organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­nitro­phen­yl)-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)hydrazine

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 July 2010; accepted 18 July 2010; online 24 July 2010)

In the title compound, C14H14N4O4, the dihedral angle between the benzene rings is 10.42 (8)°. The nitro groups make dihedral angles of 5.3 (2) and 6.47 (15)° with their parent ring and are oriented at 11.2 (3)° with respect to each other. An intra­molecular N—H⋯O hydrogen bond completes an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, thus forming (010) chains in which R22(13) ring motifs are present. There also exist aromatic ππ stacking inter­actions [centroid–centroid separation = 3.7046 (9) Å].

Related literature

For a related structure, see: Girgisa et al. (2003[Girgisa, A. S., Hosnia, H. M. & Ahmed-Faragb, I. S. (2003). Z. Naturforsch. Teil B, 58, 678-685.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O4

  • Mr = 326.31

  • Monoclinic, P 21 /c

  • a = 14.8627 (8) Å

  • b = 13.8704 (7) Å

  • c = 7.3493 (4) Å

  • β = 99.211 (3)°

  • V = 1495.53 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.975

  • 13873 measured reflections

  • 3684 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.03

  • 3684 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.99 2.5976 (19) 127
C2—H2⋯O2i 0.93 2.57 3.426 (2) 153
C15—H15⋯O1i 0.93 2.52 3.235 (2) 134
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been prepared for the chlorination and bromonition. Various properties of (I) as well as their derivatives will be undertaken.

The crystal structures of (II) i.e., 6-amino-4-(4-chlorophenyl)-1,2-dihydro-1-[(2,3-dihydroindene- 1(1H)-ylidene)amino]-2-oxo-3,5-pyridinedicarbonitrile (Girgisa et al., 2003) has been published which contain 3,4-dihydronaphthalen-1(2H)-ylidene moiety which is also present in (I). The other annilinic group i.e, (2,4-dinitrophenyl)hydrazine is very common.

In (I), the group A (C1—C7/C10) of 3,4-dihydronaphthalen-1(2H)-ylidene moiety is planar with r. m. s. deviation of 0.0051 Å. The C-atoms, C8 and C9 are at a distance of 0.8224 (33) and 0.2986 (27) Å from the mean square plane of A. Similarly nitrogen atom N1 is at a distance of -0.2603 (24) Å from the same. The phenyl ring B (C11—C16) is planar with r. m. s. deviation of 0.0053 Å and N2 is at 0.0189 (23) Å from it. The dihedral angle between A/B is 10.51 (6)°. The nitro groups C (O1/N3/O2) and D (O3/N4/O4) are of course planar. The dihedral angle between B/C, B/D and C/D is 5.26 (24), 6.47 (15) and 11.17 (25)°, respectively. There exist an intramolecular H-bonding of N—H···O type completing an S(6) (Fig. 2) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of infinite one dimensional polymeric chains due to C—H···O type of intermolecular H-bondings (Table 1, Fig. 2) extending along the b axis and in these chains R22(13) ring motifs are present. There exist ππ interaction between the centroids of phenyl rings of annilinic group at a distance of 3.7046 (9) Å [symmetry: 1 - x, - y, - z]. The π-interaction is present (Table 1) between the nitro group not involved in the intramolecular H-bonding and the phenyl ring of (2,4-dinitrophenyl)hydrazine moiety.

Related literature top

For a related structure, see: Girgisa et al. (2003). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2,4-Dinitrophenylhydrazine (1.518 g, 7.67 mmol) was added to 50 ml of distilled methanol with constant stirring at room temperature in a 100-ml round bottom flask. Then 1-tetralon 1 ml (1.098 g, 7.5 mmol) was added to it and 3–4 drops of conc. HCl were also added into the reaction mixture. The mixture was refluxed for 4 h, and then brought to room temperature. A dark red solid was obtained which purified by repeated crystallization from chloroform to obtain dark red prisms of (I). These crystals had sharp 532.6 K melting point.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Structure description top

The title compound (I, Fig. 1) has been prepared for the chlorination and bromonition. Various properties of (I) as well as their derivatives will be undertaken.

The crystal structures of (II) i.e., 6-amino-4-(4-chlorophenyl)-1,2-dihydro-1-[(2,3-dihydroindene- 1(1H)-ylidene)amino]-2-oxo-3,5-pyridinedicarbonitrile (Girgisa et al., 2003) has been published which contain 3,4-dihydronaphthalen-1(2H)-ylidene moiety which is also present in (I). The other annilinic group i.e, (2,4-dinitrophenyl)hydrazine is very common.

In (I), the group A (C1—C7/C10) of 3,4-dihydronaphthalen-1(2H)-ylidene moiety is planar with r. m. s. deviation of 0.0051 Å. The C-atoms, C8 and C9 are at a distance of 0.8224 (33) and 0.2986 (27) Å from the mean square plane of A. Similarly nitrogen atom N1 is at a distance of -0.2603 (24) Å from the same. The phenyl ring B (C11—C16) is planar with r. m. s. deviation of 0.0053 Å and N2 is at 0.0189 (23) Å from it. The dihedral angle between A/B is 10.51 (6)°. The nitro groups C (O1/N3/O2) and D (O3/N4/O4) are of course planar. The dihedral angle between B/C, B/D and C/D is 5.26 (24), 6.47 (15) and 11.17 (25)°, respectively. There exist an intramolecular H-bonding of N—H···O type completing an S(6) (Fig. 2) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of infinite one dimensional polymeric chains due to C—H···O type of intermolecular H-bondings (Table 1, Fig. 2) extending along the b axis and in these chains R22(13) ring motifs are present. There exist ππ interaction between the centroids of phenyl rings of annilinic group at a distance of 3.7046 (9) Å [symmetry: 1 - x, - y, - z]. The π-interaction is present (Table 1) between the nitro group not involved in the intramolecular H-bonding and the phenyl ring of (2,4-dinitrophenyl)hydrazine moiety.

For a related structure, see: Girgisa et al. (2003). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form polymeric chains extending along b axis.
1-(2,4-Dinitrophenyl)-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazine top
Crystal data top
C16H14N4O4F(000) = 680
Mr = 326.31Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2225 reflections
a = 14.8627 (8) Åθ = 2.1–25.2°
b = 13.8704 (7) ŵ = 0.11 mm1
c = 7.3493 (4) ÅT = 296 K
β = 99.211 (3)°Prism, dark red
V = 1495.53 (14) Å30.34 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3684 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.966, Tmax = 0.975l = 99
13873 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1946P]
where P = (Fo2 + 2Fc2)/3
3684 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H14N4O4V = 1495.53 (14) Å3
Mr = 326.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8627 (8) ŵ = 0.11 mm1
b = 13.8704 (7) ÅT = 296 K
c = 7.3493 (4) Å0.34 × 0.25 × 0.22 mm
β = 99.211 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2275 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.975Rint = 0.036
13873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3684 reflectionsΔρmin = 0.19 e Å3
217 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43825 (10)0.23381 (9)0.0566 (2)0.0651 (5)
O20.57029 (10)0.25445 (10)0.0177 (2)0.0762 (6)
O30.81423 (10)0.03761 (12)0.1565 (2)0.0771 (6)
O40.78682 (11)0.10369 (11)0.2563 (2)0.0819 (7)
N10.34097 (9)0.00794 (9)0.26919 (19)0.0434 (5)
N20.39945 (9)0.07682 (9)0.2205 (2)0.0442 (5)
N30.51727 (11)0.20674 (10)0.0563 (2)0.0491 (5)
N40.76344 (11)0.02141 (13)0.2090 (2)0.0567 (6)
C10.19535 (12)0.03794 (12)0.3219 (2)0.0458 (6)
C20.22711 (13)0.12656 (13)0.3948 (3)0.0565 (7)
C30.16793 (15)0.19545 (15)0.4405 (3)0.0679 (8)
C40.07590 (15)0.17652 (17)0.4138 (3)0.0738 (9)
C50.04314 (14)0.08992 (18)0.3402 (3)0.0733 (9)
C60.10145 (13)0.01864 (14)0.2944 (3)0.0572 (7)
C70.06687 (14)0.07705 (17)0.2168 (4)0.0770 (9)
C80.13139 (15)0.15586 (16)0.2858 (4)0.0773 (9)
C90.22538 (13)0.13744 (13)0.2358 (3)0.0583 (7)
C100.25900 (12)0.03616 (12)0.2750 (2)0.0448 (6)
C110.48721 (11)0.05420 (10)0.2161 (2)0.0361 (5)
C120.54739 (11)0.11646 (10)0.1415 (2)0.0380 (5)
C130.63792 (11)0.09211 (11)0.1416 (2)0.0415 (5)
C140.66902 (11)0.00529 (12)0.2126 (2)0.0421 (5)
C150.61171 (12)0.05889 (12)0.2843 (2)0.0441 (6)
C160.52342 (12)0.03497 (11)0.2866 (2)0.0407 (5)
H20.289320.139390.412860.0677*
H2A0.379980.134200.192920.0530*
H30.189990.254350.489050.0815*
H40.035670.222560.445640.0885*
H50.019360.078710.320680.0880*
H7A0.059190.074800.083320.0924*
H7B0.007860.090110.251900.0924*
H8A0.136170.160630.418650.0928*
H8B0.108030.216680.232700.0928*
H9A0.223480.150750.105670.0699*
H9B0.268460.181900.304380.0699*
H130.676800.134360.093910.0499*
H150.633990.118140.330620.0529*
H160.485870.078170.335710.0489*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0644 (10)0.0433 (7)0.0887 (11)0.0134 (7)0.0152 (8)0.0104 (7)
O20.0709 (10)0.0599 (9)0.0990 (12)0.0085 (7)0.0170 (9)0.0319 (8)
O30.0478 (9)0.0901 (11)0.0970 (12)0.0040 (8)0.0226 (8)0.0040 (9)
O40.0619 (10)0.0738 (10)0.1095 (14)0.0256 (8)0.0125 (9)0.0107 (9)
N10.0395 (8)0.0434 (8)0.0471 (8)0.0049 (6)0.0066 (6)0.0047 (6)
N20.0424 (8)0.0372 (7)0.0531 (9)0.0006 (6)0.0079 (7)0.0007 (6)
N30.0559 (10)0.0375 (7)0.0533 (9)0.0033 (7)0.0069 (7)0.0010 (6)
N40.0457 (10)0.0653 (10)0.0588 (10)0.0039 (8)0.0071 (8)0.0069 (8)
C10.0393 (10)0.0505 (10)0.0474 (10)0.0031 (8)0.0060 (8)0.0076 (8)
C20.0457 (11)0.0504 (10)0.0745 (14)0.0018 (9)0.0132 (10)0.0057 (9)
C30.0658 (14)0.0512 (11)0.0893 (17)0.0065 (10)0.0202 (12)0.0017 (11)
C40.0581 (14)0.0675 (14)0.0990 (18)0.0195 (11)0.0224 (12)0.0061 (12)
C50.0400 (12)0.0878 (16)0.0923 (18)0.0107 (11)0.0112 (11)0.0032 (13)
C60.0407 (11)0.0678 (12)0.0619 (13)0.0001 (9)0.0050 (9)0.0042 (10)
C70.0446 (12)0.0881 (16)0.0959 (19)0.0085 (12)0.0039 (12)0.0159 (13)
C80.0580 (14)0.0692 (14)0.1048 (19)0.0188 (12)0.0134 (12)0.0113 (13)
C90.0490 (12)0.0518 (11)0.0742 (14)0.0067 (9)0.0103 (10)0.0042 (9)
C100.0406 (10)0.0487 (9)0.0440 (10)0.0008 (8)0.0039 (8)0.0066 (8)
C110.0393 (9)0.0349 (8)0.0335 (8)0.0029 (7)0.0036 (7)0.0074 (6)
C120.0443 (10)0.0312 (7)0.0372 (9)0.0027 (7)0.0026 (7)0.0039 (6)
C130.0422 (10)0.0414 (9)0.0413 (9)0.0092 (7)0.0075 (7)0.0052 (7)
C140.0374 (9)0.0454 (9)0.0426 (10)0.0001 (7)0.0040 (7)0.0074 (7)
C150.0485 (11)0.0374 (8)0.0441 (10)0.0009 (8)0.0005 (8)0.0004 (7)
C160.0444 (10)0.0365 (8)0.0406 (9)0.0041 (7)0.0047 (7)0.0008 (7)
Geometric parameters (Å, º) top
O1—N31.233 (2)C9—C101.503 (2)
O2—N31.221 (2)C11—C161.414 (2)
O3—N41.217 (2)C11—C121.415 (2)
O4—N41.227 (2)C12—C131.387 (2)
N1—N21.3769 (19)C13—C141.363 (2)
N1—C101.287 (2)C14—C151.393 (2)
N2—C111.347 (2)C15—C161.356 (3)
N3—C121.439 (2)C2—H20.9300
N4—C141.456 (2)C3—H30.9300
N2—H2A0.8600C4—H40.9300
C1—C21.393 (2)C5—H50.9300
C1—C61.404 (3)C7—H7A0.9700
C1—C101.475 (2)C7—H7B0.9700
C2—C31.376 (3)C8—H8A0.9700
C3—C41.376 (3)C8—H8B0.9700
C4—C51.374 (3)C9—H9A0.9700
C5—C61.391 (3)C9—H9B0.9700
C6—C71.502 (3)C13—H130.9300
C7—C81.489 (3)C15—H150.9300
C8—C91.522 (3)C16—H160.9300
N2—N1—C10115.97 (13)N4—C14—C13119.11 (15)
N1—N2—C11119.91 (12)C13—C14—C15121.27 (16)
O1—N3—O2121.22 (15)C14—C15—C16120.00 (15)
O1—N3—C12119.61 (14)C11—C16—C15121.45 (15)
O2—N3—C12119.16 (15)C1—C2—H2119.00
O3—N4—O4123.60 (17)C3—C2—H2119.00
O3—N4—C14118.89 (16)C2—C3—H3120.00
O4—N4—C14117.49 (16)C4—C3—H3120.00
C11—N2—H2A120.00C3—C4—H4120.00
N1—N2—H2A120.00C5—C4—H4120.00
C2—C1—C10120.96 (16)C4—C5—H5119.00
C6—C1—C10119.59 (15)C6—C5—H5119.00
C2—C1—C6119.45 (17)C6—C7—H7A109.00
C1—C2—C3121.07 (18)C6—C7—H7B109.00
C2—C3—C4119.5 (2)C8—C7—H7A109.00
C3—C4—C5120.3 (2)C8—C7—H7B109.00
C4—C5—C6121.4 (2)H7A—C7—H7B108.00
C1—C6—C7119.67 (17)C7—C8—H8A109.00
C5—C6—C7122.09 (18)C7—C8—H8B109.00
C1—C6—C5118.24 (18)C9—C8—H8A109.00
C6—C7—C8110.9 (2)C9—C8—H8B109.00
C7—C8—C9111.14 (19)H8A—C8—H8B108.00
C8—C9—C10113.60 (16)C8—C9—H9A109.00
C1—C10—C9119.35 (16)C8—C9—H9B109.00
N1—C10—C9124.42 (16)C10—C9—H9A109.00
N1—C10—C1116.23 (15)C10—C9—H9B109.00
N2—C11—C16120.55 (14)H9A—C9—H9B108.00
N2—C11—C12122.79 (13)C12—C13—H13120.00
C12—C11—C16116.66 (15)C14—C13—H13121.00
N3—C12—C13116.51 (14)C14—C15—H15120.00
N3—C12—C11121.84 (15)C16—C15—H15120.00
C11—C12—C13121.62 (13)C11—C16—H16119.00
C12—C13—C14118.99 (14)C15—C16—H16119.00
N4—C14—C15119.61 (15)
C10—N1—N2—C11178.11 (14)C2—C3—C4—C50.7 (3)
N2—N1—C10—C91.1 (2)C3—C4—C5—C61.3 (3)
N2—N1—C10—C1178.32 (13)C4—C5—C6—C7179.0 (2)
N1—N2—C11—C12170.32 (14)C4—C5—C6—C11.2 (3)
N1—N2—C11—C169.3 (2)C1—C6—C7—C836.0 (3)
O1—N3—C12—C114.1 (2)C5—C6—C7—C8144.2 (2)
O2—N3—C12—C11174.74 (15)C6—C7—C8—C958.4 (3)
O2—N3—C12—C133.3 (2)C7—C8—C9—C1046.4 (3)
O1—N3—C12—C13177.87 (14)C8—C9—C10—N1169.50 (18)
O4—N4—C14—C155.9 (2)C8—C9—C10—C111.2 (2)
O4—N4—C14—C13172.68 (15)N2—C11—C16—C15179.66 (14)
O3—N4—C14—C15175.53 (15)C16—C11—C12—C131.5 (2)
O3—N4—C14—C135.9 (2)C16—C11—C12—N3176.45 (13)
C10—C1—C6—C70.3 (3)C12—C11—C16—C150.7 (2)
C2—C1—C6—C7179.7 (2)N2—C11—C12—N33.2 (2)
C10—C1—C6—C5179.91 (17)N2—C11—C12—C13178.86 (14)
C2—C1—C10—C9166.92 (17)C11—C12—C13—C141.1 (2)
C6—C1—C10—C912.5 (2)N3—C12—C13—C14176.90 (14)
C2—C1—C10—N113.7 (2)C12—C13—C14—N4178.59 (14)
C2—C1—C6—C50.5 (3)C12—C13—C14—C150.1 (2)
C6—C1—C2—C30.1 (3)N4—C14—C15—C16179.38 (14)
C10—C1—C2—C3179.31 (18)C13—C14—C15—C160.9 (2)
C6—C1—C10—N1166.93 (16)C14—C15—C16—C110.5 (2)
C1—C2—C3—C40.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.5976 (19)127
C2—H2···O2i0.932.573.426 (2)153
C15—H15···O1i0.932.523.235 (2)134
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N4O4
Mr326.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.8627 (8), 13.8704 (7), 7.3493 (4)
β (°) 99.211 (3)
V3)1495.53 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
13873, 3684, 2275
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.143, 1.03
No. of reflections3684
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.5976 (19)127
C2—H2···O2i0.932.573.426 (2)153
C15—H15···O1i0.932.523.235 (2)134
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGirgisa, A. S., Hosnia, H. M. & Ahmed-Faragb, I. S. (2003). Z. Naturforsch. Teil B, 58, 678–685.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds