organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-2-[(2,3-Di­methyl­phen­yl)imino]-1,2-di­phenyl­ethanone

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 July 2010; accepted 14 July 2010; online 21 July 2010)

In the title compound, C22H19NO, the 2,3-dimethyl­anilinic group is planar with an r.m.s. deviation of 0.0226 Å. The phenyl rings with the carbonyl and imine substituents are also planar with r.m.s. deviations of 0.0019 and 0.0048 Å, respectively. These phenyl rings are oriented at dihedral angles of 74.70 (5) and 79.43 (5)°, respectively, with the 2,3-dimethyl­anilinic group, whereas the dihedral angle between them is 88.28 (4)°. Weak intra­molecular C—H⋯N hydrogen bonding occurs and completes an S(5) ring motif in the mol­ecule. In the crystal, weak ππ inter­actions are present between the carbonyl-containing phenyl rings at a centroid–centroid distance of 3.5958 (12) Å. C—H⋯π inter­actions between the 2,3-dimethyl­anilinic and the carbonyl-containing phenyl rings are also present, where the C—H group is from the former.

Related literature

For title compound has been characterized as part of our programme for the synthesis of Schiff bases derived from 2,3-dimethylaniline, see: Hussain et al. (2010[Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.]); Sarfraz et al. (2010[Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.]); Tahir et al. (2010a[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.],b[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO

  • Mr = 313.38

  • Monoclinic, P 21 /n

  • a = 13.3342 (3) Å

  • b = 8.7021 (2) Å

  • c = 15.6944 (5) Å

  • β = 108.448 (1)°

  • V = 1727.52 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 13196 measured reflections

  • 3116 independent reflections

  • 2296 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.02

  • 3116 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯N1 0.96 2.38 2.849 (2) 109
C5—H5⋯Cg1i 0.93 2.99 3.6636 (19) 130
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain et al., 2010; (Sarfraz et al., 2010; Tahir et al., 2010a; Tahir et al., 2010b; Tariq et al., 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline (Tariq et al., 2010), (III) N-[(E)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir et al., 2010a), (IV) (E)-2,3-dimethyl-N-(2-nitrobenzylidene)aniline (Tahir et al., 2010b), (V) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) and (VI) N-{(E)-[4-(dimethylamino)phenyl]methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) have been published previously, which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the N-atom of 2,3-dimethylaniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1), the phenyl rings B (C11—C16) and C (C18—C23) are planar with r. m. s. deviation of 0.0226 Å, 0.0048 Å and 0.0019 Å, respectively. The dihedral angle between A/B, A/C and B/C is 79.43 (5)°, 74.70 (5)° and 88.28 (4)°, respectively. The central group D (C10/C17/O2) is oriented at 87.95 (9) ° and 5.37 (21)° with phenyl rings B and C, respectively. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···N type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein et al., 1995). There exists ππ interaction between the centroids of phenyl rings C at a distance of 3.5958 (12) Å [symmetry code: 1 - x, 1 - y, - z]. The C—H···π interaction (Table 1) also play an important role in stabilizing the molecules.

Related literature top

For title compound has been characterized as part of our syntheses of various Schiff bases of 2,3-dimethylaniline, see: Hussain et al. (2010); Sarfraz et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and benzil were refluxed in methanol for 1 h. The yellow solution obtained was kept at room temperature to afford yellow prisms in 12 h.

Refinement top

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Structure description top

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain et al., 2010; (Sarfraz et al., 2010; Tahir et al., 2010a; Tahir et al., 2010b; Tariq et al., 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline (Tariq et al., 2010), (III) N-[(E)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir et al., 2010a), (IV) (E)-2,3-dimethyl-N-(2-nitrobenzylidene)aniline (Tahir et al., 2010b), (V) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain et al., 2010) and (VI) N-{(E)-[4-(dimethylamino)phenyl]methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) have been published previously, which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the N-atom of 2,3-dimethylaniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1), the phenyl rings B (C11—C16) and C (C18—C23) are planar with r. m. s. deviation of 0.0226 Å, 0.0048 Å and 0.0019 Å, respectively. The dihedral angle between A/B, A/C and B/C is 79.43 (5)°, 74.70 (5)° and 88.28 (4)°, respectively. The central group D (C10/C17/O2) is oriented at 87.95 (9) ° and 5.37 (21)° with phenyl rings B and C, respectively. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···N type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein et al., 1995). There exists ππ interaction between the centroids of phenyl rings C at a distance of 3.5958 (12) Å [symmetry code: 1 - x, 1 - y, - z]. The C—H···π interaction (Table 1) also play an important role in stabilizing the molecules.

For title compound has been characterized as part of our syntheses of various Schiff bases of 2,3-dimethylaniline, see: Hussain et al. (2010); Sarfraz et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dotted line represents the intramolecular H-bonding.
(2Z)-2-[(2,3-Dimethylphenyl)imino]-1,2-diphenylethanone top
Crystal data top
C22H19NOF(000) = 664
Mr = 313.38Dx = 1.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2296 reflections
a = 13.3342 (3) Åθ = 1.8–25.3°
b = 8.7021 (2) ŵ = 0.07 mm1
c = 15.6944 (5) ÅT = 296 K
β = 108.448 (1)°Prism, yellow
V = 1727.52 (8) Å30.32 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3116 independent reflections
Radiation source: fine-focus sealed tube2296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 1.8°
ω scansh = 1116
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.982, Tmax = 0.988l = 1818
13196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2716P]
where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C22H19NOV = 1727.52 (8) Å3
Mr = 313.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3342 (3) ŵ = 0.07 mm1
b = 8.7021 (2) ÅT = 296 K
c = 15.6944 (5) Å0.32 × 0.25 × 0.14 mm
β = 108.448 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2296 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.027
13196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
3116 reflectionsΔρmin = 0.13 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33949 (10)0.06238 (15)0.06560 (8)0.0853 (5)
N10.15316 (9)0.23294 (14)0.01278 (8)0.0570 (4)
C10.14965 (10)0.34191 (17)0.08138 (10)0.0534 (5)
C20.13588 (10)0.49776 (18)0.06490 (10)0.0557 (5)
C30.12551 (11)0.60342 (18)0.13434 (11)0.0621 (5)
C40.12628 (13)0.5525 (2)0.21774 (11)0.0691 (6)
C50.13790 (14)0.3994 (2)0.23354 (11)0.0708 (6)
C60.15002 (12)0.29351 (19)0.16559 (10)0.0632 (5)
C70.13588 (14)0.5497 (2)0.02641 (11)0.0749 (7)
C80.11407 (16)0.7732 (2)0.11967 (14)0.0891 (7)
C100.23292 (11)0.14528 (16)0.02009 (9)0.0501 (5)
C110.23229 (11)0.02975 (17)0.08880 (9)0.0530 (5)
C120.32515 (13)0.03892 (19)0.14156 (11)0.0663 (6)
C130.32375 (16)0.1451 (2)0.20646 (12)0.0810 (7)
C140.23045 (18)0.1860 (2)0.21891 (13)0.0847 (8)
C150.13777 (16)0.1198 (2)0.16724 (12)0.0811 (7)
C160.13822 (13)0.0116 (2)0.10313 (11)0.0656 (6)
C170.33233 (11)0.15133 (18)0.00799 (10)0.0558 (5)
C180.41638 (11)0.25999 (18)0.03844 (10)0.0575 (5)
C190.51182 (13)0.2572 (2)0.01995 (14)0.0829 (7)
C200.59158 (15)0.3559 (3)0.06489 (19)0.1088 (10)
C210.57832 (18)0.4566 (3)0.1268 (2)0.1134 (10)
C220.48486 (16)0.4608 (2)0.14604 (14)0.0894 (8)
C230.40401 (12)0.36191 (19)0.10183 (11)0.0652 (6)
H40.118800.623140.263790.0830*
H50.137600.367000.290090.0849*
H60.158420.189890.176160.0758*
H7A0.201710.599630.056760.1123*
H7B0.127240.462300.060750.1123*
H7C0.078680.620360.020050.1123*
H8A0.113300.828660.172760.1336*
H8B0.172500.807530.069870.1336*
H8C0.049160.791360.107070.1336*
H120.388990.013090.133060.0796*
H130.386680.189050.241940.0972*
H140.229760.258440.262270.1016*
H150.074220.148030.175510.0974*
H160.075120.033970.069240.0787*
H190.521560.189190.022450.0995*
H200.655490.353780.052800.1303*
H210.632920.523040.156240.1360*
H220.476010.529480.188470.1072*
H230.340680.364040.114890.0783*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0909 (9)0.0965 (10)0.0757 (8)0.0177 (7)0.0368 (7)0.0170 (7)
N10.0486 (7)0.0597 (7)0.0594 (8)0.0032 (6)0.0124 (6)0.0042 (6)
C10.0406 (7)0.0582 (9)0.0551 (8)0.0017 (6)0.0063 (6)0.0042 (7)
C20.0390 (7)0.0623 (9)0.0591 (9)0.0028 (6)0.0061 (6)0.0078 (7)
C30.0453 (8)0.0602 (9)0.0688 (10)0.0036 (7)0.0008 (7)0.0033 (8)
C40.0623 (10)0.0705 (11)0.0626 (10)0.0005 (8)0.0027 (8)0.0070 (8)
C50.0731 (10)0.0782 (12)0.0524 (9)0.0019 (9)0.0076 (8)0.0075 (8)
C60.0651 (10)0.0595 (9)0.0571 (9)0.0011 (7)0.0082 (7)0.0111 (8)
C70.0703 (11)0.0791 (12)0.0745 (11)0.0095 (9)0.0219 (9)0.0162 (9)
C80.0879 (13)0.0651 (11)0.0983 (14)0.0132 (10)0.0067 (11)0.0013 (10)
C100.0482 (8)0.0526 (8)0.0472 (8)0.0039 (6)0.0120 (6)0.0107 (6)
C110.0563 (8)0.0545 (8)0.0489 (8)0.0050 (7)0.0176 (7)0.0105 (6)
C120.0619 (10)0.0688 (10)0.0680 (10)0.0039 (8)0.0201 (8)0.0054 (8)
C130.0876 (13)0.0823 (12)0.0716 (11)0.0145 (10)0.0230 (10)0.0160 (10)
C140.1126 (16)0.0796 (12)0.0691 (12)0.0015 (12)0.0389 (11)0.0111 (10)
C150.0891 (13)0.0915 (13)0.0752 (12)0.0198 (11)0.0436 (10)0.0038 (10)
C160.0601 (9)0.0762 (11)0.0629 (10)0.0075 (8)0.0230 (8)0.0069 (8)
C170.0573 (9)0.0609 (9)0.0513 (8)0.0110 (7)0.0202 (7)0.0044 (7)
C180.0468 (8)0.0661 (9)0.0608 (9)0.0062 (7)0.0188 (7)0.0215 (8)
C190.0549 (10)0.0988 (14)0.1014 (14)0.0199 (10)0.0338 (10)0.0461 (12)
C200.0447 (10)0.131 (2)0.146 (2)0.0058 (13)0.0237 (13)0.0791 (18)
C210.0634 (14)0.1087 (19)0.136 (2)0.0285 (12)0.0142 (13)0.0608 (17)
C220.0806 (13)0.0796 (13)0.0869 (14)0.0236 (10)0.0033 (10)0.0119 (10)
C230.0568 (9)0.0702 (10)0.0652 (10)0.0108 (8)0.0143 (8)0.0057 (8)
Geometric parameters (Å, º) top
O1—C171.217 (2)C20—C211.361 (4)
N1—C11.4243 (19)C21—C221.373 (3)
N1—C101.2775 (19)C22—C231.382 (3)
C1—C21.404 (2)C4—H40.9300
C1—C61.389 (2)C5—H50.9300
C2—C31.399 (2)C6—H60.9300
C2—C71.503 (2)C7—H7A0.9600
C3—C41.385 (2)C7—H7B0.9600
C3—C81.510 (2)C7—H7C0.9600
C4—C51.373 (2)C8—H8A0.9600
C5—C61.380 (2)C8—H8B0.9600
C10—C111.476 (2)C8—H8C0.9600
C10—C171.524 (2)C12—H120.9300
C11—C121.388 (2)C13—H130.9300
C11—C161.390 (2)C14—H140.9300
C12—C131.380 (2)C15—H150.9300
C13—C141.366 (3)C16—H160.9300
C14—C151.372 (3)C19—H190.9300
C15—C161.379 (2)C20—H200.9300
C17—C181.471 (2)C21—H210.9300
C18—C191.392 (2)C22—H220.9300
C18—C231.381 (2)C23—H230.9300
C19—C201.375 (3)
O1···N13.2197 (19)C11···H14iv2.8900
O1···C63.222 (2)C11···H8Bv3.0500
O1···C19i3.359 (2)C12···H14iv3.0800
O1···H62.7200C14···H7Av3.0800
O1···H192.5600C14···H23vi3.0800
O1···H19i2.9200C17···H62.9300
N1···O13.2197 (19)C17···H122.5400
N1···C233.446 (2)C18···H122.8900
N1···H7B2.3800C20···H5vii2.9000
N1···H162.5700C21···H5vii3.1000
N1···H232.9000H4···H8A2.3000
C1···C183.530 (2)H5···C20viii2.9000
C3···C20ii3.598 (3)H5···C21viii3.1000
C6···C173.123 (2)H6···O12.7200
C6···O13.222 (2)H6···C102.9500
C7···C7iii3.559 (3)H6···C172.9300
C12···C183.480 (2)H7A···C83.0400
C17···C63.123 (2)H7A···C14ix3.0800
C18···C123.480 (2)H7B···N12.3800
C18···C13.530 (2)H7C···C82.7300
C18···C21ii3.596 (3)H7C···H8C2.4200
C19···C21ii3.347 (3)H7C···C7iii3.1000
C19···C22ii3.589 (3)H8A···H42.3000
C19···O1i3.359 (2)H8B···C72.8300
C20···C3ii3.598 (3)H8B···C11ix3.0500
C20···C21ii3.540 (4)H8C···C72.9400
C20···C22ii3.522 (3)H8C···H7C2.4200
C21···C19ii3.347 (3)H8C···H16iii2.4600
C21···C20ii3.540 (4)H12···C172.5400
C21···C18ii3.596 (3)H12···C182.8900
C22···C19ii3.589 (3)H14···C11vi2.8900
C22···C20ii3.522 (3)H14···C12vi3.0800
C23···N13.446 (2)H16···N12.5700
C2···H20ii3.0200H16···H8Ciii2.4600
C3···H20ii2.8200H16···H16x2.5200
C5···H21ii2.9900H19···O12.5600
C7···H8B2.8300H19···O1i2.9200
C7···H8C2.9400H20···C2ii3.0200
C7···H7Ciii3.1000H20···C3ii2.8200
C7···H233.1000H21···C5ii2.9900
C8···H7A3.0400H23···N12.9000
C8···H7C2.7300H23···C73.1000
C10···H62.9500H23···C102.5600
C10···H232.5600H23···C14iv3.0800
C1—N1—C10121.79 (13)C4—C5—H5120.00
N1—C1—C2118.62 (13)C6—C5—H5120.00
N1—C1—C6120.55 (13)C1—C6—H6120.00
C2—C1—C6120.57 (14)C5—C6—H6120.00
C1—C2—C3118.56 (14)C2—C7—H7A109.00
C1—C2—C7120.39 (14)C2—C7—H7B109.00
C3—C2—C7121.03 (14)C2—C7—H7C109.00
C2—C3—C4119.84 (15)H7A—C7—H7B109.00
C2—C3—C8120.93 (15)H7A—C7—H7C109.00
C4—C3—C8119.23 (15)H7B—C7—H7C109.00
C3—C4—C5121.08 (15)C3—C8—H8A109.00
C4—C5—C6120.06 (15)C3—C8—H8B109.00
C1—C6—C5119.89 (15)C3—C8—H8C109.00
N1—C10—C11120.34 (14)H8A—C8—H8B109.00
N1—C10—C17123.48 (13)H8A—C8—H8C109.00
C11—C10—C17116.18 (13)H8B—C8—H8C109.00
C10—C11—C12121.24 (14)C11—C12—H12120.00
C10—C11—C16120.57 (14)C13—C12—H12120.00
C12—C11—C16118.19 (14)C12—C13—H13120.00
C11—C12—C13120.71 (17)C14—C13—H13120.00
C12—C13—C14120.38 (18)C13—C14—H14120.00
C13—C14—C15119.79 (18)C15—C14—H14120.00
C14—C15—C16120.5 (2)C14—C15—H15120.00
C11—C16—C15120.48 (17)C16—C15—H15120.00
O1—C17—C10118.21 (14)C11—C16—H16120.00
O1—C17—C18123.39 (15)C15—C16—H16120.00
C10—C17—C18118.35 (13)C18—C19—H19120.00
C17—C18—C19119.27 (14)C20—C19—H19120.00
C17—C18—C23121.58 (14)C19—C20—H20120.00
C19—C18—C23119.13 (15)C21—C20—H20120.00
C18—C19—C20119.46 (18)C20—C21—H21120.00
C19—C20—C21120.9 (2)C22—C21—H21120.00
C20—C21—C22120.4 (2)C21—C22—H22120.00
C21—C22—C23119.4 (2)C23—C22—H22120.00
C18—C23—C22120.62 (16)C18—C23—H23120.00
C3—C4—H4119.00C22—C23—H23120.00
C5—C4—H4119.00
C10—N1—C1—C2121.60 (15)N1—C10—C17—C1886.93 (18)
C10—N1—C1—C664.3 (2)C11—C10—C17—O184.26 (17)
C1—N1—C10—C11177.78 (13)C11—C10—C17—C1893.34 (16)
C1—N1—C10—C172.0 (2)C10—C11—C12—C13179.05 (15)
N1—C1—C2—C3175.88 (13)C16—C11—C12—C130.1 (2)
N1—C1—C2—C76.1 (2)C10—C11—C16—C15179.87 (15)
C6—C1—C2—C31.7 (2)C12—C11—C16—C151.0 (2)
C6—C1—C2—C7179.80 (15)C11—C12—C13—C141.0 (3)
N1—C1—C6—C5174.71 (15)C12—C13—C14—C150.7 (3)
C2—C1—C6—C50.7 (2)C13—C14—C15—C160.4 (3)
C1—C2—C3—C41.6 (2)C14—C15—C16—C111.2 (3)
C1—C2—C3—C8177.99 (15)O1—C17—C18—C193.6 (2)
C7—C2—C3—C4179.68 (16)O1—C17—C18—C23178.28 (16)
C7—C2—C3—C80.1 (2)C10—C17—C18—C19173.91 (15)
C2—C3—C4—C50.5 (3)C10—C17—C18—C234.3 (2)
C8—C3—C4—C5179.14 (18)C17—C18—C19—C20178.35 (19)
C3—C4—C5—C60.6 (3)C23—C18—C19—C200.1 (3)
C4—C5—C6—C10.5 (3)C17—C18—C23—C22178.62 (16)
N1—C10—C11—C12163.48 (14)C19—C18—C23—C220.5 (3)
N1—C10—C11—C1615.6 (2)C18—C19—C20—C210.3 (4)
C17—C10—C11—C1216.8 (2)C19—C20—C21—C220.4 (4)
C17—C10—C11—C16164.10 (14)C20—C21—C22—C230.1 (4)
N1—C10—C17—O195.47 (19)C21—C22—C23—C180.3 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y1, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z1/2; (ix) x, y+1, z; (x) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···N10.962.382.849 (2)109
C5—H5···Cg1viii0.932.993.6636 (19)130
Symmetry code: (viii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H19NO
Mr313.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.3342 (3), 8.7021 (2), 15.6944 (5)
β (°) 108.448 (1)
V3)1727.52 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.25 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13196, 3116, 2296
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.02
No. of reflections3116
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···N10.962.382.849 (2)109
C5—H5···Cg1i0.932.993.6636 (19)130
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds