C4118.7 (2)
N1—Ti1—C24134.41 (8)C8—C3—C2119.0 (2)
O3—Ti1—C18127.10 (8)C4—C3—C2122.3 (2)
O1—Ti1—C1874.28 (8)O5—C9—C6108.73 (16)
N1—Ti1—C18121.54 (9)O5—C9—H9A109.9
C24—Ti1—C18103.80 (11)C6—C9—H9A109.9
O3—Ti1—C23121.20 (7)O5—C9—H9B109.9
O1—Ti1—C2389.18 (7)C6—C9—H9B109.9
N1—Ti1—C23137.22 (7)H9A—C9—H9B108.3
C24—Ti1—C2335.03 (8)C1—C2—C3127.9 (3)
C18—Ti1—C2385.68 (10)C1—C2—H2116.1
O3—Ti1—C17104.91 (9)C3—C2—H2116.1
O1—Ti1—C1774.53 (9)C23—C22—C26108.9 (2)
N1—Ti1—C1791.09 (9)C23—C22—Ti170.76 (12)
C24—Ti1—C17133.61 (9)C26—C22—Ti173.61 (12)
C18—Ti1—C1734.39 (10)C23—C22—H22125.5
C23—Ti1—C17119.97 (10)C26—C22—H22125.5
O3—Ti1—C19104.79 (7)Ti1—C22—H22125.5
O1—Ti1—C19106.35 (8)C22—C23—C24106.7 (2)
N1—Ti1—C19145.69 (8)C22—C23—Ti175.45 (13)
C24—Ti1—C1977.24 (9)C24—C23—Ti172.03 (12)
C18—Ti1—C1933.99 (9)C22—C23—H23126.2
C23—Ti1—C1975.21 (9)C24—C23—H23126.2
C17—Ti1—C1956.38 (9)Ti1—C23—H23126.2
O3—Ti1—C2073.27 (7)C5—C4—C3120.3 (2)
O1—Ti1—C20127.76 (8)C5—C4—H4119.9
N1—Ti1—C20120.90 (8)C3—C4—H4119.9
C24—Ti1—C2086.97 (9)C2—C1—H1A120.0
C18—Ti1—C2056.14 (9)C2—C1—H1B120.0
C23—Ti1—C20101.46 (8)H1A—C1—H1B120.0
C17—Ti1—C2055.74 (9)C25—C26—C22107.5 (2)
C19—Ti1—C2033.69 (8)C25—C26—Ti172.89 (13)
O3—Ti1—C2173.49 (8)C22—C26—Ti172.97 (13)
O1—Ti1—C21106.03 (8)C25—C26—H26126.0
N1—Ti1—C2191.28 (8)C22—C26—H26126.0
C24—Ti1—C21120.12 (9)Ti1—C26—H26126.0
C18—Ti1—C2156.25 (10)C20—C19—C18107.4 (2)
C23—Ti1—C21131.06 (9)C20—C19—Ti173.22 (13)
C17—Ti1—C2133.42 (9)C18—C19—Ti171.90 (13)
C19—Ti1—C2155.95 (9)C20—C19—H19126.1
C20—Ti1—C2133.45 (8)C18—C19—H19126.1
O3—Ti1—C2569.60 (7)Ti1—C19—H19126.1
O1—Ti1—C25119.59 (7)C8—C7—C6121.3 (2)
N1—Ti1—C25100.85 (7)C8—C7—H7119.3
C24—Ti1—C2533.57 (8)C6—C7—H7119.3
C18—Ti1—C25137.22 (10)C17—C21—C20108.2 (2)
C23—Ti1—C2556.56 (8)C17—C21—Ti172.68 (15)
C17—Ti1—C25163.88 (9)C20—C21—Ti172.74 (13)
C19—Ti1—C25109.41 (9)C17—C21—H21125.7
C20—Ti1—C25108.38 (9)C20—C21—H21125.7
C21—Ti1—C25134.30 (9)Ti1—C21—H21125.7
O3—Ti1—C22122.84 (7)C24—C25—C26108.6 (2)
O1—Ti1—C2268.64 (7)C24—C25—Ti170.47 (13)
N1—Ti1—C22103.68 (7)C26—C25—Ti173.69 (13)
C24—Ti1—C2256.37 (8)C24—C25—H25125.6
C18—Ti1—C22104.80 (10)C26—C25—H25125.6
C23—Ti1—C2233.79 (7)Ti1—C25—H25125.6
C17—Ti1—C22132.24 (10)C3—C8—C7120.9 (2)
C19—Ti1—C22106.62 (9)C3—C8—H8119.5
C20—Ti1—C22135.25 (8)C7—C8—H8119.5
C21—Ti1—C22160.63 (9)C25—C24—C23108.19 (19)
C25—Ti1—C2255.38 (8)C25—C24—Ti175.96 (13)
C15—O1—Ti1123.54 (12)C23—C24—Ti172.94 (12)
C12—N1—C13118.42 (16)C25—C24—H24125.5
C12—N1—Ti1120.74 (11)C23—C24—H24125.5
C13—N1—Ti1120.83 (12)Ti1—C24—H24125.5
C10—O5—C9117.14 (15)C6—C5—C4121.0 (2)
C16—O3—Ti1124.24 (11)C6—C5—H5119.5
C12—C11—C10118.02 (17)C4—C5—H5119.5
C12—C11—H11121.0C21—C20—C19108.8 (2)
C10—C11—H11121.0C21—C20—Ti173.81 (13)
O4—C16—O3126.64 (17)C19—C20—Ti173.10 (13)
O4—C16—C12121.14 (18)C21—C20—H20125.4
O3—C16—C12112.22 (16)C19—C20—H20125.4
N1—C12—C11123.48 (16)Ti1—C20—H20125.4
N1—C12—C16111.92 (16)C19—C18—C17107.8 (2)
C11—C12—C16124.54 (16)C19—C18—Ti174.11 (14)
O5—C10—C11125.36 (17)C17—C18—Ti173.88 (15)
O5—C10—C14115.93 (16)C19—C18—H18125.7
C11—C10—C14118.70 (18)C17—C18—H18125.7
C5—C6—C7117.8 (2)Ti1—C18—H18125.7
C5—C6—C9121.3 (2)C21—C17—C18107.7 (2)
C7—C6—C9120.8 (2)C21—C17—Ti173.90 (14)
O2—C15—O1125.71 (19)C18—C17—Ti171.73 (15)
O2—C15—C13120.75 (18)C21—C17—H17125.9
O1—C15—C13113.55 (16)C18—C17—H17125.9
C13—C14—C10119.17 (17)Ti1—C17—H17125.9
C13—C14—H14120.4H6O1—O6—H6O2106 (3)
O3—Ti1—O1—C157.6 (2)N1—Ti1—C19—C1859.1 (2)
N1—Ti1—O1—C155.47 (16)C24—Ti1—C19—C18140.65 (19)
C24—Ti1—O1—C15125.39 (18)C23—Ti1—C19—C18104.61 (18)
C18—Ti1—O1—C15138.1 (2)C17—Ti1—C19—C1838.14 (17)
C23—Ti1—O1—C15136.18 (18)C20—Ti1—C19—C18115.3 (2)
C17—Ti1—O1—C15102.33 (19)C21—Ti1—C19—C1878.64 (18)
C19—Ti1—O1—C15149.50 (18)C25—Ti1—C19—C18150.40 (17)
C20—Ti1—O1—C15119.92 (18)C22—Ti1—C19—C1891.96 (18)
C21—Ti1—O1—C1591.02 (19)C5—C6—C7—C81.0 (3)
C25—Ti1—O1—C1586.12 (19)C9—C6—C7—C8176.5 (2)
C22—Ti1—O1—C15108.66 (18)O3—Ti1—C21—C17159.45 (18)
O3—Ti1—N1—C121.13 (13)O1—Ti1—C21—C1720.07 (18)
O1—Ti1—N1—C12177.44 (15)N1—Ti1—C21—C1790.03 (17)
C24—Ti1—N1—C1265.56 (17)C24—Ti1—C21—C17124.66 (17)
C18—Ti1—N1—C12121.21 (15)C18—Ti1—C21—C1737.87 (16)
C23—Ti1—N1—C12116.57 (15)C23—Ti1—C21—C1783.3 (2)
C17—Ti1—N1—C12104.30 (16)C19—Ti1—C21—C1779.10 (18)
C19—Ti1—N1—C1286.97 (19)C20—Ti1—C21—C17116.1 (2)
C20—Ti1—N1—C1254.46 (17)C25—Ti1—C21—C17163.41 (16)
C21—Ti1—N1—C1270.87 (15)C22—Ti1—C21—C1750.9 (3)
C25—Ti1—N1—C1264.82 (15)O3—Ti1—C21—C2084.48 (15)
C22—Ti1—N1—C12121.54 (15)O1—Ti1—C21—C20136.14 (15)
O3—Ti1—N1—C13179.87 (15)N1—Ti1—C21—C20153.90 (16)
O1—Ti1—N1—C131.56 (14)C24—Ti1—C21—C208.59 (19)
C24—Ti1—N1—C13115.44 (15)C18—Ti1—C21—C2078.20 (17)
C18—Ti1—N1—C1357.79 (17)C23—Ti1—C21—C2032.8 (2)
C23—Ti1—N1—C1364.42 (18)C17—Ti1—C21—C20116.1 (2)
C17—Ti1—N1—C1374.70 (16)C19—Ti1—C21—C2036.97 (15)
C19—Ti1—N1—C1392.04 (19)C25—Ti1—C21—C2047.3 (2)
C20—Ti1—N1—C13124.55 (15)C22—Ti1—C21—C2065.1 (3)
C21—Ti1—N1—C13108.13 (16)C22—C26—C25—C243.0 (3)
C25—Ti1—N1—C13116.18 (15)Ti1—C26—C25—C2462.23 (16)
C22—Ti1—N1—C1359.46 (16)C22—C26—C25—Ti165.26 (16)
O1—Ti1—O3—C164.2 (2)O3—Ti1—C25—C24116.45 (14)
N1—Ti1—O3—C162.05 (15)O1—Ti1—C25—C24105.53 (14)
C24—Ti1—O3—C16137.75 (16)N1—Ti1—C25—C24179.04 (13)
C18—Ti1—O3—C16117.51 (18)C18—Ti1—C25—C246.6 (2)
C23—Ti1—O3—C16132.14 (16)C23—Ti1—C25—C2438.78 (13)
C17—Ti1—O3—C1687.90 (16)C17—Ti1—C25—C2443.8 (4)
C19—Ti1—O3—C16146.41 (16)C19—Ti1—C25—C2417.37 (15)
C20—Ti1—O3—C16134.39 (17)C20—Ti1—C25—C2453.02 (15)
C21—Ti1—O3—C1699.43 (17)C21—Ti1—C25—C2478.31 (18)
C25—Ti1—O3—C16108.02 (17)C22—Ti1—C25—C2479.82 (15)
C22—Ti1—O3—C1692.09 (16)O3—Ti1—C25—C26126.40 (15)
Ti1—O3—C16—O4175.14 (16)O1—Ti1—C25—C2611.62 (16)
Ti1—O3—C16—C124.3 (2)N1—Ti1—C25—C2661.89 (14)
C13—N1—C12—C110.3 (3)C24—Ti1—C25—C26117.1 (2)
Ti1—N1—C12—C11179.30 (14)C18—Ti1—C25—C26110.53 (17)
C13—N1—C12—C16177.54 (16)C23—Ti1—C25—C2678.36 (14)
Ti1—N1—C12—C163.4 (2)C17—Ti1—C25—C26160.9 (3)
C10—C11—C12—N10.6 (3)C19—Ti1—C25—C26134.52 (14)
C10—C11—C12—C16176.32 (17)C20—Ti1—C25—C26170.17 (14)
O4—C16—C12—N1174.76 (18)C21—Ti1—C25—C26164.54 (14)
O3—C16—C12—N14.7 (2)C22—Ti1—C25—C2637.33 (13)
O4—C16—C12—C112.5 (3)C4—C3—C8—C71.3 (3)
O3—C16—C12—C11178.03 (18)C2—C3—C8—C7178.2 (2)
C9—O5—C10—C111.3 (3)C6—C7—C8—C30.1 (4)
C9—O5—C10—C14179.90 (18)C26—C25—C24—C232.1 (3)
C12—C11—C10—O5177.28 (19)Ti1—C25—C24—C2366.39 (16)
C12—C11—C10—C141.3 (3)C26—C25—C24—Ti164.30 (16)
Ti1—O1—C15—O2171.98 (17)C22—C23—C24—C250.3 (3)
Ti1—O1—C15—C137.9 (3)Ti1—C23—C24—C2568.41 (16)
O5—C10—C14—C13177.60 (19)C22—C23—C24—Ti168.08 (16)
C11—C10—C14—C131.1 (3)O3—Ti1—C24—C2557.21 (13)
C12—N1—C13—C140.5 (3)O1—Ti1—C24—C2595.39 (14)
Ti1—N1—C13—C14179.50 (15)N1—Ti1—C24—C251.32 (18)
C12—N1—C13—C15179.46 (16)C18—Ti1—C24—C25175.38 (14)
Ti1—N1—C13—C151.5 (2)C23—Ti1—C24—C25114.42 (19)
C10—C14—C13—N10.2 (3)C17—Ti1—C24—C25164.61 (16)
C10—C14—C13—C15178.62 (19)C19—Ti1—C24—C25163.22 (15)
O2—C15—C13—N1174.18 (19)C20—Ti1—C24—C25130.61 (14)
O1—C15—C13—N15.7 (3)C21—Ti1—C24—C25125.88 (14)
O2—C15—C13—C144.8 (3)C22—Ti1—C24—C2576.60 (15)
O1—C15—C13—C14175.3 (2)O3—Ti1—C24—C23171.63 (14)
C10—O5—C9—C6175.81 (18)O1—Ti1—C24—C2319.03 (17)
C5—C6—C9—O5110.4 (2)N1—Ti1—C24—C23113.10 (14)
C7—C6—C9—O572.2 (3)C18—Ti1—C24—C2360.96 (15)
C8—C3—C2—C1167.4 (3)C17—Ti1—C24—C2380.97 (18)
C4—C3—C2—C112.1 (4)C19—Ti1—C24—C2382.37 (15)
O3—Ti1—C22—C2398.28 (15)C20—Ti1—C24—C23114.97 (15)
O1—Ti1—C22—C23123.83 (15)C21—Ti1—C24—C23119.70 (14)
N1—Ti1—C22—C23173.93 (14)C25—Ti1—C24—C23114.42 (19)
C24—Ti1—C22—C2339.25 (14)C22—Ti1—C24—C2337.81 (13)
C18—Ti1—C22—C2357.67 (16)C7—C6—C5—C40.9 (3)
C17—Ti1—C22—C2381.74 (18)C9—C6—C5—C4176.62 (19)
C19—Ti1—C22—C2322.37 (16)C3—C4—C5—C60.3 (3)
C20—Ti1—C22—C231.2 (2)C17—C21—C20—C190.7 (3)
C21—Ti1—C22—C2346.4 (3)Ti1—C21—C20—C1965.25 (17)
C25—Ti1—C22—C2380.06 (15)C17—C21—C20—Ti164.51 (17)
O3—Ti1—C22—C2619.10 (15)C18—C19—C20—C211.5 (3)
O1—Ti1—C22—C26118.78 (14)Ti1—C19—C20—C2165.71 (17)
N1—Ti1—C22—C2656.55 (14)C18—C19—C20—Ti164.22 (17)
C24—Ti1—C22—C2678.13 (15)O3—Ti1—C20—C2185.23 (16)
C18—Ti1—C22—C26175.05 (14)O1—Ti1—C20—C2157.39 (18)
C23—Ti1—C22—C26117.4 (2)N1—Ti1—C20—C2130.84 (18)
C17—Ti1—C22—C26160.88 (14)C24—Ti1—C20—C21172.57 (16)
C19—Ti1—C22—C26139.76 (14)C18—Ti1—C20—C2178.58 (18)
C20—Ti1—C22—C26118.57 (15)C23—Ti1—C20—C21155.36 (16)
C21—Ti1—C22—C26163.8 (2)C17—Ti1—C20—C2136.77 (16)
C25—Ti1—C22—C2637.32 (13)C19—Ti1—C20—C21116.1 (2)
C26—C22—C23—C241.5 (3)C25—Ti1—C20—C21146.32 (16)
Ti1—C22—C23—C2465.74 (15)C22—Ti1—C20—C21154.69 (15)
C26—C22—C23—Ti164.19 (16)O3—Ti1—C20—C19158.72 (17)
O3—Ti1—C23—C22103.60 (14)O1—Ti1—C20—C1958.66 (19)
O1—Ti1—C23—C2250.69 (14)N1—Ti1—C20—C19146.89 (15)
N1—Ti1—C23—C228.7 (2)C24—Ti1—C20—C1971.38 (17)
C24—Ti1—C23—C22113.4 (2)C18—Ti1—C20—C1937.47 (16)
C18—Ti1—C23—C22124.99 (16)C23—Ti1—C20—C1939.31 (18)
C17—Ti1—C23—C22122.25 (16)C17—Ti1—C20—C1979.28 (19)
C19—Ti1—C23—C22157.84 (16)C21—Ti1—C20—C19116.1 (2)
C20—Ti1—C23—C22179.15 (15)C25—Ti1—C20—C1997.63 (17)
C21—Ti1—C23—C22161.41 (14)C22—Ti1—C20—C1938.6 (2)
C25—Ti1—C23—C2276.28 (15)C20—C19—C18—C171.7 (3)
O3—Ti1—C23—C249.79 (16)Ti1—C19—C18—C1766.75 (18)
O1—Ti1—C23—C24164.07 (14)C20—C19—C18—Ti165.09 (17)
N1—Ti1—C23—C24104.69 (15)O3—Ti1—C18—C1956.7 (2)
C18—Ti1—C23—C24121.63 (15)O1—Ti1—C18—C19160.13 (19)
C17—Ti1—C23—C24124.36 (15)N1—Ti1—C18—C19145.42 (15)
C19—Ti1—C23—C2488.78 (15)C24—Ti1—C18—C1939.55 (18)
C20—Ti1—C23—C2467.47 (15)C23—Ti1—C18—C1969.77 (17)
C21—Ti1—C23—C2485.21 (17)C17—Ti1—C18—C19114.4 (2)
C25—Ti1—C23—C2437.11 (13)C20—Ti1—C18—C1937.13 (16)
C22—Ti1—C23—C24113.4 (2)C21—Ti1—C18—C1977.66 (17)
C8—C3—C4—C51.4 (3)C25—Ti1—C18—C1943.3 (2)
C2—C3—C4—C5178.0 (2)C22—Ti1—C18—C1997.89 (17)
C23—C22—C26—C252.8 (3)O3—Ti1—C18—C1757.7 (2)
Ti1—C22—C26—C2565.21 (15)O1—Ti1—C18—C1785.44 (17)
C23—C22—C26—Ti162.38 (16)N1—Ti1—C18—C1731.00 (19)
O3—Ti1—C26—C2548.98 (14)C24—Ti1—C18—C17153.98 (16)
O1—Ti1—C26—C25169.90 (14)C23—Ti1—C18—C17175.80 (17)
N1—Ti1—C26—C25119.49 (14)C19—Ti1—C18—C17114.4 (2)
C24—Ti1—C26—C2536.31 (13)C20—Ti1—C18—C1777.30 (17)
C18—Ti1—C26—C25107.89 (18)C21—Ti1—C18—C1736.77 (16)
C23—Ti1—C26—C2578.72 (14)C25—Ti1—C18—C17157.74 (16)
C17—Ti1—C26—C25163.7 (3)C22—Ti1—C18—C17147.69 (16)
C19—Ti1—C26—C2561.25 (17)C20—C21—C17—C180.3 (3)
C20—Ti1—C26—C2514.9 (2)Ti1—C21—C17—C1864.25 (18)
C21—Ti1—C26—C2544.9 (4)C20—C21—C17—Ti164.55 (17)
C22—Ti1—C26—C25115.06 (19)C19—C18—C17—C211.2 (3)
O3—Ti1—C26—C22164.04 (13)Ti1—C18—C17—C2165.69 (18)
O1—Ti1—C26—C2254.84 (13)C19—C18—C17—Ti166.91 (17)
N1—Ti1—C26—C22125.45 (13)O3—Ti1—C17—C2120.38 (18)
C24—Ti1—C26—C2278.75 (14)O1—Ti1—C17—C21159.99 (18)
C18—Ti1—C26—C227.2 (2)N1—Ti1—C17—C2190.68 (17)
C23—Ti1—C26—C2236.34 (13)C24—Ti1—C17—C2179.3 (2)
C17—Ti1—C26—C2248.7 (3)C18—Ti1—C17—C21115.4 (2)
C19—Ti1—C26—C2253.81 (17)C23—Ti1—C17—C21120.19 (18)
C20—Ti1—C26—C22100.11 (16)C19—Ti1—C17—C2177.68 (17)
C21—Ti1—C26—C22160.0 (3)C20—Ti1—C17—C2136.81 (15)
C25—Ti1—C26—C22115.06 (19)C25—Ti1—C17—C2147.4 (4)
O3—Ti1—C19—C2021.07 (17)C22—Ti1—C17—C21159.64 (15)
O1—Ti1—C19—C20135.28 (16)O3—Ti1—C17—C18135.74 (16)
N1—Ti1—C19—C2056.2 (2)O1—Ti1—C17—C1884.65 (17)
C24—Ti1—C19—C20104.00 (17)N1—Ti1—C17—C18153.96 (16)
C18—Ti1—C19—C20115.3 (2)C24—Ti1—C17—C1836.0 (2)
C23—Ti1—C19—C20140.05 (18)C23—Ti1—C17—C184.8 (2)
C17—Ti1—C19—C2077.21 (18)C19—Ti1—C17—C1837.68 (15)
C21—Ti1—C19—C2036.71 (15)C20—Ti1—C17—C1878.55 (17)
C25—Ti1—C19—C2094.26 (17)C21—Ti1—C17—C18115.4 (2)
C22—Ti1—C19—C20152.69 (16)C25—Ti1—C17—C1867.9 (4)
O3—Ti1—C19—C18136.42 (17)C22—Ti1—C17—C1844.3 (2)
O1—Ti1—C19—C1819.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O1···O2i0.97 (4)1.89 (4)2.833 (2)164 (3)
O6—H6O2···O2ii1.08 (5)1.79 (5)2.847 (3)165 (4)
C9—H9A···O6iii0.992.593.464 (3)148
C14—H14···O6ii0.952.423.303 (3)155
C17—H17···O61.002.593.227 (4)121
C22—H22···O3iv1.002.503.420 (3)152
C23—H23···O4v1.002.443.437 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ti(C5H5)2(C16H11NO5)]·H2O
Mr493.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)7.1696 (7), 13.7884 (13), 22.419 (2)
β (°) 97.460 (1)
V3)2197.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.32 × 0.28 × 0.23
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.873, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
13494, 5269, 3775
Rint0.098
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.03
No. of reflections5269
No. of parameters315
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O1···O2i0.97 (4)1.89 (4)2.833 (2)164 (3)
O6—H6O2···O2ii1.08 (5)1.79 (5)2.847 (3)165 (4)
C9—H9A···O6iii0.992.593.464 (3)148
C14—H14···O6ii0.952.423.303 (3)155
C17—H17···O61.002.593.227 (4)121
C22—H22···O3iv1.002.503.420 (3)152
C23—H23···O4v1.002.443.437 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China–NSAF (grant No. 10676012) for financial support.

References

First citationBruker (2004). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCaldwell, G., Meirim, M. G., Neuse, E. W. & Beloussow, K. (2000). J. Inorg. Organomet. Polym. 10, 93–101.  Web of Science CrossRef CAS Google Scholar
First citationDalir Kheirollahi, P., Aghabozorg, H. & Moghimi, A. (2005). X-Ray Struct. Anal. Online, 21, x153–x154.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeckham, T., Nguyen, P., Bourke, S. C., Wang, Q., Harrison, D. G., Zoricak, P., Russell, C., Liable-Sands, L. M., Rheingold, A. L., Lough, A. J. & Manners, I. (2001). Organometallics, 20, 3035–3043.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m769-m770
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds