organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-4-[(2-pyrid­yl)diazen­yl]aniline

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: nararak.le@psu.ac.th

(Received 4 June 2010; accepted 30 June 2010; online 7 July 2010)

The title compound, C13H14N4, adopts a trans configuration about the azo bond. There is a dihedral angle of 12.18 (7)° between the pyridine and benzene rings and the mean plane of the dimethyl­amino substituent is twisted by 6.1 (2)° relative to the benzene ring. In the crystal, weak inter­molecular C—H⋯N hydrogen bonds result in a zigzag arrangement along [010].

Related literature

For applications of azo compounds in textile coloring and photovoltaic frameworks, see: Millington et al. (2007[Millington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol. Cells, 91, 1618-1630.]). For the synthesis of similar compounds, see: Krause & Krause (1980[Krause, R. A. & Krause, K. (1980). Inorg. Chem. 19, 2600-2603.]). For the X-ray structures of protonated 2-(phenylazo)pyridine (azpy), a similar compound, and chelating complexes, see: Panneerselvam et al. (2000[Panneerselvam, K., Hansongnern, K., Rattanawit, N., Liao, F. & Lu, T. (2000). Anal. Sci. 16, 1107-1108.]); Peacock et al. (2007[Peacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). Inorg. Chem. 46, 4049-4059.]); Ohashi et al. (2003[Ohashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085-1086.]). For the X-ray structures of complexes with the title compound, see: Dougan et al. (2006[Dougan, S. J., Melchart, M., Habtemariam, A., Pearsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882-10894.]); Li et al. (2001[Li, Y., Lin, Z. Y. & Wong, W. T. (2001). Eur. J. Inorg. Chem. pp. 3163-3173.]);

[Scheme 1]

Experimental

Crystal data
  • C13H14N4

  • Mr = 226.28

  • Monoclinic, P 21 /n

  • a = 6.2322 (4) Å

  • b = 19.9353 (11) Å

  • c = 9.6404 (6) Å

  • β = 96.003 (1)°

  • V = 1191.16 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 1.000

  • 12811 measured reflections

  • 2101 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.04

  • 2101 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.93 2.58 3.4516 (18) 157
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury and SHELXTL.

Supporting information


Comment top

Compounds existing of azo-imine (–N—C—N=N–) moieties have been extensively used as the powerful ligands of transition metal complexes owing to their great σ-donor and π-acceptor properties. Applications of azo compounds are on textile coloring and photovoltaic frameworks (Millington et al., 2007). As being a part of our studies on dye-sensitized solar cell, here we report the X-ray structure of the title compound synthesized by modified 2-phenylazopyridine (azpy) synthetic pathway (Krause et al., 1980).

The molecule is almost coplanar as shown in Fig. 1. Torsion angle of pyridine-azo-phenyl atoms,C(5)—N(2)—N(3)—C(6), is -179.68 (10)°. The mean planes of pyridine and phenyl rings deviate for 12.18 (7)°. The N(py) atom exists in trans-form with respect to the N(azo) atom attached to the phenyl ring. It is different from that observed in protonated azpy (Panneerselvam et al., 2000) and chelating complexes (Peacock et al., 2007; Ohashi et al., 2003) in which the cis- configurations are observed. The N=N bond distance of free dmazpy [1.2566 (16) Å] is long in comparison with its chelating Os(II) complex [1.301 (4) Å] (Peacock et al., 2007) because of π-backbonding interaction. The methylaniline substituent plane is slightly deviated from phenyl ring with dihedral angle of 6.1 (2)°. In the crystal structure, the weak hydrogen bonds are found at the N(azo) atom attached to the phenyl ring, C(1)—H(1)···N(3) [C···N = 3.4516 (18) Å]. Intermolecular π-π stacking interactions occur between adjacent phenyl rings. The centroid-centroid distances are found the alternated distances of 5.317 (3) Å and 4.629 (4) Å sequences parallel to the c axis. All these interactions link the molecules into a zigzag orientation parallel to [010]. The packing interactions are shown in Fig.2.

Related literature top

For applications of azo compounds in textile coloring and photovoltaic frameworks, see: Millington et al. (2007). For the synthesis of the title compound, see: Krause et al. (1980). For protonated azpy and chelating complexes, see: Panneerselvam et al. (2000); Peacock et al. (2007); Ohashi et al. (2003). For related literature [on what subject?], see: Dougan et al. (2006); Li et al. (2001);

Experimental top

2-Aminopyridine (0.50 g, 5 mmol) was dissolved in 5 ml benzene. The solution was heated at 80 °C for 10 minutes. Then 6 ml of 25 M NaOH was slowly added into the 2-aminopyridine solution. N,N-dimethyl-1,4-nitrosoaniline (0.75 g, 5 mmol) was gradually added to the warm solution mixture. An additional 5 ml of benzene was put into the solution mixture which was then refluxed for 9 h. The reaction mixture was filtered and extracted with benzene. Red powder was purified by silica gel column chromatography using mixture of hexane and ethylacetate as an eluent. Recrystallization at room temperature in 3:2 hexane: methanol mixture yielded red crystals. The dmazpy melting point is 104–105 °C. Anal. Calcd for dmazpy: C, 69.00; H, 6.23; N, 24.76. Found: C, 69.85; H, 6.34; N, 23.81. ES—MS: m/z 227(MH+, 100%).

Refinement top

The structures were solved by direct methods refined by a full-matrix least-squares procedure based on F2. All Hydrogen atoms were placed in geometrically idealized positions and refined isotropically with a riding model for both of C-sp2 and [C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)] and C-sp3 [C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C)].

Structure description top

Compounds existing of azo-imine (–N—C—N=N–) moieties have been extensively used as the powerful ligands of transition metal complexes owing to their great σ-donor and π-acceptor properties. Applications of azo compounds are on textile coloring and photovoltaic frameworks (Millington et al., 2007). As being a part of our studies on dye-sensitized solar cell, here we report the X-ray structure of the title compound synthesized by modified 2-phenylazopyridine (azpy) synthetic pathway (Krause et al., 1980).

The molecule is almost coplanar as shown in Fig. 1. Torsion angle of pyridine-azo-phenyl atoms,C(5)—N(2)—N(3)—C(6), is -179.68 (10)°. The mean planes of pyridine and phenyl rings deviate for 12.18 (7)°. The N(py) atom exists in trans-form with respect to the N(azo) atom attached to the phenyl ring. It is different from that observed in protonated azpy (Panneerselvam et al., 2000) and chelating complexes (Peacock et al., 2007; Ohashi et al., 2003) in which the cis- configurations are observed. The N=N bond distance of free dmazpy [1.2566 (16) Å] is long in comparison with its chelating Os(II) complex [1.301 (4) Å] (Peacock et al., 2007) because of π-backbonding interaction. The methylaniline substituent plane is slightly deviated from phenyl ring with dihedral angle of 6.1 (2)°. In the crystal structure, the weak hydrogen bonds are found at the N(azo) atom attached to the phenyl ring, C(1)—H(1)···N(3) [C···N = 3.4516 (18) Å]. Intermolecular π-π stacking interactions occur between adjacent phenyl rings. The centroid-centroid distances are found the alternated distances of 5.317 (3) Å and 4.629 (4) Å sequences parallel to the c axis. All these interactions link the molecules into a zigzag orientation parallel to [010]. The packing interactions are shown in Fig.2.

For applications of azo compounds in textile coloring and photovoltaic frameworks, see: Millington et al. (2007). For the synthesis of the title compound, see: Krause et al. (1980). For protonated azpy and chelating complexes, see: Panneerselvam et al. (2000); Peacock et al. (2007); Ohashi et al. (2003). For related literature [on what subject?], see: Dougan et al. (2006); Li et al. (2001);

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 4-(2-pyridylazo)-N,N-dimethylaniline. Thermal ellipsoids are shown at 50% probability level.
[Figure 2] Fig. 2. The packing interactions of 4-(2-pyridylazo)-N,N-dimethylaniline. Symmetry code: (i) x + 1/2, -y + 1/2, Z+1/2.
N,N-Dimethyl-4-[(2-pyridyl)diazenyl]aniline top
Crystal data top
C13H14N4F(000) = 480
Mr = 226.28Dx = 1.262 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3335 reflections
a = 6.2322 (4) Åθ = 2.4–25.4°
b = 19.9353 (11) ŵ = 0.08 mm1
c = 9.6404 (6) ÅT = 293 K
β = 96.003 (1)°Block, colorless
V = 1191.16 (13) Å30.28 × 0.26 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2101 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.918, Tmax = 1.000k = 2323
12811 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1546P]
where P = (Fo2 + 2Fc2)/3
2101 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H14N4V = 1191.16 (13) Å3
Mr = 226.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2322 (4) ŵ = 0.08 mm1
b = 19.9353 (11) ÅT = 293 K
c = 9.6404 (6) Å0.28 × 0.26 × 0.06 mm
β = 96.003 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1754 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.023
12811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
2101 reflectionsΔρmin = 0.19 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26625 (18)0.22136 (6)0.68133 (12)0.0540 (3)
C10.2173 (3)0.27093 (7)0.76510 (16)0.0609 (4)
H10.33060.29560.81020.073*
C20.0116 (3)0.28823 (7)0.78947 (16)0.0622 (4)
H20.01360.32340.84900.075*
C30.1564 (2)0.25173 (8)0.72277 (15)0.0619 (4)
H30.29830.26200.73630.074*
C40.1119 (2)0.20013 (7)0.63609 (15)0.0547 (4)
H40.22270.17460.59060.066*
C50.1016 (2)0.18679 (6)0.61771 (13)0.0449 (3)
N20.16987 (18)0.13418 (5)0.53090 (11)0.0498 (3)
N30.01419 (17)0.10823 (5)0.45640 (11)0.0487 (3)
C60.0660 (2)0.05591 (6)0.36836 (13)0.0450 (3)
C70.1052 (2)0.02897 (7)0.28271 (15)0.0516 (3)
H70.24310.04590.28790.062*
C80.0770 (2)0.02177 (7)0.19098 (14)0.0508 (3)
H80.19550.03860.13520.061*
C90.1288 (2)0.04879 (6)0.17993 (13)0.0456 (3)
C100.3025 (2)0.02146 (7)0.26841 (15)0.0530 (4)
H100.44080.03830.26440.064*
C110.2711 (2)0.02924 (7)0.35976 (14)0.0511 (3)
H110.38810.04620.41690.061*
N40.15861 (18)0.09932 (6)0.08935 (12)0.0542 (3)
C120.0229 (2)0.13009 (7)0.00681 (16)0.0597 (4)
H12A0.12790.14410.06700.090*
H12B0.02600.16840.04150.090*
H12C0.08710.09820.05970.090*
C130.3730 (2)0.12209 (9)0.06728 (19)0.0733 (5)
H13A0.44970.08640.02720.110*
H13B0.36240.15980.00510.110*
H13C0.44900.13510.15490.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0499 (7)0.0566 (7)0.0556 (7)0.0048 (5)0.0061 (5)0.0065 (6)
C10.0631 (9)0.0583 (9)0.0613 (9)0.0094 (7)0.0064 (7)0.0099 (7)
C20.0747 (10)0.0535 (8)0.0597 (9)0.0077 (8)0.0127 (8)0.0043 (7)
C30.0532 (8)0.0707 (10)0.0621 (9)0.0137 (7)0.0086 (7)0.0022 (8)
C40.0480 (8)0.0636 (9)0.0516 (8)0.0012 (6)0.0009 (6)0.0009 (7)
C50.0477 (7)0.0448 (7)0.0419 (7)0.0004 (6)0.0029 (6)0.0048 (5)
N20.0488 (6)0.0510 (6)0.0492 (6)0.0023 (5)0.0038 (5)0.0007 (5)
N30.0507 (7)0.0462 (6)0.0484 (6)0.0008 (5)0.0017 (5)0.0041 (5)
C60.0483 (7)0.0421 (7)0.0447 (7)0.0007 (5)0.0049 (6)0.0049 (5)
C70.0416 (7)0.0521 (8)0.0612 (8)0.0003 (6)0.0052 (6)0.0004 (7)
C80.0420 (7)0.0517 (8)0.0574 (8)0.0063 (6)0.0003 (6)0.0019 (6)
C90.0453 (7)0.0444 (7)0.0473 (7)0.0048 (6)0.0054 (6)0.0034 (5)
C100.0408 (7)0.0558 (8)0.0619 (8)0.0011 (6)0.0028 (6)0.0051 (7)
C110.0464 (8)0.0528 (8)0.0524 (8)0.0038 (6)0.0032 (6)0.0016 (6)
N40.0472 (7)0.0551 (7)0.0601 (7)0.0034 (5)0.0048 (5)0.0105 (6)
C120.0590 (9)0.0583 (9)0.0612 (9)0.0100 (7)0.0036 (7)0.0086 (7)
C130.0571 (9)0.0797 (11)0.0834 (11)0.0040 (8)0.0089 (8)0.0265 (9)
Geometric parameters (Å, º) top
N1—C51.3311 (16)C7—H70.9300
N1—C11.3316 (18)C8—C91.4052 (18)
C1—C21.371 (2)C8—H80.9300
C1—H10.9300C9—N41.3586 (17)
C2—C31.378 (2)C9—C101.4156 (18)
C2—H20.9300C10—C111.3678 (19)
C3—C41.372 (2)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C51.3863 (19)N4—C131.4477 (18)
C4—H40.9300N4—C121.4494 (17)
C5—N21.4337 (16)C12—H12A0.9600
N2—N31.2566 (15)C12—H12B0.9600
N3—C61.4035 (16)C12—H12C0.9600
C6—C71.3870 (18)C13—H13A0.9600
C6—C111.3951 (19)C13—H13B0.9600
C7—C81.3668 (19)C13—H13C0.9600
C5—N1—C1116.70 (12)C9—C8—H8119.6
N1—C1—C2124.61 (14)N4—C9—C8121.36 (12)
N1—C1—H1117.7N4—C9—C10121.68 (12)
C2—C1—H1117.7C8—C9—C10116.95 (12)
C1—C2—C3117.76 (14)C11—C10—C9121.37 (12)
C1—C2—H2121.1C11—C10—H10119.3
C3—C2—H2121.1C9—C10—H10119.3
C4—C3—C2119.19 (14)C10—C11—C6120.90 (12)
C4—C3—H3120.4C10—C11—H11119.6
C2—C3—H3120.4C6—C11—H11119.6
C3—C4—C5118.67 (13)C9—N4—C13121.16 (11)
C3—C4—H4120.7C9—N4—C12121.01 (11)
C5—C4—H4120.7C13—N4—C12117.77 (12)
N1—C5—C4123.06 (12)N4—C12—H12A109.5
N1—C5—N2112.72 (11)N4—C12—H12B109.5
C4—C5—N2124.21 (12)H12A—C12—H12B109.5
N3—N2—C5112.11 (11)N4—C12—H12C109.5
N2—N3—C6116.04 (11)H12A—C12—H12C109.5
C7—C6—C11118.00 (12)H12B—C12—H12C109.5
C7—C6—N3115.89 (12)N4—C13—H13A109.5
C11—C6—N3126.11 (12)N4—C13—H13B109.5
C8—C7—C6121.93 (13)H13A—C13—H13B109.5
C8—C7—H7119.0N4—C13—H13C109.5
C6—C7—H7119.0H13A—C13—H13C109.5
C7—C8—C9120.85 (12)H13B—C13—H13C109.5
C7—C8—H8119.6
C5—N1—C1—C20.0 (2)N3—C6—C7—C8179.35 (12)
N1—C1—C2—C30.1 (2)C6—C7—C8—C90.0 (2)
C1—C2—C3—C40.2 (2)C7—C8—C9—N4179.85 (12)
C2—C3—C4—C50.5 (2)C7—C8—C9—C100.5 (2)
C1—N1—C5—C40.41 (19)N4—C9—C10—C11179.74 (12)
C1—N1—C5—N2179.47 (11)C8—C9—C10—C110.4 (2)
C3—C4—C5—N10.7 (2)C9—C10—C11—C60.2 (2)
C3—C4—C5—N2179.60 (12)C7—C6—C11—C100.7 (2)
N1—C5—N2—N3170.52 (11)N3—C6—C11—C10179.24 (12)
C4—C5—N2—N310.44 (17)C8—C9—N4—C13173.23 (14)
C5—N2—N3—C6179.68 (10)C10—C9—N4—C137.5 (2)
N2—N3—C6—C7177.82 (11)C8—C9—N4—C123.9 (2)
N2—N3—C6—C112.14 (18)C10—C9—N4—C12175.44 (12)
C11—C6—C7—C80.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.932.583.4516 (18)157
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N4
Mr226.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2322 (4), 19.9353 (11), 9.6404 (6)
β (°) 96.003 (1)
V3)1191.16 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.26 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.918, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12811, 2101, 1754
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.04
No. of reflections2101
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.932.583.4516 (18)157
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Commission on Higher Education, Ministry of Education, and the Thailand Graduate Institute of Science and Technology (TGIST) for financial support. Ms Sriwipha Onganusorn is acknowledged for supplying the ES–MS and CHN analysis data. We thank the Department of Chemistry, Wollongong University, Australia for the ES–MS measurements and the School of Chemistry, University of Bristol, England, for the elemental analysis.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDougan, S. J., Melchart, M., Habtemariam, A., Pearsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882–10894.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, R. A. & Krause, K. (1980). Inorg. Chem. 19, 2600–2603.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y., Lin, Z. Y. & Wong, W. T. (2001). Eur. J. Inorg. Chem. pp. 3163–3173.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMillington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol. Cells, 91, 1618–1630.  Web of Science CrossRef CAS Google Scholar
First citationOhashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085–1086.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPanneerselvam, K., Hansongnern, K., Rattanawit, N., Liao, F. & Lu, T. (2000). Anal. Sci. 16, 1107–1108.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). Inorg. Chem. 46, 4049–4059.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds