Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007360/ob6230sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007360/ob6230Isup2.hkl |
CCDC reference: 214557
A mixture of 3CdSO4·8H2O (0.2 mmol, 0.15 g), 1,10-phenanthroline (0.2 mmol, 0.04 g) and H2O-EtOH (2:1 v/v, 15 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated to 453 K for 72 h. After cooling, colorless crystals of the title compound, (I), were obtained (yield 68%).
One of the each water H atoms (H5C, H6C and H7B) was refined isotropically; the other H atoms were fixed. The positions of the H atoms bonded to C atoms were generated geometrically (C—H = 0.96 Å), assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.
Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Fig. 1. A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms. | |
Fig. 2. The two-dimensional structure of (I) formed through hydrogen bonding. |
[Cd(SO4)(C12H8N2)(H2O)3] | Dx = 1.889 Mg m−3 |
Mr = 442.71 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 104 reflections |
a = 8.1620 (5) Å | θ = 2.1–25.1° |
b = 9.7458 (6) Å | µ = 1.57 mm−1 |
c = 19.5727 (11) Å | T = 293 K |
V = 1556.91 (16) Å3 | Block, light yellow |
Z = 4 | 0.36 × 0.18 × 0.04 mm |
F(000) = 880 |
Siemens SMART CCD area-detector diffractometer | 2500 independent reflections |
Radiation source: fine-focus sealed tube | 2357 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.1° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.416, Tmax = 0.939 | k = −11→8 |
5071 measured reflections | l = −20→23 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0555P)2 + 5.0252P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.73 e Å−3 |
2500 reflections | Δρmin = −1.22 e Å−3 |
221 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0049 (8) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 896 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.05 (5) |
[Cd(SO4)(C12H8N2)(H2O)3] | V = 1556.91 (16) Å3 |
Mr = 442.71 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.1620 (5) Å | µ = 1.57 mm−1 |
b = 9.7458 (6) Å | T = 293 K |
c = 19.5727 (11) Å | 0.36 × 0.18 × 0.04 mm |
Siemens SMART CCD area-detector diffractometer | 2500 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 2357 reflections with I > 2σ(I) |
Tmin = 0.416, Tmax = 0.939 | Rint = 0.046 |
5071 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | Δρmax = 0.73 e Å−3 |
S = 1.07 | Δρmin = −1.22 e Å−3 |
2500 reflections | Absolute structure: Flack (1983), 896 Friedel pairs |
221 parameters | Absolute structure parameter: −0.05 (5) |
0 restraints |
Experimental. empirical from equivalent reflections (XEMP in SHELXTL; Siemens,1994) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.36113 (6) | 0.54794 (5) | 0.81690 (3) | 0.0327 (2) | |
S | 0.7552 (2) | 0.58389 (17) | 0.76612 (11) | 0.0355 (5) | |
O1 | 0.6020 (7) | 0.6548 (5) | 0.7864 (3) | 0.0392 (13) | |
O2 | 0.7229 (8) | 0.4940 (7) | 0.7093 (4) | 0.0621 (18) | |
O3 | 0.8113 (8) | 0.5021 (7) | 0.8243 (4) | 0.0660 (19) | |
O4 | 0.8751 (7) | 0.6885 (5) | 0.7491 (3) | 0.0473 (14) | |
O5 | 0.2055 (8) | 0.7136 (6) | 0.7694 (4) | 0.0561 (18) | |
H5A | 0.1099 | 0.6878 | 0.7677 | 0.084* | |
O6 | 0.3990 (8) | 0.4356 (6) | 0.7147 (3) | 0.0426 (13) | |
H6A | 0.4954 | 0.4415 | 0.7032 | 0.064* | |
O7 | 0.1244 (8) | 0.4217 (6) | 0.8295 (4) | 0.0483 (15) | |
H7A | 0.0448 | 0.4726 | 0.8260 | 0.072* | |
H7B | 0.106 (11) | 0.367 (9) | 0.804 (4) | 0.03 (3)* | |
C1 | 0.5097 (13) | 0.2640 (10) | 0.8823 (5) | 0.054 (2) | |
H1A | 0.5125 | 0.2352 | 0.8370 | 0.064* | |
C2 | 0.5570 (15) | 0.1699 (11) | 0.9334 (6) | 0.069 (3) | |
H2B | 0.5920 | 0.0820 | 0.9222 | 0.082* | |
C3 | 0.5497 (16) | 0.2122 (12) | 0.9997 (6) | 0.071 (3) | |
H3B | 0.5787 | 0.1518 | 1.0344 | 0.086* | |
C4 | 0.4999 (13) | 0.3439 (11) | 1.0159 (5) | 0.054 (2) | |
C5 | 0.4935 (16) | 0.3981 (13) | 1.0855 (5) | 0.070 (3) | |
H5B | 0.5226 | 0.3412 | 1.1217 | 0.084* | |
C6 | 0.4478 (14) | 0.5246 (15) | 1.0985 (5) | 0.074 (3) | |
H6B | 0.4446 | 0.5551 | 1.1435 | 0.089* | |
C7 | 0.4028 (11) | 0.6167 (11) | 1.0444 (4) | 0.054 (2) | |
C8 | 0.3594 (15) | 0.7531 (11) | 1.0562 (5) | 0.070 (3) | |
H8A | 0.3569 | 0.7868 | 1.1006 | 0.084* | |
C9 | 0.3206 (16) | 0.8371 (11) | 1.0028 (6) | 0.073 (3) | |
H9A | 0.2951 | 0.9289 | 1.0103 | 0.088* | |
C10 | 0.3200 (13) | 0.7824 (10) | 0.9364 (5) | 0.057 (2) | |
H10A | 0.2897 | 0.8388 | 0.9002 | 0.068* | |
C11 | 0.4041 (10) | 0.5697 (9) | 0.9764 (4) | 0.0384 (18) | |
C12 | 0.4526 (9) | 0.4327 (9) | 0.9622 (4) | 0.0381 (18) | |
N1 | 0.4621 (9) | 0.3894 (7) | 0.8952 (3) | 0.0367 (15) | |
N2 | 0.3610 (10) | 0.6535 (6) | 0.9235 (3) | 0.0422 (15) | |
H5C | 0.194 (18) | 0.805 (15) | 0.769 (7) | 0.11 (5)* | |
H6C | 0.379 (16) | 0.346 (13) | 0.717 (6) | 0.09 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.0334 (3) | 0.0319 (3) | 0.0329 (3) | −0.0004 (2) | −0.0001 (2) | 0.0030 (2) |
S | 0.0299 (9) | 0.0283 (9) | 0.0482 (11) | −0.0016 (8) | 0.0067 (8) | −0.0046 (8) |
O1 | 0.033 (3) | 0.026 (2) | 0.058 (3) | 0.001 (2) | 0.004 (3) | −0.006 (2) |
O2 | 0.053 (4) | 0.069 (4) | 0.065 (4) | −0.010 (3) | 0.007 (3) | −0.036 (3) |
O3 | 0.051 (4) | 0.064 (4) | 0.083 (5) | 0.014 (3) | 0.000 (4) | 0.032 (4) |
O4 | 0.032 (3) | 0.039 (3) | 0.071 (4) | 0.002 (3) | 0.006 (3) | 0.007 (3) |
O5 | 0.041 (4) | 0.037 (3) | 0.091 (5) | −0.001 (3) | −0.015 (3) | 0.019 (3) |
O6 | 0.049 (3) | 0.036 (3) | 0.043 (3) | −0.008 (3) | −0.001 (3) | −0.003 (3) |
O7 | 0.035 (3) | 0.036 (3) | 0.074 (4) | −0.003 (3) | −0.003 (3) | −0.002 (3) |
C1 | 0.058 (6) | 0.054 (5) | 0.049 (5) | 0.014 (5) | −0.003 (5) | −0.001 (4) |
C2 | 0.078 (8) | 0.053 (6) | 0.075 (7) | 0.021 (6) | −0.011 (6) | 0.011 (5) |
C3 | 0.078 (8) | 0.067 (7) | 0.069 (7) | 0.013 (6) | −0.018 (6) | 0.023 (6) |
C4 | 0.051 (6) | 0.067 (6) | 0.044 (5) | 0.001 (5) | −0.009 (4) | 0.016 (5) |
C5 | 0.080 (8) | 0.087 (8) | 0.042 (5) | 0.006 (7) | −0.007 (6) | 0.017 (6) |
C6 | 0.072 (7) | 0.117 (10) | 0.033 (4) | 0.005 (8) | −0.005 (4) | −0.004 (6) |
C7 | 0.044 (5) | 0.080 (6) | 0.038 (4) | −0.004 (5) | 0.000 (4) | −0.015 (5) |
C8 | 0.070 (7) | 0.083 (7) | 0.055 (6) | 0.002 (7) | 0.001 (6) | −0.037 (6) |
C9 | 0.088 (9) | 0.059 (6) | 0.073 (7) | 0.004 (6) | 0.014 (6) | −0.036 (6) |
C10 | 0.054 (6) | 0.054 (5) | 0.062 (6) | 0.007 (4) | −0.002 (5) | −0.007 (5) |
C11 | 0.032 (4) | 0.052 (5) | 0.031 (3) | −0.005 (4) | 0.002 (3) | −0.006 (4) |
C12 | 0.034 (4) | 0.050 (5) | 0.030 (3) | −0.005 (4) | −0.007 (3) | −0.002 (4) |
N1 | 0.041 (4) | 0.034 (3) | 0.035 (3) | 0.005 (3) | −0.008 (3) | 0.002 (3) |
N2 | 0.043 (4) | 0.040 (3) | 0.043 (3) | 0.006 (4) | 0.000 (4) | −0.008 (3) |
Cd—O5 | 2.255 (6) | C2—H2B | 0.9300 |
Cd—O6 | 2.301 (5) | C3—C4 | 1.384 (16) |
Cd—O1 | 2.303 (5) | C3—H3B | 0.9300 |
Cd—O7 | 2.303 (6) | C4—C12 | 1.415 (12) |
Cd—N2 | 2.325 (6) | C4—C5 | 1.461 (15) |
Cd—N1 | 2.327 (6) | C5—C6 | 1.313 (17) |
S—O2 | 1.440 (6) | C5—H5B | 0.9300 |
S—O4 | 1.452 (6) | C6—C7 | 1.436 (15) |
S—O3 | 1.464 (7) | C6—H6B | 0.9300 |
S—O1 | 1.483 (6) | C7—C8 | 1.395 (14) |
O5—H5A | 0.8200 | C7—C11 | 1.406 (11) |
O5—H5C | 0.89 (14) | C8—C9 | 1.365 (16) |
O6—H6A | 0.8200 | C8—H8A | 0.9300 |
O6—H6C | 0.89 (13) | C9—C10 | 1.405 (14) |
O7—H7A | 0.8200 | C9—H9A | 0.9300 |
O7—H7B | 0.75 (9) | C10—N2 | 1.325 (11) |
C1—N1 | 1.307 (12) | C10—H10A | 0.9300 |
C1—C2 | 1.410 (14) | C11—N2 | 1.366 (10) |
C1—H1A | 0.9300 | C11—C12 | 1.419 (12) |
C2—C3 | 1.363 (16) | C12—N1 | 1.381 (10) |
O5—Cd—O6 | 93.3 (3) | C2—C3—C4 | 120.8 (9) |
O5—Cd—O1 | 92.9 (2) | C2—C3—H3B | 119.6 |
O6—Cd—O1 | 82.8 (2) | C4—C3—H3B | 119.6 |
O5—Cd—O7 | 87.3 (2) | C3—C4—C12 | 118.5 (9) |
O6—Cd—O7 | 87.2 (2) | C3—C4—C5 | 124.1 (9) |
O1—Cd—O7 | 170.0 (2) | C12—C4—C5 | 117.5 (9) |
O5—Cd—N2 | 93.0 (3) | C6—C5—C4 | 122.0 (10) |
O6—Cd—N2 | 171.9 (3) | C6—C5—H5B | 119.0 |
O1—Cd—N2 | 91.9 (2) | C4—C5—H5B | 119.0 |
O7—Cd—N2 | 98.1 (3) | C5—C6—C7 | 121.1 (9) |
O5—Cd—N1 | 161.2 (3) | C5—C6—H6B | 119.5 |
O6—Cd—N1 | 102.1 (2) | C7—C6—H6B | 119.5 |
O1—Cd—N1 | 99.7 (2) | C8—C7—C11 | 118.0 (9) |
O7—Cd—N1 | 82.7 (2) | C8—C7—C6 | 122.5 (9) |
N2—Cd—N1 | 72.7 (2) | C11—C7—C6 | 119.5 (10) |
O2—S—O4 | 111.9 (4) | C9—C8—C7 | 120.3 (9) |
O2—S—O3 | 109.1 (4) | C9—C8—H8A | 119.9 |
O4—S—O3 | 110.5 (4) | C7—C8—H8A | 119.9 |
O2—S—O1 | 109.6 (4) | C8—C9—C10 | 118.8 (9) |
O4—S—O1 | 107.6 (3) | C8—C9—H9A | 120.6 |
O3—S—O1 | 108.0 (4) | C10—C9—H9A | 120.6 |
S—O1—Cd | 125.3 (3) | N2—C10—C9 | 122.4 (10) |
Cd—O5—H5A | 109.5 | N2—C10—H10A | 118.8 |
Cd—O5—H5C | 140 (9) | C9—C10—H10A | 118.8 |
H5A—O5—H5C | 101.8 | N2—C11—C7 | 121.4 (8) |
Cd—O6—H6A | 109.5 | N2—C11—C12 | 119.0 (6) |
Cd—O6—H6C | 114 (8) | C7—C11—C12 | 119.6 (8) |
H6A—O6—H6C | 104.8 | N1—C12—C4 | 120.2 (8) |
Cd—O7—H7A | 109.5 | N1—C12—C11 | 119.3 (7) |
Cd—O7—H7B | 119 (7) | C4—C12—C11 | 120.4 (7) |
H7A—O7—H7B | 103.0 | C1—N1—C12 | 119.1 (7) |
N1—C1—C2 | 123.6 (9) | C1—N1—Cd | 126.8 (6) |
N1—C1—H1A | 118.2 | C12—N1—Cd | 113.7 (5) |
C2—C1—H1A | 118.2 | C10—N2—C11 | 119.2 (7) |
C3—C2—C1 | 117.8 (10) | C10—N2—Cd | 126.2 (6) |
C3—C2—H2B | 121.1 | C11—N2—Cd | 114.6 (5) |
C1—C2—H2B | 121.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.82 | 1.95 | 2.736 (6) | 160 |
O5—H5C···O2ii | 0.89 (14) | 2.01 (10) | 2.825 (6) | 151 (4) |
O6—H6A···O2 | 0.82 | 1.93 | 2.706 (6) | 158 |
O6—H6C···O1iii | 0.89 (13) | 1.87 (10) | 2.737 (6) | 164 (4) |
O7—H7A···O3i | 0.82 | 1.97 | 2.674 (7) | 151 |
O7—H7B···O4iii | 0.75 (9) | 2.03 (10) | 2.744 (6) | 161 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(SO4)(C12H8N2)(H2O)3] |
Mr | 442.71 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1620 (5), 9.7458 (6), 19.5727 (11) |
V (Å3) | 1556.91 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.57 |
Crystal size (mm) | 0.36 × 0.18 × 0.04 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.416, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5071, 2500, 2357 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.109, 1.07 |
No. of reflections | 2500 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.73, −1.22 |
Absolute structure | Flack (1983), 896 Friedel pairs |
Absolute structure parameter | −0.05 (5) |
Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL.
Cd—O5 | 2.255 (6) | Cd—O7 | 2.303 (6) |
Cd—O6 | 2.301 (5) | Cd—N2 | 2.325 (6) |
Cd—O1 | 2.303 (5) | Cd—N1 | 2.327 (6) |
O5—Cd—O6 | 93.3 (3) | O1—Cd—N2 | 91.9 (2) |
O5—Cd—O1 | 92.9 (2) | O7—Cd—N2 | 98.1 (3) |
O6—Cd—O1 | 82.8 (2) | O5—Cd—N1 | 161.2 (3) |
O5—Cd—O7 | 87.3 (2) | O6—Cd—N1 | 102.1 (2) |
O6—Cd—O7 | 87.2 (2) | O1—Cd—N1 | 99.7 (2) |
O1—Cd—O7 | 170.0 (2) | O7—Cd—N1 | 82.7 (2) |
O5—Cd—N2 | 93.0 (3) | N2—Cd—N1 | 72.7 (2) |
O6—Cd—N2 | 171.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.82 | 1.95 | 2.736 (6) | 160 |
O5—H5C···O2ii | 0.89 (14) | 2.01 (10) | 2.825 (6) | 151 (4) |
O6—H6A···O2 | 0.82 | 1.93 | 2.706 (6) | 158 |
O6—H6C···O1iii | 0.89 (13) | 1.87 (10) | 2.737 (6) | 164 (4) |
O7—H7A···O3i | 0.82 | 1.97 | 2.674 (7) | 151 |
O7—H7B···O4iii | 0.75 (9) | 2.03 (10) | 2.744 (6) | 161 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2. |
The design and synthesis of novel inorganic-organic hybrid coordination complexes have attracted the attention of many chemists in recently several years owing to their potential application, such as selective guest absorption (Gardner et al., 1995), gas storage (Li et al., 1999), and heterogeneous catalysis (Dong et al., 2000). In the past years, cadmium complexes have been synthesized and characterized (Harvey et al., 2000). In this paper, we report the structure of the title compound, (I), which is a new cadmium coordination compound.
The Cd atom is six-coordinated by two N atoms from phenanthroline, three O atoms from water molecules and one O atom from sulfate ion (Fig. 1). The coordination geometry of the CdII atom can be regarded as distorted octahedral (Table 1), in which sulfate atom O1 and water atom O7 occupy the axial positions, while the equatorial plane is formed by N1, N2, O5 and O6. Through O—H···O hydrogen bonds, the crystal structure extends into a two-dimensional framework (Fig. 2).