organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­benzyl­­idene)-3,4-di­methyl­isoxazol-5-amine

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 July 2010; accepted 13 July 2010; online 21 July 2010)

In the title compound, C12H11BrN2O, the 4-bromo­benzaldehyde and 5-amino-3,4-dimethyl­isoxazole units are oriented at a dihedral angle of 4.89 (8)°. In the crystal, weak ππ inter­actions are present between the benzene rings at a centroid–centroid distance of 3.7862 (14) Å.

Related literature

For related structures, see: Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1783.]): Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010a). Acta Cryst. E66, o1037-o1038.],b[Fun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010b). Acta Cryst. E66, o773-o774.]): Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]): Tahir et al. (2008[Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11BrN2O

  • Mr = 279.14

  • Triclinic, [P \overline 1]

  • a = 7.6406 (4) Å

  • b = 8.8709 (5) Å

  • c = 9.1052 (5) Å

  • α = 97.024 (2)°

  • β = 102.961 (1)°

  • γ = 92.786 (2)°

  • V = 595.06 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.568, Tmax = 0.665

  • 8212 measured reflections

  • 2119 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.03

  • 2119 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Heterocycles such as nitrogen and oxygen containing compounds are abundant in nature and are of great significance to life. We herein report the synthesis and crystal structure of title compound (I, Fig. 1).

The crystal structures of 4-chloro-2- [(E)-({4-[N-(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl}iminio) methyl]phenolate (Shad et al., 2008), 4-bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl} iminiomethyl)phenolate (Tahir et al., 2008), 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol (Fun et al., 2010a), 1-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]-2-naphthol (Fun et al., 2010b) and N-[4-(dimethylamino)benzylidene]-3,4-dimethylisoxazol-5-amine (Asiri et al., 2010) have been published previously, which contain the 5-amino-3,4-dimethylisoxazole moiety.

In (I), the 4-bromobenzaldehyde moiety A (C1—C7/BR1) and 5-amino-3,4-dimethylisoxazole moiety B (N1/C8—C12/N2/O1) are planar with r. m. s. deviations of 0.0119 Å and 0.0128 Å, respectively. The dihedral angle between A/B is 4.89 (8)°. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···O type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein et al., 1995). There exists also ππ interaction between the centroids of phenyl rings at a distance of 3.7862 (14) Å [symmetry code: -x, 2 - y, 1 - z].

Related literature top

For related structures, see: Asiri et al. (2010): Fun et al. (2010a,b): Shad et al. (2008): Tahir et al. (2008). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-bromobenzaldehyde (0.40 g, 0.0022 mol) and 5-amino-3,4-dimethylisoxazole (0.24 g, 0.0022 mol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light brown needles of title compound (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Structure description top

Heterocycles such as nitrogen and oxygen containing compounds are abundant in nature and are of great significance to life. We herein report the synthesis and crystal structure of title compound (I, Fig. 1).

The crystal structures of 4-chloro-2- [(E)-({4-[N-(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl}iminio) methyl]phenolate (Shad et al., 2008), 4-bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl} iminiomethyl)phenolate (Tahir et al., 2008), 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol (Fun et al., 2010a), 1-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]-2-naphthol (Fun et al., 2010b) and N-[4-(dimethylamino)benzylidene]-3,4-dimethylisoxazol-5-amine (Asiri et al., 2010) have been published previously, which contain the 5-amino-3,4-dimethylisoxazole moiety.

In (I), the 4-bromobenzaldehyde moiety A (C1—C7/BR1) and 5-amino-3,4-dimethylisoxazole moiety B (N1/C8—C12/N2/O1) are planar with r. m. s. deviations of 0.0119 Å and 0.0128 Å, respectively. The dihedral angle between A/B is 4.89 (8)°. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···O type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein et al., 1995). There exists also ππ interaction between the centroids of phenyl rings at a distance of 3.7862 (14) Å [symmetry code: -x, 2 - y, 1 - z].

For related structures, see: Asiri et al. (2010): Fun et al. (2010a,b): Shad et al. (2008): Tahir et al. (2008). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted line indicate the intramolecular H-bond.
N-(4-Bromobenzylidene)-3,4-dimethylisoxazol-5-amine top
Crystal data top
C12H11BrN2OZ = 2
Mr = 279.14F(000) = 280
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6406 (4) ÅCell parameters from 1643 reflections
b = 8.8709 (5) Åθ = 2.3–25.3°
c = 9.1052 (5) ŵ = 3.43 mm1
α = 97.024 (2)°T = 296 K
β = 102.961 (1)°Needle, brown
γ = 92.786 (2)°0.30 × 0.14 × 0.12 mm
V = 595.06 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2119 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.568, Tmax = 0.665l = 1010
8212 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0225P)2 + 0.2246P]
where P = (Fo2 + 2Fc2)/3
2119 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H11BrN2Oγ = 92.786 (2)°
Mr = 279.14V = 595.06 (6) Å3
Triclinic, P1Z = 2
a = 7.6406 (4) ÅMo Kα radiation
b = 8.8709 (5) ŵ = 3.43 mm1
c = 9.1052 (5) ÅT = 296 K
α = 97.024 (2)°0.30 × 0.14 × 0.12 mm
β = 102.961 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1643 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.665Rint = 0.022
8212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2119 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32255 (4)1.00984 (3)0.72075 (3)0.0712 (1)
O10.4539 (2)0.51578 (18)0.30328 (18)0.0572 (6)
N10.1487 (3)0.55019 (19)0.3071 (2)0.0440 (6)
N20.5503 (3)0.4289 (3)0.2111 (3)0.0656 (8)
C10.0706 (3)0.7262 (2)0.4987 (2)0.0421 (8)
C20.1140 (3)0.7008 (2)0.4413 (3)0.0471 (8)
C30.2317 (3)0.7844 (3)0.5070 (3)0.0509 (8)
C40.1622 (3)0.8940 (2)0.6301 (3)0.0489 (9)
C50.0186 (4)0.9215 (3)0.6888 (3)0.0571 (9)
C60.1356 (3)0.8365 (3)0.6240 (3)0.0538 (9)
C70.1988 (3)0.6429 (2)0.4298 (3)0.0455 (8)
C80.2749 (3)0.4794 (2)0.2430 (3)0.0433 (8)
C90.2501 (3)0.3744 (2)0.1180 (3)0.0457 (8)
C100.4265 (3)0.3478 (3)0.1044 (3)0.0517 (9)
C110.4836 (4)0.2423 (3)0.0149 (3)0.0745 (11)
C120.0764 (4)0.3028 (3)0.0200 (3)0.0659 (10)
H20.159150.626880.357860.0565*
H30.355510.766870.468870.0611*
H50.062700.996570.771390.0686*
H60.259050.853350.664570.0646*
H70.320750.658050.476910.0546*
H11A0.612690.248810.004350.1118*
H11B0.434830.270800.113410.1118*
H11C0.439750.139640.012070.1118*
H12A0.021530.343320.058090.0989*
H12B0.072090.194620.020860.0989*
H12C0.066580.324330.082210.0989*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0760 (2)0.0641 (2)0.0851 (2)0.0188 (1)0.0448 (2)0.0012 (1)
O10.0487 (11)0.0650 (10)0.0542 (10)0.0090 (8)0.0134 (8)0.0109 (8)
N10.0499 (12)0.0408 (10)0.0421 (11)0.0068 (8)0.0138 (9)0.0023 (9)
N20.0549 (14)0.0742 (14)0.0684 (15)0.0155 (11)0.0226 (12)0.0074 (12)
C10.0501 (15)0.0399 (12)0.0394 (13)0.0059 (10)0.0163 (10)0.0061 (10)
C20.0523 (16)0.0422 (12)0.0466 (14)0.0001 (10)0.0157 (11)0.0006 (10)
C30.0448 (15)0.0493 (13)0.0603 (16)0.0033 (10)0.0164 (12)0.0063 (12)
C40.0598 (17)0.0419 (12)0.0521 (15)0.0077 (10)0.0271 (12)0.0063 (11)
C50.0624 (19)0.0568 (15)0.0492 (15)0.0015 (12)0.0174 (12)0.0115 (12)
C60.0456 (15)0.0632 (15)0.0486 (15)0.0020 (11)0.0104 (11)0.0063 (12)
C70.0449 (14)0.0482 (13)0.0446 (14)0.0075 (10)0.0117 (10)0.0071 (11)
C80.0476 (15)0.0428 (12)0.0410 (13)0.0081 (10)0.0119 (10)0.0065 (10)
C90.0590 (16)0.0397 (12)0.0398 (13)0.0087 (10)0.0140 (11)0.0045 (10)
C100.0652 (17)0.0456 (13)0.0482 (15)0.0143 (12)0.0209 (13)0.0037 (11)
C110.089 (2)0.0725 (18)0.0698 (19)0.0249 (15)0.0379 (16)0.0036 (14)
C120.073 (2)0.0616 (16)0.0553 (16)0.0060 (13)0.0070 (14)0.0075 (13)
Geometric parameters (Å, º) top
Br1—C41.899 (2)C9—C101.409 (3)
O1—N21.420 (3)C9—C121.486 (4)
O1—C81.361 (3)C10—C111.500 (4)
N1—C71.274 (3)C2—H20.9300
N1—C81.374 (3)C3—H30.9300
N2—C101.307 (4)C5—H50.9300
C1—C21.387 (3)C6—H60.9300
C1—C61.390 (3)C7—H70.9300
C1—C71.460 (3)C11—H11A0.9600
C2—C31.384 (3)C11—H11B0.9600
C3—C41.378 (4)C11—H11C0.9600
C4—C51.363 (4)C12—H12A0.9600
C5—C61.382 (4)C12—H12B0.9600
C8—C91.351 (3)C12—H12C0.9600
Br1···C11i3.595 (3)C4···C6ii3.553 (3)
Br1···C7ii3.687 (2)C6···C4ii3.553 (3)
O1···C3iii3.355 (3)C7···Br1ii3.687 (2)
O1···H3iii2.6900C7···C2iv3.481 (3)
O1···H72.3400C8···C3iv3.512 (3)
N1···C2iv3.426 (3)C11···Br1viii3.595 (3)
N1···H22.6000H2···N12.6000
N1···H12A2.7600H2···N2vii2.7400
N1···H12Cv2.7100H3···O1vii2.6900
N2···H2iii2.7400H6···H72.4200
N2···H11Bvi2.9100H7···O12.3400
C2···N1iv3.426 (3)H7···H62.4200
C2···C7iv3.481 (3)H11B···N2vi2.9100
C3···O1vii3.355 (3)H12A···N12.7600
C3···C8iv3.512 (3)H12C···N1v2.7100
N2—O1—C8107.76 (18)C1—C2—H2120.00
C7—N1—C8119.9 (2)C3—C2—H2120.00
O1—N2—C10105.0 (2)C2—C3—H3121.00
C2—C1—C6118.9 (2)C4—C3—H3121.00
C2—C1—C7122.08 (18)C4—C5—H5120.00
C6—C1—C7119.0 (2)C6—C5—H5120.00
C1—C2—C3120.6 (2)C1—C6—H6120.00
C2—C3—C4118.8 (2)C5—C6—H6120.00
Br1—C4—C3119.17 (18)N1—C7—H7119.00
Br1—C4—C5119.02 (19)C1—C7—H7119.00
C3—C4—C5121.8 (2)C10—C11—H11A109.00
C4—C5—C6119.2 (2)C10—C11—H11B109.00
C1—C6—C5120.6 (2)C10—C11—H11C109.00
N1—C7—C1122.0 (2)H11A—C11—H11B109.00
O1—C8—N1120.5 (2)H11A—C11—H11C109.00
O1—C8—C9110.4 (2)H11B—C11—H11C109.00
N1—C8—C9129.2 (2)C9—C12—H12A109.00
C8—C9—C10103.9 (2)C9—C12—H12B109.00
C8—C9—C12127.6 (2)C9—C12—H12C109.00
C10—C9—C12128.5 (2)H12A—C12—H12B110.00
N2—C10—C9113.0 (2)H12A—C12—H12C109.00
N2—C10—C11118.9 (2)H12B—C12—H12C109.00
C9—C10—C11128.1 (2)
C8—O1—N2—C100.1 (3)C1—C2—C3—C40.3 (4)
N2—O1—C8—C90.1 (2)C2—C3—C4—Br1179.81 (18)
N2—O1—C8—N1178.1 (2)C2—C3—C4—C50.3 (4)
C7—N1—C8—C9177.3 (2)Br1—C4—C5—C6179.42 (19)
C8—N1—C7—C1177.18 (18)C3—C4—C5—C60.5 (4)
C7—N1—C8—O14.8 (3)C4—C5—C6—C11.2 (4)
O1—N2—C10—C90.1 (3)O1—C8—C9—C100.0 (3)
O1—N2—C10—C11179.6 (2)N1—C8—C9—C122.8 (4)
C2—C1—C6—C51.2 (3)O1—C8—C9—C12179.1 (2)
C6—C1—C2—C30.4 (3)N1—C8—C9—C10178.0 (2)
C7—C1—C2—C3178.4 (2)C8—C9—C10—N20.1 (3)
C7—C1—C6—C5177.6 (2)C12—C9—C10—C111.4 (4)
C2—C1—C7—N15.0 (3)C8—C9—C10—C11179.5 (3)
C6—C1—C7—N1173.7 (2)C12—C9—C10—N2179.2 (2)
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x1, y, z; (viii) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.93002.34002.702 (3)103.00

Experimental details

Crystal data
Chemical formulaC12H11BrN2O
Mr279.14
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6406 (4), 8.8709 (5), 9.1052 (5)
α, β, γ (°)97.024 (2), 102.961 (1), 92.786 (2)
V3)595.06 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.30 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.568, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
8212, 2119, 1643
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.03
No. of reflections2119
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.93002.34002.702 (3)103.00
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for the provision of research facilities.

References

First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010a). Acta Cryst. E66, o1037–o1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010b). Acta Cryst. E66, o773–o774.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds