metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(1,10-phenanthroline-κ2N,N′)cadmium(II) sulfate dihydrate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 5 July 2010; accepted 14 July 2010; online 21 July 2010)

In the title mononuclear complex, [Cd(C12H8N2)(H2O)4]SO4·2H2O, the coordination geometry around the CdII atom is a distorted octa­hedron, with two aqua ligands occupying the axial positions. Inter­molecular O—H⋯O hydrogen bonds lead to the formation of a two-dimensional layer structure parallel to (001). The layers are connected by ππ inter­actions between the pyridyl and benzene rings of the phenanthroline ligands [centroid–centroid distances = 3.591 (1) and 3.610 (1) Å].

Related literature

For general backgound to supra­molecular structures with coordination frameworks, see: Bie et al. (2006[Bie, H.-Y., Ji, W., Yu, J.-H., Wang, T.-G., Lu, J. & Xu, J.-Q. (2006). Mater. Lett. 60, 2475-2479.]); Huang et al. (2010[Huang, K.-L., Liu, X., Li, J.-K., Ding, Y.-W., Chen, X., Zhang, M.-X., Xu, X.-B. & Song, X.-J. (2010). Cryst. Growth Des. 10, 1508-1515.]); Wu et al. (2009[Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096-m1097.]). For related structures, see: Li et al. (2003[Li, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003). Acta Cryst. E59, m230-m231.]); Zheng & Lin (2003[Zheng, Y.-Q. & Lin, J.-L. (2003). Z. Anorg. Allg. Chem. 629, 185-187.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H8N2)(H2O)4]SO4·2H2O

  • Mr = 496.78

  • Orthorhombic, P b c a

  • a = 8.8398 (9) Å

  • b = 18.6996 (19) Å

  • c = 22.349 (2) Å

  • V = 3694.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 298 K

  • 0.41 × 0.30 × 0.27 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 0.695

  • 17188 measured reflections

  • 3266 independent reflections

  • 2789 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.065

  • S = 1.16

  • 3266 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9i 0.85 1.85 2.682 (4) 167
O1—H1B⋯O4ii 0.85 2.10 2.952 (4) 176
O2—H2A⋯O5iii 0.85 1.83 2.682 (3) 178
O2—H2B⋯O8iv 0.85 1.93 2.757 (4) 165
O3—H3A⋯O8iii 0.85 1.95 2.787 (4) 170
O3—H3B⋯O7ii 0.85 1.90 2.746 (4) 170
O4—H4A⋯O7 0.85 1.84 2.679 (4) 171
O4—H4B⋯O6iv 0.85 1.87 2.686 (4) 159
O9—H9A⋯O5iii 0.85 2.00 2.844 (4) 172
O9—H9B⋯O10iv 0.85 1.92 2.768 (4) 176
O10—H10A⋯O8 0.85 2.05 2.875 (4) 162
O10—H10B⋯O6v 0.85 2.06 2.909 (4) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+2, -y+1, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular compounds with coordination frameworks have received increasing attention due to their fascinating architectures and potential applications as functional materials of catalysis, magnetism, superconductor, non-linear optical materials and molecular recognition (Bie et al., 2006; Huang et al., 2010; Wu et al., 2009). In this paper, we report the structure of the title compound, a new cadmium(II) complex.

The CdII atom is six-coordinated by two N atoms from a phenanthroline (phen) ligand, four O atoms from water molecules, forming a [Cd(phen)(H2O)4]2+ cation. The structure contains a sulfate anion to balance the charge and two uncoordinated molecules (Fig. 1). The complex cations, sulfate anions and water molecules are held together via O—H···O hydrogen bonds (Table 1), forming a two-dimensional layer. Interdigitation of phen ligands leads to the formation of a three-dimensional network (Fig.2), stabilized by significant ππ stacking interactions between the pyridyl and benzene rings of the phen ligands [centroid–centroid distances = 3.591 (1) and 3.610 (1) Å].

The Cd—O distances of 2.260 (3)–2.304 (2)Å in the title compound are slightly longer than the reported Cd—O distances of 2.246 (2)–2.325 (3) Å, and Cd—N distances of 2.317 (3)–2.337 (3)Å are shorter than the reported Cd—N distances of 2.318 (3)–2.351 (2)Å (Bie et al., 2006). The cis O—Cd—O angles are in the range of 82.52 (9)–96.46 (11)° and the trans one is 165.28 (9)°. The cis N—Cd—O angles are in the range of 87.35 (10)–105.41 (10)° and the trans ones are 160.98 (12) and 168.48 (11)°. The N—Cd—N angle is 72.09 (11)°. These confirm the distorted octahedral environment around the CdII atom. It is noticable that in the similar complexes reported, [Cd(SO4)(C12H8N2)(H2O)3] (Li et al., 2003), [Cd(C12H8N2)(H2O)2(SO4)]n (Bie et al., 2006) and [Mn(C12H8N2)(H2O)2(SO4)] (Zheng & Lin, 2003), the center metals are coordinated to O atom from sulfate, while in the title compound the sulfate acts as a free anion.

Related literature top

For general backgound to supramolecular compounds with coordination frameworks, see: Bie et al. (2006); Huang et al. (2010); Wu et al. (2009). For related structures, see: Li et al. (2003); Zheng & Lin (2003).

Experimental top

A mixture of CdSO4.8H2O (0.2 mmol), biimidazole (0.1 mmol), H2O (15 ml) and 1,10-phenanthroline (0.2 mmol) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated to 160°C for 72 h. After cooling, colorless crystals of the title compound were obtained.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

Supramolecular compounds with coordination frameworks have received increasing attention due to their fascinating architectures and potential applications as functional materials of catalysis, magnetism, superconductor, non-linear optical materials and molecular recognition (Bie et al., 2006; Huang et al., 2010; Wu et al., 2009). In this paper, we report the structure of the title compound, a new cadmium(II) complex.

The CdII atom is six-coordinated by two N atoms from a phenanthroline (phen) ligand, four O atoms from water molecules, forming a [Cd(phen)(H2O)4]2+ cation. The structure contains a sulfate anion to balance the charge and two uncoordinated molecules (Fig. 1). The complex cations, sulfate anions and water molecules are held together via O—H···O hydrogen bonds (Table 1), forming a two-dimensional layer. Interdigitation of phen ligands leads to the formation of a three-dimensional network (Fig.2), stabilized by significant ππ stacking interactions between the pyridyl and benzene rings of the phen ligands [centroid–centroid distances = 3.591 (1) and 3.610 (1) Å].

The Cd—O distances of 2.260 (3)–2.304 (2)Å in the title compound are slightly longer than the reported Cd—O distances of 2.246 (2)–2.325 (3) Å, and Cd—N distances of 2.317 (3)–2.337 (3)Å are shorter than the reported Cd—N distances of 2.318 (3)–2.351 (2)Å (Bie et al., 2006). The cis O—Cd—O angles are in the range of 82.52 (9)–96.46 (11)° and the trans one is 165.28 (9)°. The cis N—Cd—O angles are in the range of 87.35 (10)–105.41 (10)° and the trans ones are 160.98 (12) and 168.48 (11)°. The N—Cd—N angle is 72.09 (11)°. These confirm the distorted octahedral environment around the CdII atom. It is noticable that in the similar complexes reported, [Cd(SO4)(C12H8N2)(H2O)3] (Li et al., 2003), [Cd(C12H8N2)(H2O)2(SO4)]n (Bie et al., 2006) and [Mn(C12H8N2)(H2O)2(SO4)] (Zheng & Lin, 2003), the center metals are coordinated to O atom from sulfate, while in the title compound the sulfate acts as a free anion.

For general backgound to supramolecular compounds with coordination frameworks, see: Bie et al. (2006); Huang et al. (2010); Wu et al. (2009). For related structures, see: Li et al. (2003); Zheng & Lin (2003).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title complex. Dashed lines denote hydrogen bonds.
Tetraaqua(1,10-phenanthroline-κ2N,N')cadmium(II) sulfate dihydrate top
Crystal data top
[Cd(C12H8N2)(H2O)4]SO4·2H2OF(000) = 2000.0
Mr = 496.78Dx = 1.786 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8439 reflections
a = 8.8398 (9) Åθ = 2.2–28.1°
b = 18.6996 (19) ŵ = 1.35 mm1
c = 22.349 (2) ÅT = 298 K
V = 3694.3 (6) Å3Block, yellow
Z = 80.41 × 0.30 × 0.27 mm
Data collection top
Bruker APEX CCD
diffractometer
3266 independent reflections
Radiation source: fine-focus sealed tube2789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 107
Tmin = 0.622, Tmax = 0.695k = 2222
17188 measured reflectionsl = 2226
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0047P)2 + 7.3452P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
3266 reflectionsΔρmax = 0.52 e Å3
236 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00446 (16)
Crystal data top
[Cd(C12H8N2)(H2O)4]SO4·2H2OV = 3694.3 (6) Å3
Mr = 496.78Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8398 (9) ŵ = 1.35 mm1
b = 18.6996 (19) ÅT = 298 K
c = 22.349 (2) Å0.41 × 0.30 × 0.27 mm
Data collection top
Bruker APEX CCD
diffractometer
3266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2789 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.695Rint = 0.045
17188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.16Δρmax = 0.52 e Å3
3266 reflectionsΔρmin = 0.46 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.63465 (3)0.587420 (13)0.411381 (11)0.03164 (12)
N10.7363 (4)0.52699 (16)0.33033 (14)0.0367 (7)
N20.5467 (4)0.64254 (17)0.32424 (14)0.0379 (8)
O10.4794 (3)0.49034 (13)0.42568 (12)0.0433 (7)
H1A0.51210.45050.41270.052*
H1B0.41100.48280.45160.052*
O20.7916 (3)0.68309 (13)0.42330 (11)0.0392 (6)
H2A0.75080.72410.42020.047*
H2B0.86380.68580.44830.047*
O30.4697 (3)0.64814 (14)0.46954 (13)0.0505 (8)
H3A0.48560.69210.47690.061*
H3B0.37760.63930.47750.061*
O40.7684 (3)0.53557 (13)0.48847 (12)0.0433 (7)
H4A0.78850.49110.48800.052*
H4B0.84290.55790.50370.052*
O50.8325 (3)0.31356 (13)0.41435 (12)0.0445 (7)
O61.0491 (3)0.38259 (15)0.44410 (13)0.0500 (8)
O70.8156 (3)0.39447 (14)0.49742 (14)0.0517 (8)
O80.9605 (3)0.28672 (13)0.50624 (13)0.0489 (8)
O90.9479 (3)0.86732 (14)0.37107 (13)0.0499 (8)
H9A0.86840.84710.38420.060*
H9B1.02410.84360.38300.060*
O100.7963 (3)0.20834 (17)0.59585 (14)0.0601 (8)
H10A0.82540.23390.56660.072*
H10B0.73030.17910.58290.072*
S10.91417 (11)0.34438 (4)0.46528 (4)0.0313 (2)
C10.8259 (5)0.4706 (2)0.3331 (2)0.0528 (12)
H10.85770.45450.37040.063*
C20.8748 (6)0.4343 (3)0.2817 (3)0.0679 (15)
H20.93620.39410.28500.082*
C30.8315 (6)0.4584 (3)0.2274 (3)0.0711 (16)
H30.86400.43480.19310.085*
C40.7386 (5)0.5184 (3)0.22216 (19)0.0513 (12)
C50.6928 (4)0.5516 (2)0.27550 (16)0.0370 (9)
C60.5959 (4)0.6128 (2)0.27248 (16)0.0361 (9)
C70.5517 (5)0.6411 (3)0.21632 (18)0.0500 (12)
C80.4601 (6)0.7016 (3)0.2162 (2)0.0628 (14)
H80.43070.72180.18000.075*
C90.4140 (6)0.7310 (3)0.2677 (2)0.0643 (14)
H90.35340.77160.26760.077*
C100.4585 (5)0.6996 (2)0.3217 (2)0.0508 (11)
H100.42460.71970.35740.061*
C110.6927 (6)0.5484 (3)0.1662 (2)0.0679 (15)
H110.72450.52690.13080.081*
C120.6042 (6)0.6069 (3)0.1636 (2)0.0663 (15)
H120.57700.62540.12650.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03948 (18)0.02569 (15)0.02976 (16)0.00082 (12)0.00038 (12)0.00058 (12)
N10.0370 (18)0.0301 (17)0.0429 (19)0.0027 (15)0.0088 (15)0.0022 (14)
N20.040 (2)0.0347 (18)0.0389 (18)0.0004 (15)0.0040 (16)0.0039 (14)
O10.0472 (17)0.0317 (14)0.0510 (17)0.0061 (13)0.0075 (14)0.0014 (12)
O20.0394 (15)0.0253 (13)0.0530 (17)0.0024 (12)0.0097 (13)0.0017 (12)
O30.0479 (18)0.0342 (15)0.069 (2)0.0064 (13)0.0238 (15)0.0175 (14)
O40.0484 (17)0.0236 (13)0.0579 (17)0.0007 (12)0.0196 (14)0.0005 (12)
O50.0478 (17)0.0312 (14)0.0545 (17)0.0085 (13)0.0188 (14)0.0023 (13)
O60.0409 (17)0.0461 (17)0.0632 (19)0.0136 (14)0.0002 (15)0.0023 (14)
O70.0480 (18)0.0301 (15)0.077 (2)0.0033 (13)0.0094 (16)0.0063 (14)
O80.0584 (19)0.0302 (15)0.0580 (18)0.0041 (13)0.0206 (15)0.0032 (13)
O90.0431 (17)0.0403 (16)0.066 (2)0.0016 (14)0.0109 (15)0.0069 (14)
O100.0499 (19)0.061 (2)0.070 (2)0.0017 (16)0.0032 (17)0.0018 (16)
S10.0291 (5)0.0196 (4)0.0451 (5)0.0003 (4)0.0060 (4)0.0012 (4)
C10.050 (3)0.041 (2)0.067 (3)0.003 (2)0.015 (2)0.000 (2)
C20.062 (3)0.052 (3)0.090 (4)0.009 (3)0.026 (3)0.018 (3)
C30.067 (4)0.077 (4)0.069 (4)0.006 (3)0.026 (3)0.027 (3)
C40.046 (3)0.062 (3)0.046 (3)0.015 (2)0.016 (2)0.013 (2)
C50.032 (2)0.045 (2)0.035 (2)0.0137 (18)0.0064 (17)0.0060 (17)
C60.032 (2)0.043 (2)0.034 (2)0.0137 (18)0.0001 (17)0.0022 (17)
C70.044 (3)0.068 (3)0.038 (2)0.023 (2)0.004 (2)0.007 (2)
C80.056 (3)0.073 (3)0.060 (3)0.014 (3)0.019 (3)0.026 (3)
C90.061 (3)0.058 (3)0.074 (4)0.003 (3)0.020 (3)0.015 (3)
C100.051 (3)0.045 (3)0.056 (3)0.003 (2)0.008 (2)0.004 (2)
C110.066 (3)0.101 (4)0.036 (3)0.019 (3)0.013 (2)0.013 (3)
C120.062 (3)0.101 (4)0.036 (3)0.020 (3)0.001 (2)0.007 (3)
Geometric parameters (Å, º) top
Cd1—O32.260 (3)O9—H9B0.8500
Cd1—O22.280 (2)O10—H10A0.8500
Cd1—O12.298 (3)O10—H10B0.8500
Cd1—O42.304 (2)C1—C21.403 (6)
Cd1—N12.317 (3)C1—H10.9300
Cd1—N22.337 (3)C2—C31.350 (7)
N1—C11.320 (5)C2—H20.9300
N1—C51.364 (5)C3—C41.396 (7)
N2—C101.323 (5)C3—H30.9300
N2—C61.355 (5)C4—C51.403 (5)
O1—H1A0.8500C4—C111.429 (7)
O1—H1B0.8499C5—C61.432 (6)
O2—H2A0.8499C6—C71.417 (5)
O2—H2B0.8500C7—C81.392 (7)
O3—H3A0.8500C7—C121.418 (7)
O3—H3B0.8500C8—C91.340 (7)
O4—H4A0.8500C8—H80.9300
O4—H4B0.8500C9—C101.398 (6)
O5—S11.466 (3)C9—H90.9300
O6—S11.469 (3)C10—H100.9300
O7—S11.467 (3)C11—C121.347 (7)
O8—S11.473 (3)C11—H110.9300
O9—H9A0.8500C12—H120.9300
O3—Cd1—O286.06 (9)O7—S1—O8109.16 (18)
O3—Cd1—O186.08 (10)O6—S1—O8109.31 (18)
O2—Cd1—O1165.28 (9)N1—C1—C2122.2 (5)
O3—Cd1—O496.46 (11)N1—C1—H1118.9
O2—Cd1—O486.02 (9)C2—C1—H1118.9
O1—Cd1—O482.52 (9)C3—C2—C1119.1 (5)
O3—Cd1—N1160.98 (12)C3—C2—H2120.4
O2—Cd1—N1103.77 (10)C1—C2—H2120.4
O1—Cd1—N187.42 (10)C2—C3—C4120.8 (5)
O4—Cd1—N1100.39 (10)C2—C3—H3119.6
O3—Cd1—N292.46 (11)C4—C3—H3119.6
O2—Cd1—N287.35 (10)C3—C4—C5116.9 (4)
O1—Cd1—N2105.41 (10)C3—C4—C11123.8 (5)
O4—Cd1—N2168.48 (11)C5—C4—C11119.3 (5)
N1—Cd1—N272.09 (11)N1—C5—C4122.2 (4)
C1—N1—C5118.7 (4)N1—C5—C6118.7 (3)
C1—N1—Cd1125.8 (3)C4—C5—C6119.0 (4)
C5—N1—Cd1115.4 (2)N2—C6—C7120.9 (4)
C10—N2—C6119.0 (3)N2—C6—C5118.7 (3)
C10—N2—Cd1126.0 (3)C7—C6—C5120.4 (4)
C6—N2—Cd1115.0 (2)C8—C7—C6117.8 (4)
Cd1—O1—H1A116.2C8—C7—C12123.7 (5)
Cd1—O1—H1B130.6C6—C7—C12118.5 (5)
H1A—O1—H1B109.3C9—C8—C7120.5 (4)
Cd1—O2—H2A116.1C9—C8—H8119.7
Cd1—O2—H2B125.5C7—C8—H8119.7
H2A—O2—H2B108.6C8—C9—C10119.0 (5)
Cd1—O3—H3A119.4C8—C9—H9120.5
Cd1—O3—H3B129.9C10—C9—H9120.5
H3A—O3—H3B107.8N2—C10—C9122.7 (5)
Cd1—O4—H4A120.7N2—C10—H10118.6
Cd1—O4—H4B119.3C9—C10—H10118.6
H4A—O4—H4B108.8C12—C11—C4121.4 (5)
H9A—O9—H9B108.3C12—C11—H11119.3
H10A—O10—H10B107.9C4—C11—H11119.3
O5—S1—O7109.79 (17)C11—C12—C7121.3 (5)
O5—S1—O6109.95 (17)C11—C12—H12119.3
O7—S1—O6109.24 (17)C7—C12—H12119.3
O5—S1—O8109.38 (15)
O3—Cd1—N1—C1141.9 (4)Cd1—N1—C5—C62.5 (4)
O2—Cd1—N1—C198.5 (3)C3—C4—C5—N10.1 (6)
O1—Cd1—N1—C171.8 (3)C11—C4—C5—N1178.0 (4)
O4—Cd1—N1—C110.1 (3)C3—C4—C5—C6179.2 (4)
N2—Cd1—N1—C1178.9 (3)C11—C4—C5—C62.7 (6)
O3—Cd1—N1—C535.5 (5)C10—N2—C6—C71.2 (6)
O2—Cd1—N1—C584.1 (3)Cd1—N2—C6—C7179.7 (3)
O1—Cd1—N1—C5105.6 (3)C10—N2—C6—C5179.2 (3)
O4—Cd1—N1—C5172.5 (2)Cd1—N2—C6—C50.7 (4)
N2—Cd1—N1—C51.5 (2)N1—C5—C6—N22.2 (5)
O3—Cd1—N2—C1013.4 (3)C4—C5—C6—N2177.1 (4)
O2—Cd1—N2—C1072.6 (3)N1—C5—C6—C7178.2 (3)
O1—Cd1—N2—C10100.0 (3)C4—C5—C6—C72.5 (5)
O4—Cd1—N2—C10127.4 (5)N2—C6—C7—C81.9 (6)
N1—Cd1—N2—C10178.0 (4)C5—C6—C7—C8178.6 (4)
O3—Cd1—N2—C6168.3 (3)N2—C6—C7—C12178.8 (4)
O2—Cd1—N2—C6105.8 (3)C5—C6—C7—C120.7 (6)
O1—Cd1—N2—C681.6 (3)C6—C7—C8—C91.0 (7)
O4—Cd1—N2—C650.9 (6)C12—C7—C8—C9179.7 (5)
N1—Cd1—N2—C60.4 (2)C7—C8—C9—C100.4 (7)
C5—N1—C1—C21.6 (6)C6—N2—C10—C90.3 (6)
Cd1—N1—C1—C2175.7 (3)Cd1—N2—C10—C9178.0 (3)
N1—C1—C2—C31.4 (8)C8—C9—C10—N21.2 (7)
C1—C2—C3—C40.4 (8)C3—C4—C11—C12179.2 (5)
C2—C3—C4—C50.3 (7)C5—C4—C11—C121.2 (7)
C2—C3—C4—C11177.8 (5)C4—C11—C12—C70.6 (8)
C1—N1—C5—C40.8 (6)C8—C7—C12—C11180.0 (5)
Cd1—N1—C5—C4176.8 (3)C6—C7—C12—C110.8 (7)
C1—N1—C5—C6179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9i0.851.852.682 (4)167
O1—H1B···O4ii0.852.102.952 (4)176
O2—H2A···O5iii0.851.832.682 (3)178
O2—H2B···O8iv0.851.932.757 (4)165
O3—H3A···O8iii0.851.952.787 (4)170
O3—H3B···O7ii0.851.902.746 (4)170
O4—H4A···O70.851.842.679 (4)171
O4—H4B···O6iv0.851.872.686 (4)159
O9—H9A···O5iii0.852.002.844 (4)172
O9—H9B···O10iv0.851.922.768 (4)176
O10—H10A···O80.852.052.875 (4)162
O10—H10B···O6v0.852.062.909 (4)172
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z; (iv) x+2, y+1, z+1; (v) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C12H8N2)(H2O)4]SO4·2H2O
Mr496.78
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.8398 (9), 18.6996 (19), 22.349 (2)
V3)3694.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.41 × 0.30 × 0.27
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.622, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
17188, 3266, 2789
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.16
No. of reflections3266
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.46

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9i0.851.852.682 (4)167
O1—H1B···O4ii0.852.102.952 (4)176
O2—H2A···O5iii0.851.832.682 (3)178
O2—H2B···O8iv0.851.932.757 (4)165
O3—H3A···O8iii0.851.952.787 (4)170
O3—H3B···O7ii0.851.902.746 (4)170
O4—H4A···O70.851.842.679 (4)171
O4—H4B···O6iv0.851.872.686 (4)159
O9—H9A···O5iii0.852.002.844 (4)172
O9—H9B···O10iv0.851.922.768 (4)176
O10—H10A···O80.852.052.875 (4)162
O10—H10B···O6v0.852.062.909 (4)172
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z; (iv) x+2, y+1, z+1; (v) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationBie, H.-Y., Ji, W., Yu, J.-H., Wang, T.-G., Lu, J. & Xu, J.-Q. (2006). Mater. Lett. 60, 2475–2479.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, K.-L., Liu, X., Li, J.-K., Ding, Y.-W., Chen, X., Zhang, M.-X., Xu, X.-B. & Song, X.-J. (2010). Cryst. Growth Des. 10, 1508–1515.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003). Acta Cryst. E59, m230–m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-Q. & Lin, J.-L. (2003). Z. Anorg. Allg. Chem. 629, 185–187.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds