organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridine–4-hy­dr­oxy­benzoic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

The title 1:1 adduct, C5H5BrN2·C7H6O3, contains two mol­ecules of each species in the asymmetric unit, with similar geometries. In the crystal, mol­ecules are linked to form extended chains along [100] by N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds. Adjacent chains are crosslinked via further N—H⋯O inter­actions into sheets lying parallel to (001). The crystal studied was an inversion twin with a 0.54 (2):0.46 (2) domain ratio.

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. New York: Oxford University Press.]); Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]). For 4-hy­droxy­benzoic acid, see: Vishweshwar et al. (2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164-168.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o663.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o664.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o689-o690.]); Quah et al. (2008a[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878-o1879.],b[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.], 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5BrN2·C7H6O3

  • Mr = 311.14

  • Orthorhombic, P n a 21

  • a = 21.370 (12) Å

  • b = 3.990 (2) Å

  • c = 28.939 (15) Å

  • V = 2467 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 100 K

  • 0.29 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.449, Tmax = 0.763

  • 6994 measured reflections

  • 3770 independent reflections

  • 2994 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.10

  • 3770 reflections

  • 296 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.99 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1554 Friedel pairs

  • Flack parameter: 0.54 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O3Ai 0.86 2.19 2.996 (11) 155
N2A—H2AB⋯O1Aii 0.86 2.13 2.969 (11) 166
N2B—H2BA⋯O3Biii 0.86 2.19 3.020 (11) 163
O1A—H1AB⋯O3Biv 0.82 1.87 2.688 (8) 175
O2A—H2AC⋯N1Av 0.82 1.80 2.605 (10) 168
O1B—H1BB⋯O3Avi 0.82 1.94 2.762 (8) 177
O2B—H2BC⋯N1Bvii 0.82 1.85 2.663 (11) 170
C6B—H6B⋯O1Aviii 0.93 2.52 3.416 (11) 161
C7B—H7B⋯O3Avi 0.93 2.58 3.262 (12) 131
C9A—H9A⋯O3Biv 0.93 2.48 3.182 (11) 132
C10A—H10A⋯O1Bix 0.93 2.53 3.416 (11) 158
Symmetry codes: (i) x-1, y-1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) x, y-1, z; (iv) [-x+1, -y+1, z+{\script{1\over 2}}]; (v) x+1, y+1, z; (vi) [-x+{\script{3\over 2}}, y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) x, y+1, z; (viii) [-x+1, -y+1, z-{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form co-crystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 2-amino-5-bromopyridine-benzoic acid (Hemamalini & Fun, 2010a), 2-amino-5-bromopyridinium 3-aminobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-bromopyridinium hydrogen succinate (Hemamalini & Fun, 2010c) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridine molecules (A and B) and two 4-hydroxybenzoic acid (A and B) with comparable geometries. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). Each 2-amino-5-bromopyridine molecule is approximately planar, with a maximum deviation of 0.020 (8) Å for atom C4A in molecule A and 0.021 (8) Å for atom C1B in molecule B. In molecule A, the 2-amino-5-bromopyridine molecule is inclined at dihedral angle of 28.8 (3) and 55.7 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for molecule B are 45.6 (3) and 27.2 (3)°.

In the crystal packing, the molecules are linked to form extended chains along [100] by intermolecular N2A–H2AA···O3A, N2B–H2BA···O3B, O–H···O, O–H···N and C–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked via N2A–H2AB···O1A interactions into two-dimensional networks (Fig. 2) parallel to the (001).

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 4-hydroxybenzoic acid, see: Vishweshwar et al. (2003). For related structures, see: Hemamalini & Fun (2010a,b,c); Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and 4-hydroxybenzoic acid (34 mg, Merck) were mixed and warmed over a heating hotplate magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly to room temperature and brown needles of (I) appeared after a few days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å; and Uiso(H) = 1.5 Ueq(O), 1.2 Ueq(N) and 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 1.06 Å from BR1B and the deepest hole is located at 0.90 Å from BR1B. The same Uij parameters were used for atom pairs C1A/C1B, C2A/C3A, C2B/C3B, C8A/C8B and C9A/C9B. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form co-crystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 2-amino-5-bromopyridine-benzoic acid (Hemamalini & Fun, 2010a), 2-amino-5-bromopyridinium 3-aminobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-bromopyridinium hydrogen succinate (Hemamalini & Fun, 2010c) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridine molecules (A and B) and two 4-hydroxybenzoic acid (A and B) with comparable geometries. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). Each 2-amino-5-bromopyridine molecule is approximately planar, with a maximum deviation of 0.020 (8) Å for atom C4A in molecule A and 0.021 (8) Å for atom C1B in molecule B. In molecule A, the 2-amino-5-bromopyridine molecule is inclined at dihedral angle of 28.8 (3) and 55.7 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for molecule B are 45.6 (3) and 27.2 (3)°.

In the crystal packing, the molecules are linked to form extended chains along [100] by intermolecular N2A–H2AA···O3A, N2B–H2BA···O3B, O–H···O, O–H···N and C–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked via N2A–H2AB···O1A interactions into two-dimensional networks (Fig. 2) parallel to the (001).

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 4-hydroxybenzoic acid, see: Vishweshwar et al. (2003). For related structures, see: Hemamalini & Fun (2010a,b,c); Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the b axis. H atoms not involved in intermolecular hydrogen bond interactions (dashed lines) have been omitted for clarity.
2-Amino-5-bromopyridine–4-hydroxybenzoic acid (1/1) top
Crystal data top
C5H5BrN2·C7H6O3F(000) = 1248
Mr = 311.14Dx = 1.675 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1665 reflections
a = 21.370 (12) Åθ = 2.4–25.0°
b = 3.990 (2) ŵ = 3.33 mm1
c = 28.939 (15) ÅT = 100 K
V = 2467 (2) Å3Needle, brown
Z = 80.29 × 0.12 × 0.09 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3770 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2519
Tmin = 0.449, Tmax = 0.763k = 44
6994 measured reflectionsl = 3034
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0538P)2 + 9.0399P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3770 reflectionsΔρmax = 0.72 e Å3
296 parametersΔρmin = 0.99 e Å3
1 restraintAbsolute structure: Flack (1983), 1554 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.54 (2)
Crystal data top
C5H5BrN2·C7H6O3V = 2467 (2) Å3
Mr = 311.14Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 21.370 (12) ŵ = 3.33 mm1
b = 3.990 (2) ÅT = 100 K
c = 28.939 (15) Å0.29 × 0.12 × 0.09 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2994 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.763Rint = 0.051
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.148Δρmax = 0.72 e Å3
S = 1.10Δρmin = 0.99 e Å3
3770 reflectionsAbsolute structure: Flack (1983), 1554 Friedel pairs
296 parametersAbsolute structure parameter: 0.54 (2)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.00906 (6)0.7888 (2)0.30916 (3)0.0442 (3)
N1A0.0212 (3)0.348 (2)0.4357 (3)0.0213 (18)
N2A0.0361 (4)0.2594 (19)0.5015 (3)0.0281 (18)
H2AA0.00400.15840.51270.034*
H2AB0.06970.27760.51770.034*
C1A0.0273 (5)0.469 (2)0.3934 (3)0.0262 (14)
H1AA0.06570.44600.37870.031*
C2A0.0212 (5)0.628 (2)0.3699 (3)0.0265 (15)
C3A0.0794 (5)0.672 (2)0.3928 (3)0.0265 (15)
H3AA0.11320.77400.37820.032*
C4A0.0836 (4)0.556 (2)0.4369 (3)0.021 (2)
H4AA0.12060.58900.45320.026*
C5A0.0338 (4)0.389 (2)0.4585 (3)0.020 (2)
Br1B0.25717 (6)0.3515 (2)0.37657 (4)0.0456 (3)
N1B0.2861 (4)0.067 (2)0.2491 (3)0.0265 (19)
N2B0.2263 (4)0.178 (2)0.1857 (3)0.030 (2)
H2BA0.25910.26040.17280.036*
H2BB0.19120.17600.17110.036*
C1B0.2925 (5)0.049 (2)0.2930 (3)0.0262 (14)
H1BA0.33120.03460.30750.031*
C2B0.2442 (5)0.183 (2)0.3155 (4)0.0276 (16)
C3B0.1851 (5)0.196 (2)0.2964 (3)0.0276 (16)
H3BA0.15140.28320.31290.033*
C4B0.1773 (4)0.076 (2)0.2513 (3)0.022 (2)
H4BA0.13830.08220.23700.027*
C5B0.2297 (4)0.056 (2)0.2280 (3)0.021 (2)
O1A0.6515 (3)0.3077 (15)0.5579 (2)0.0242 (15)
H1AB0.64710.31090.58600.036*
O2A0.8817 (3)1.0048 (16)0.4626 (2)0.0225 (14)
H2AC0.91441.10650.45790.034*
O3A0.9066 (3)1.1204 (15)0.5362 (2)0.0234 (14)
C6A0.7754 (4)0.662 (2)0.4870 (3)0.018 (2)
H6A0.78680.67120.45610.022*
C7A0.7202 (4)0.498 (2)0.5000 (3)0.023 (2)
H7A0.69470.39960.47770.027*
C8A0.7043 (4)0.483 (2)0.5461 (3)0.0195 (13)
C9A0.7426 (4)0.634 (2)0.5785 (3)0.0179 (14)
H9A0.73110.62830.60940.022*
C10A0.7957 (4)0.789 (2)0.5664 (3)0.017 (2)
H10A0.82120.88110.58920.020*
C11A0.8133 (4)0.813 (2)0.5202 (3)0.0180 (19)
C12A0.8711 (4)0.990 (2)0.5070 (3)0.020 (2)
O1B0.6068 (3)0.1993 (15)0.1278 (2)0.0235 (14)
H1BB0.60390.25580.10060.035*
O2B0.3859 (3)0.5786 (15)0.2236 (2)0.0235 (14)
H2BC0.35410.68880.22820.035*
O3B0.3558 (3)0.6584 (16)0.1505 (2)0.0215 (14)
C6B0.4619 (4)0.286 (2)0.1194 (3)0.023 (2)
H6B0.43500.36800.09680.027*
C7B0.5150 (4)0.105 (2)0.1061 (4)0.023 (2)
H7B0.52340.06530.07500.028*
C8B0.5547 (4)0.0131 (19)0.1401 (3)0.0195 (13)
C9B0.5417 (4)0.031 (2)0.1864 (3)0.0179 (14)
H8B0.56800.06070.20860.022*
C10B0.4906 (4)0.210 (2)0.1995 (3)0.022 (2)
H10B0.48280.24420.23070.026*
C11B0.4487 (4)0.345 (2)0.1661 (3)0.0134 (18)
C12B0.3937 (4)0.539 (2)0.1789 (3)0.017 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0924 (9)0.0243 (4)0.0159 (5)0.0036 (5)0.0007 (7)0.0058 (6)
N1A0.023 (4)0.025 (4)0.016 (4)0.004 (3)0.001 (3)0.001 (4)
N2A0.040 (5)0.029 (4)0.016 (4)0.003 (4)0.001 (4)0.003 (3)
C1A0.037 (4)0.029 (3)0.013 (3)0.003 (3)0.002 (3)0.002 (3)
C2A0.051 (4)0.014 (3)0.014 (4)0.002 (3)0.008 (3)0.007 (3)
C3A0.051 (4)0.014 (3)0.014 (4)0.002 (3)0.008 (3)0.007 (3)
C4A0.030 (5)0.013 (4)0.021 (5)0.000 (4)0.009 (4)0.003 (4)
C5A0.027 (6)0.012 (4)0.020 (5)0.003 (4)0.002 (4)0.000 (4)
Br1B0.0919 (10)0.0266 (5)0.0183 (5)0.0062 (5)0.0027 (6)0.0037 (5)
N1B0.022 (5)0.028 (4)0.030 (5)0.003 (4)0.006 (4)0.000 (4)
N2B0.010 (4)0.040 (5)0.041 (6)0.001 (4)0.005 (3)0.003 (4)
C1B0.037 (4)0.029 (3)0.013 (3)0.003 (3)0.002 (3)0.002 (3)
C2B0.052 (4)0.012 (3)0.018 (4)0.005 (3)0.008 (3)0.000 (3)
C3B0.052 (4)0.012 (3)0.018 (4)0.005 (3)0.008 (3)0.000 (3)
C4B0.032 (6)0.013 (4)0.023 (5)0.005 (4)0.007 (4)0.004 (4)
C5B0.029 (5)0.013 (4)0.020 (5)0.002 (4)0.001 (4)0.013 (4)
O1A0.026 (3)0.029 (3)0.018 (4)0.003 (3)0.001 (3)0.001 (3)
O2A0.018 (3)0.036 (4)0.014 (4)0.005 (3)0.002 (3)0.003 (3)
O3A0.031 (4)0.025 (3)0.014 (3)0.006 (3)0.003 (3)0.001 (3)
C6A0.029 (5)0.012 (4)0.014 (5)0.004 (4)0.007 (4)0.003 (4)
C7A0.020 (5)0.020 (5)0.029 (6)0.000 (4)0.008 (4)0.006 (4)
C8A0.024 (3)0.007 (3)0.027 (3)0.005 (3)0.002 (3)0.000 (3)
C9A0.021 (4)0.020 (3)0.013 (3)0.000 (3)0.003 (3)0.007 (3)
C10A0.027 (5)0.007 (4)0.017 (5)0.001 (4)0.003 (4)0.001 (3)
C11A0.024 (5)0.017 (4)0.013 (5)0.004 (4)0.000 (4)0.003 (4)
C12A0.024 (5)0.023 (4)0.013 (5)0.010 (4)0.001 (4)0.004 (4)
O1B0.028 (4)0.025 (3)0.018 (4)0.000 (3)0.001 (3)0.006 (3)
O2B0.024 (3)0.033 (3)0.014 (4)0.005 (3)0.003 (3)0.003 (3)
O3B0.021 (3)0.027 (3)0.017 (3)0.002 (3)0.003 (3)0.005 (3)
C6B0.029 (5)0.019 (5)0.020 (5)0.008 (4)0.002 (4)0.004 (4)
C7B0.028 (5)0.020 (5)0.021 (5)0.001 (4)0.001 (4)0.012 (4)
C8B0.024 (3)0.007 (3)0.027 (3)0.005 (3)0.002 (3)0.000 (3)
C9B0.021 (4)0.020 (3)0.013 (3)0.000 (3)0.003 (3)0.007 (3)
C10B0.027 (5)0.029 (5)0.009 (5)0.007 (4)0.002 (4)0.004 (4)
C11B0.020 (5)0.011 (4)0.009 (4)0.004 (4)0.002 (3)0.001 (3)
C12B0.019 (5)0.019 (4)0.014 (5)0.011 (4)0.001 (4)0.004 (4)
Geometric parameters (Å, º) top
Br1A—C2A1.889 (10)O2A—H2AC0.8200
N1A—C1A1.322 (11)O3A—C12A1.249 (10)
N1A—C5A1.359 (11)C6A—C11A1.391 (12)
N2A—C5A1.349 (12)C6A—C7A1.400 (13)
N2A—H2AA0.8600C6A—H6A0.9300
N2A—H2AB0.8600C7A—C8A1.378 (14)
C1A—C2A1.394 (13)C7A—H7A0.9300
C1A—H1AA0.9300C8A—C9A1.383 (13)
C2A—C3A1.418 (14)C9A—C10A1.338 (13)
C3A—C4A1.360 (12)C9A—H9A0.9300
C3A—H3AA0.9300C10A—C11A1.393 (12)
C4A—C5A1.402 (12)C10A—H10A0.9300
C4A—H4AA0.9300C11A—C12A1.474 (13)
Br1B—C2B1.912 (10)O1B—C8B1.384 (11)
N1B—C5B1.351 (11)O1B—H1BB0.8200
N1B—C1B1.359 (12)O2B—C12B1.312 (10)
N2B—C5B1.318 (13)O2B—H2BC0.8200
N2B—H2BA0.8600O3B—C12B1.250 (11)
N2B—H2BB0.8600C6B—C7B1.396 (13)
C1B—C2B1.332 (13)C6B—C11B1.401 (12)
C1B—H1BA0.9300C6B—H6B0.9300
C2B—C3B1.381 (14)C7B—C8B1.383 (14)
C3B—C4B1.400 (12)C7B—H7B0.9300
C3B—H3BA0.9300C8B—C9B1.379 (13)
C4B—C5B1.410 (12)C9B—C10B1.358 (13)
C4B—H4BA0.9300C9B—H8B0.9300
O1A—C8A1.370 (10)C10B—C11B1.423 (13)
O1A—H1AB0.8200C10B—H10B0.9300
O2A—C12A1.307 (11)C11B—C12B1.456 (12)
C1A—N1A—C5A119.3 (8)C7A—C6A—H6A119.7
C5A—N2A—H2AA120.0C8A—C7A—C6A119.1 (8)
C5A—N2A—H2AB120.0C8A—C7A—H7A120.4
H2AA—N2A—H2AB120.0C6A—C7A—H7A120.4
N1A—C1A—C2A123.1 (9)O1A—C8A—C7A117.9 (8)
N1A—C1A—H1AA118.5O1A—C8A—C9A122.7 (9)
C2A—C1A—H1AA118.5C7A—C8A—C9A119.4 (8)
C1A—C2A—C3A118.7 (9)C10A—C9A—C8A121.8 (9)
C1A—C2A—Br1A120.5 (8)C10A—C9A—H9A119.1
C3A—C2A—Br1A120.8 (7)C8A—C9A—H9A119.1
C4A—C3A—C2A117.0 (9)C9A—C10A—C11A120.7 (8)
C4A—C3A—H3AA121.5C9A—C10A—H10A119.7
C2A—C3A—H3AA121.5C11A—C10A—H10A119.7
C3A—C4A—C5A122.0 (9)C6A—C11A—C10A118.4 (8)
C3A—C4A—H4AA119.0C6A—C11A—C12A121.1 (8)
C5A—C4A—H4AA119.0C10A—C11A—C12A120.5 (8)
N2A—C5A—N1A115.5 (8)O3A—C12A—O2A122.8 (8)
N2A—C5A—C4A124.6 (8)O3A—C12A—C11A122.3 (8)
N1A—C5A—C4A119.9 (8)O2A—C12A—C11A114.9 (7)
C5B—N1B—C1B120.1 (9)C8B—O1B—H1BB109.5
C5B—N2B—H2BA120.0C12B—O2B—H2BC109.5
C5B—N2B—H2BB120.0C7B—C6B—C11B121.1 (9)
H2BA—N2B—H2BB120.0C7B—C6B—H6B119.5
C2B—C1B—N1B121.0 (9)C11B—C6B—H6B119.5
C2B—C1B—H1BA119.5C8B—C7B—C6B118.6 (9)
N1B—C1B—H1BA119.5C8B—C7B—H7B120.7
C1B—C2B—C3B121.9 (10)C6B—C7B—H7B120.7
C1B—C2B—Br1B118.8 (8)C9B—C8B—C7B121.6 (8)
C3B—C2B—Br1B119.3 (7)C9B—C8B—O1B118.7 (8)
C2B—C3B—C4B117.9 (9)C7B—C8B—O1B119.6 (9)
C2B—C3B—H3BA121.0C10B—C9B—C8B120.0 (8)
C4B—C3B—H3BA121.0C10B—C9B—H8B120.0
C3B—C4B—C5B118.7 (9)C8B—C9B—H8B120.0
C3B—C4B—H4BA120.7C9B—C10B—C11B121.0 (9)
C5B—C4B—H4BA120.7C9B—C10B—H10B119.5
N2B—C5B—N1B117.2 (8)C11B—C10B—H10B119.5
N2B—C5B—C4B122.5 (9)C6B—C11B—C10B117.7 (8)
N1B—C5B—C4B120.3 (9)C6B—C11B—C12B119.9 (8)
C8A—O1A—H1AB109.5C10B—C11B—C12B122.4 (8)
C12A—O2A—H2AC109.5O3B—C12B—O2B121.2 (8)
C11A—C6A—C7A120.6 (9)O3B—C12B—C11B124.0 (8)
C11A—C6A—H6A119.7O2B—C12B—C11B114.8 (8)
C5A—N1A—C1A—C2A2.4 (14)C7A—C8A—C9A—C10A1.6 (13)
N1A—C1A—C2A—C3A1.6 (14)C8A—C9A—C10A—C11A2.3 (13)
N1A—C1A—C2A—Br1A179.1 (7)C7A—C6A—C11A—C10A1.4 (13)
C1A—C2A—C3A—C4A0.9 (13)C7A—C6A—C11A—C12A179.2 (8)
Br1A—C2A—C3A—C4A178.4 (6)C9A—C10A—C11A—C6A2.1 (13)
C2A—C3A—C4A—C5A2.6 (13)C9A—C10A—C11A—C12A178.5 (8)
C1A—N1A—C5A—N2A179.8 (8)C6A—C11A—C12A—O3A178.3 (8)
C1A—N1A—C5A—C4A0.6 (13)C10A—C11A—C12A—O3A1.1 (13)
C3A—C4A—C5A—N2A177.5 (9)C6A—C11A—C12A—O2A2.6 (12)
C3A—C4A—C5A—N1A1.9 (13)C10A—C11A—C12A—O2A178.1 (8)
C5B—N1B—C1B—C2B1.8 (14)C11B—C6B—C7B—C8B0.5 (13)
N1B—C1B—C2B—C3B3.1 (14)C6B—C7B—C8B—C9B2.7 (13)
N1B—C1B—C2B—Br1B178.4 (7)C6B—C7B—C8B—O1B178.5 (7)
C1B—C2B—C3B—C4B2.4 (13)C7B—C8B—C9B—C10B3.4 (13)
Br1B—C2B—C3B—C4B179.1 (6)O1B—C8B—C9B—C10B179.3 (8)
C2B—C3B—C4B—C5B0.6 (12)C8B—C9B—C10B—C11B1.9 (13)
C1B—N1B—C5B—N2B178.7 (8)C7B—C6B—C11B—C10B1.0 (12)
C1B—N1B—C5B—C4B0.1 (13)C7B—C6B—C11B—C12B178.9 (8)
C3B—C4B—C5B—N2B179.2 (8)C9B—C10B—C11B—C6B0.3 (12)
C3B—C4B—C5B—N1B0.5 (12)C9B—C10B—C11B—C12B179.5 (8)
C11A—C6A—C7A—C8A0.8 (13)C6B—C11B—C12B—O3B0.8 (12)
C6A—C7A—C8A—O1A177.2 (7)C10B—C11B—C12B—O3B179.4 (8)
C6A—C7A—C8A—C9A0.8 (13)C6B—C11B—C12B—O2B180.0 (7)
O1A—C8A—C9A—C10A176.3 (8)C10B—C11B—C12B—O2B0.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O3Ai0.862.192.996 (11)155
N2A—H2AB···O1Aii0.862.132.969 (11)166
N2B—H2BA···O3Biii0.862.193.020 (11)163
O1A—H1AB···O3Biv0.821.872.688 (8)175
O2A—H2AC···N1Av0.821.802.605 (10)168
O1B—H1BB···O3Avi0.821.942.762 (8)177
O2B—H2BC···N1Bvii0.821.852.663 (11)170
C6B—H6B···O1Aviii0.932.523.416 (11)161
C7B—H7B···O3Avi0.932.583.262 (12)131
C9A—H9A···O3Biv0.932.483.182 (11)132
C10A—H10A···O1Bix0.932.533.416 (11)158
Symmetry codes: (i) x1, y1, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1, y+1, z+1/2; (v) x+1, y+1, z; (vi) x+3/2, y3/2, z1/2; (vii) x, y+1, z; (viii) x+1, y+1, z1/2; (ix) x+3/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H5BrN2·C7H6O3
Mr311.14
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)21.370 (12), 3.990 (2), 28.939 (15)
V3)2467 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.29 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.449, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
6994, 3770, 2994
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.10
No. of reflections3770
No. of parameters296
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.99
Absolute structureFlack (1983), 1554 Friedel pairs
Absolute structure parameter0.54 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O3Ai0.862.192.996 (11)155
N2A—H2AB···O1Aii0.862.132.969 (11)166
N2B—H2BA···O3Biii0.862.193.020 (11)163
O1A—H1AB···O3Biv0.821.872.688 (8)175
O2A—H2AC···N1Av0.821.802.605 (10)168
O1B—H1BB···O3Avi0.821.942.762 (8)177
O2B—H2BC···N1Bvii0.821.852.663 (11)170
C6B—H6B···O1Aviii0.932.523.416 (11)161
C7B—H7B···O3Avi0.932.583.262 (12)131
C9A—H9A···O3Biv0.932.483.182 (11)132
C10A—H10A···O1Bix0.932.533.416 (11)158
Symmetry codes: (i) x1, y1, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1, y+1, z+1/2; (v) x+1, y+1, z; (vi) x+3/2, y3/2, z1/2; (vii) x, y+1, z; (viii) x+1, y+1, z1/2; (ix) x+3/2, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o689–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds