metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-{1,8-Bis[(S)-1-phenyl­eth­yl]-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne}bis­(thio­cyanato­-κN)copper(II)

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 25 June 2010; accepted 6 July 2010; online 10 July 2010)

In the title thio­cyanate-coordinated aza-macrocyclic copper(II) complex, [Cu(NCS)2(C24H38N6)], the CuII atom is coordinated by the four secondary N atoms of the aza-macrocyclic ligand and by the two N atoms of the thio­cyanate ions in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond length is shorter than the average axial Cu—N bond length [2.010 (2) and 2.528 (4) Å, respectively]. An N—H⋯N hydrogen-bonding inter­action between the secondary amine N atom and the adjacent thio­cyanate ion leads to a polymeric chain along the a axis.

Related literature

For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000[Katsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350-3354.]); Lehn (1995[Lehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.]) and as chiral building blocks, see: Du et al. (2003[Du, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873-877.]); Gao et al. (2005[Gao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232-241.]). It has been reported that the enanti­omers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins, see: Randazzo et al. (2008[Randazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. (2008). Angew. Chem. Int. Ed. 47, 9879-9882.]). For typical C—S bond lengths, see: Banerjee & Zubieta (2004[Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208-m209.]); Stølevik & Postmyr (1997[Stølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207-211.]). For the preparation, see: Han et al. (2008[Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745-748.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C24H38N6)]

  • Mr = 590.30

  • Monoclinic, P 21

  • a = 6.5976 (5) Å

  • b = 14.7609 (11) Å

  • c = 15.2847 (12) Å

  • β = 99.952 (2)°

  • V = 1466.13 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 195 K

  • 0.38 × 0.26 × 0.15 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.871

  • 10954 measured reflections

  • 6272 independent reflections

  • 4364 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.115

  • S = 1.11

  • 6272 reflections

  • 336 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2485 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.93 2.54 3.258 (7) 135
N4—H4⋯N8ii 0.93 2.46 3.202 (7) 137
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral metal complexes have attracted considerable attention in chemistry and material science because of their potential applications for chiral recognition and chiral catalysis (Lehn, 1995; Katsuki et al., 2000). Very recently, it has reported the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins and that the complexes can transfer molecular information, i.e. energy and chirality (Randazzo et al., 2008). However, the study of chiral macrocyclic metal complexes has been limited due to the difficult of preparation, although these complexes are ve ry useful for chiral building blocks (Du et al., 2003; Gao et al., 2005). Here, we report the synthesis and crystal structure of copper(II) azamacrocyclic chiral complex, trans-Dithiocyanato(1,8-di(S-α-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclotetradecane)copper(II), with two thiocyanate ions axially.

In the title compound, the coordination geometry around copper(II) ion is a tetragonally distorted octahedron in which copper(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in the square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—Neq and Ni—Nax bond distances are 2.010 (2) and 2.528 (4) Å, respectively. The former is much less than the latter, which can be attributed to a rather large Jahn-Teller distortion of the copper(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.160 (6) and 1.638 (5) Å, respectively. The former is very similar to CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of azamacrocyclic ligand have chiral carbon atoms (S type). All thiocyanate ions binding copper(II) ions axially are involved in an N—H···N(of NCS) hydrogen bonding interactions (Table 1), which gives rise to a one-dimensional polymeric chain propagating along the a axis (Figure 2). The shortest Cu···Cu intrachain separation within the hydrogen-bonded one-dimensional polymer is 6.598 (1) Å and is about 37% shorter than the shortest interchain Cu···Cu distance of 10.448 (1) Å.

Related literature top

For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000); Lehn (1995) and as chiral building blocks, see: Du et al. (2003); Gao et al. (2005). It has been reported that the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins, see: Randazzo et al. (2008). For typical C—S bond lengths, see: Banerjee & Zubieta (2004); Stølevik & Postmyr (1997). For the preparation, see: Han et al. (2008).

Experimental top

The title compound is prepared as follows. [Cu(C24H38N6)](ClO4)2 was prepared by a slightly modified literature procedure: as CuCl2.2H2O and S-(-)-1-Phenylethylamine were used instead of NiCl2.6H2O and R-(+)-1-Phenylethylamine (Han et al., 2008). To an MeCN solution (10 ml) of [Cu(C24H38N6)](ClO4)2 (90 mg, 0.15 mmol) was added dropwise an aqueous solution (10 ml) containing NaSCN (24 mg, 0.30 mmol) at ambient temperature. The color of the solution changed to pale pink. The mixture was stirred for 30 min during which time a pink precipitate of formed which was collected by filtration, washed with MeCN and water, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were grown by layering of the MeCN solution of [Cu(C24H38N6)](ClO4)2 on the aqueous solution of NaSCN within one week.

Refinement top

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99–1.00 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Structure description top

Chiral metal complexes have attracted considerable attention in chemistry and material science because of their potential applications for chiral recognition and chiral catalysis (Lehn, 1995; Katsuki et al., 2000). Very recently, it has reported the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins and that the complexes can transfer molecular information, i.e. energy and chirality (Randazzo et al., 2008). However, the study of chiral macrocyclic metal complexes has been limited due to the difficult of preparation, although these complexes are ve ry useful for chiral building blocks (Du et al., 2003; Gao et al., 2005). Here, we report the synthesis and crystal structure of copper(II) azamacrocyclic chiral complex, trans-Dithiocyanato(1,8-di(S-α-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclotetradecane)copper(II), with two thiocyanate ions axially.

In the title compound, the coordination geometry around copper(II) ion is a tetragonally distorted octahedron in which copper(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in the square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—Neq and Ni—Nax bond distances are 2.010 (2) and 2.528 (4) Å, respectively. The former is much less than the latter, which can be attributed to a rather large Jahn-Teller distortion of the copper(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.160 (6) and 1.638 (5) Å, respectively. The former is very similar to CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of azamacrocyclic ligand have chiral carbon atoms (S type). All thiocyanate ions binding copper(II) ions axially are involved in an N—H···N(of NCS) hydrogen bonding interactions (Table 1), which gives rise to a one-dimensional polymeric chain propagating along the a axis (Figure 2). The shortest Cu···Cu intrachain separation within the hydrogen-bonded one-dimensional polymer is 6.598 (1) Å and is about 37% shorter than the shortest interchain Cu···Cu distance of 10.448 (1) Å.

For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000); Lehn (1995) and as chiral building blocks, see: Du et al. (2003); Gao et al. (2005). It has been reported that the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins, see: Randazzo et al. (2008). For typical C—S bond lengths, see: Banerjee & Zubieta (2004); Stølevik & Postmyr (1997). For the preparation, see: Han et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the molecular title compound with atomic numbering scheme at 30% probability.
[Figure 2] Fig. 2. Perspective view of the title compound showing a one-dimensional chain formed by N—H···N (of NCS) hydrogen bonding interactions.
trans-{1,8-Bis[(S)-1-phenylethyl]- 1,3,6,8,10,13-hexaazacyclotetradecane}bis(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(NCS)2(C24H38N6)]F(000) = 622
Mr = 590.30Dx = 1.337 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4491 reflections
a = 6.5976 (5) Åθ = 2.7–27.9°
b = 14.7609 (11) ŵ = 0.92 mm1
c = 15.2847 (12) ÅT = 195 K
β = 99.952 (2)°Block, purple
V = 1466.13 (19) Å30.38 × 0.26 × 0.15 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
6272 independent reflections
Radiation source: fine-focus sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.751, Tmax = 0.871k = 1919
10954 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0195P)2 + 1.3207P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6272 reflectionsΔρmax = 0.69 e Å3
336 parametersΔρmin = 0.68 e Å3
1 restraintAbsolute structure: Flack (1983), 2485 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Cu(NCS)2(C24H38N6)]V = 1466.13 (19) Å3
Mr = 590.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5976 (5) ŵ = 0.92 mm1
b = 14.7609 (11) ÅT = 195 K
c = 15.2847 (12) Å0.38 × 0.26 × 0.15 mm
β = 99.952 (2)°
Data collection top
Siemens SMART CCD
diffractometer
6272 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4364 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.871Rint = 0.034
10954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.69 e Å3
S = 1.11Δρmin = 0.68 e Å3
6272 reflectionsAbsolute structure: Flack (1983), 2485 Friedel pairs
336 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50430 (12)0.54334 (8)0.25843 (4)0.03442 (15)
S10.7793 (3)0.26210 (11)0.15869 (12)0.0543 (5)
S20.2363 (3)0.82615 (11)0.34351 (12)0.0583 (5)
N10.2789 (7)0.4510 (3)0.2305 (2)0.0254 (9)
H10.16300.47660.24760.030*
N20.3528 (7)0.3783 (3)0.3734 (3)0.0274 (10)
N30.5658 (7)0.5102 (3)0.3877 (2)0.0303 (11)
H30.46500.53730.41460.036*
N40.7316 (7)0.6346 (3)0.2878 (2)0.0273 (10)
H40.84930.60780.27360.033*
N50.6763 (8)0.7003 (3)0.1436 (3)0.0342 (11)
N60.4452 (7)0.5748 (3)0.1283 (2)0.0294 (11)
H60.53880.54240.10150.035*
N70.7810 (9)0.4420 (4)0.2165 (3)0.0486 (14)
N80.2189 (8)0.6434 (4)0.2945 (3)0.0484 (14)
C10.3104 (9)0.3626 (4)0.2767 (3)0.0297 (12)
H1A0.18580.32460.26090.036*
H1B0.42750.33030.25820.036*
C20.5574 (9)0.4111 (4)0.4052 (3)0.0339 (13)
H2A0.65670.37890.37460.041*
H2B0.59530.39940.46970.041*
C30.7627 (7)0.5530 (5)0.4258 (3)0.0288 (12)
H3A0.87870.51580.41270.035*
H3B0.77470.55820.49100.035*
C40.7689 (9)0.6463 (4)0.3847 (3)0.0359 (14)
H4A0.66180.68570.40270.043*
H4B0.90490.67480.40470.043*
C50.7015 (10)0.7205 (4)0.2374 (3)0.0341 (13)
H5A0.57800.75220.25050.041*
H5B0.82220.76050.25490.041*
C60.4694 (9)0.6717 (4)0.1056 (3)0.0345 (13)
H6A0.44610.67940.04030.041*
H6B0.36740.70910.12980.041*
C70.2393 (8)0.5371 (5)0.0934 (3)0.0348 (12)
H7A0.21740.53390.02780.042*
H7B0.13070.57580.11110.042*
C80.2317 (9)0.4425 (4)0.1326 (3)0.0311 (12)
H8A0.09330.41580.11420.037*
H8B0.33390.40270.11150.037*
C90.2883 (9)0.3009 (4)0.4249 (3)0.0361 (13)
H90.34990.31320.48830.043*
C100.3729 (9)0.2099 (3)0.4034 (3)0.0331 (13)
C110.2610 (11)0.1501 (5)0.3414 (4)0.0534 (18)
H110.12850.16740.31120.064*
C120.3396 (14)0.0674 (5)0.3239 (4)0.066 (2)
H120.26060.02780.28240.079*
C130.5321 (13)0.0415 (7)0.3659 (4)0.0688 (19)
H130.58580.01580.35300.083*
C140.6468 (11)0.0979 (5)0.4265 (4)0.0541 (18)
H140.77940.07970.45580.065*
C150.5689 (9)0.1810 (4)0.4445 (4)0.0402 (14)
H150.65010.21990.48600.048*
C160.0579 (8)0.3032 (4)0.4214 (4)0.0473 (15)
H16A0.01160.30020.35940.071*
H16B0.01970.35950.44830.071*
H16C0.01630.25130.45420.071*
C170.7789 (9)0.7675 (4)0.0932 (3)0.0380 (14)
H170.92500.77090.12440.046*
C180.6930 (9)0.8627 (4)0.0969 (3)0.0390 (14)
C190.8066 (12)0.9284 (5)0.1483 (4)0.059 (2)
H190.94180.91430.17780.071*
C200.7286 (15)1.0139 (5)0.1579 (4)0.074 (3)
H200.81001.05830.19280.089*
C210.5318 (14)1.0343 (6)0.1165 (4)0.070 (2)
H210.47611.09250.12430.084*
C220.4137 (12)0.9710 (5)0.0634 (4)0.060 (2)
H220.27930.98550.03340.072*
C230.4972 (10)0.8857 (4)0.0553 (4)0.0453 (16)
H230.41660.84150.01980.054*
C240.7881 (9)0.7340 (4)0.0004 (3)0.0456 (14)
H24A0.82730.66990.00280.068*
H24B0.89020.76930.02460.068*
H24C0.65270.74110.03710.068*
C250.7772 (9)0.3680 (5)0.1908 (4)0.0360 (14)
C260.2274 (9)0.7192 (4)0.3148 (4)0.0368 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0461 (3)0.0263 (2)0.0280 (3)0.0102 (3)0.0019 (2)0.0032 (3)
S10.0567 (12)0.0369 (10)0.0655 (11)0.0006 (9)0.0005 (9)0.0091 (8)
S20.0683 (13)0.0330 (10)0.0674 (11)0.0024 (9)0.0058 (9)0.0068 (8)
N10.029 (2)0.020 (2)0.028 (2)0.0074 (19)0.0044 (17)0.0053 (16)
N20.027 (2)0.024 (2)0.031 (2)0.0027 (19)0.0019 (18)0.0087 (17)
N30.035 (3)0.027 (2)0.029 (2)0.004 (2)0.0039 (18)0.0033 (16)
N40.029 (2)0.023 (2)0.029 (2)0.008 (2)0.0031 (17)0.0032 (18)
N50.041 (3)0.033 (3)0.028 (2)0.008 (2)0.004 (2)0.0076 (19)
N60.040 (3)0.023 (2)0.0237 (19)0.003 (2)0.0022 (18)0.0013 (15)
N70.048 (4)0.036 (3)0.062 (3)0.007 (3)0.012 (3)0.007 (3)
N80.047 (4)0.034 (3)0.063 (3)0.001 (3)0.009 (3)0.009 (3)
C10.039 (3)0.020 (3)0.031 (3)0.008 (2)0.008 (2)0.002 (2)
C20.041 (3)0.023 (3)0.033 (3)0.003 (3)0.005 (2)0.011 (2)
C30.031 (3)0.028 (3)0.026 (2)0.001 (3)0.0013 (18)0.003 (2)
C40.043 (4)0.039 (3)0.024 (2)0.004 (3)0.002 (2)0.002 (2)
C50.042 (4)0.025 (3)0.033 (3)0.006 (3)0.002 (2)0.004 (2)
C60.039 (3)0.033 (3)0.031 (3)0.006 (3)0.004 (2)0.008 (2)
C70.041 (3)0.039 (3)0.0217 (19)0.007 (3)0.0029 (18)0.001 (3)
C80.040 (3)0.026 (3)0.027 (2)0.001 (3)0.006 (2)0.001 (2)
C90.041 (3)0.036 (3)0.033 (3)0.002 (3)0.010 (2)0.015 (2)
C100.041 (3)0.021 (3)0.038 (3)0.004 (2)0.009 (2)0.008 (2)
C110.064 (5)0.040 (4)0.050 (4)0.008 (3)0.006 (3)0.011 (3)
C120.097 (6)0.041 (4)0.056 (4)0.009 (4)0.005 (4)0.005 (3)
C130.099 (6)0.045 (4)0.068 (4)0.008 (5)0.029 (4)0.000 (5)
C140.051 (4)0.043 (4)0.073 (4)0.014 (3)0.023 (3)0.011 (3)
C150.029 (3)0.041 (3)0.050 (3)0.003 (3)0.007 (3)0.007 (3)
C160.027 (3)0.059 (4)0.056 (4)0.003 (3)0.009 (3)0.021 (3)
C170.050 (4)0.025 (3)0.040 (3)0.003 (3)0.010 (3)0.005 (2)
C180.050 (4)0.032 (3)0.035 (3)0.003 (3)0.007 (3)0.008 (2)
C190.091 (6)0.031 (3)0.048 (4)0.009 (4)0.007 (4)0.007 (3)
C200.123 (8)0.042 (4)0.050 (4)0.005 (4)0.009 (4)0.001 (3)
C210.131 (7)0.026 (3)0.058 (4)0.002 (5)0.029 (4)0.000 (4)
C220.077 (5)0.046 (4)0.059 (4)0.021 (4)0.021 (4)0.018 (3)
C230.056 (4)0.032 (3)0.051 (3)0.004 (3)0.018 (3)0.009 (3)
C240.058 (4)0.040 (3)0.044 (3)0.002 (3)0.022 (3)0.007 (3)
C250.032 (3)0.042 (4)0.033 (3)0.004 (3)0.003 (2)0.005 (3)
C260.033 (3)0.037 (4)0.040 (3)0.005 (3)0.005 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—N32.008 (4)C6—H6B0.9900
Cu1—N42.008 (4)C7—C81.523 (9)
Cu1—N12.008 (4)C7—H7A0.9900
Cu1—N62.014 (4)C7—H7B0.9900
Cu1—N72.527 (6)C8—H8A0.9900
Cu1—N82.528 (6)C8—H8B0.9900
S1—C251.639 (7)C9—C161.512 (7)
S2—C261.636 (7)C9—C101.513 (8)
N1—C81.480 (6)C9—H91.0000
N1—C11.482 (6)C10—C151.403 (7)
N1—H10.9300C10—C111.406 (8)
N2—C21.437 (7)C11—C121.372 (10)
N2—C11.474 (6)C11—H110.9500
N2—C91.490 (6)C12—C131.375 (10)
N3—C31.470 (7)C12—H120.9500
N3—C21.490 (6)C13—C141.372 (10)
N3—H30.9300C13—H130.9500
N4—C41.469 (6)C14—C151.376 (8)
N4—C51.479 (7)C14—H140.9500
N4—H40.9300C15—H150.9500
N5—C51.445 (6)C16—H16A0.9800
N5—C61.450 (7)C16—H16B0.9800
N5—C171.490 (7)C16—H16C0.9800
N6—C71.480 (7)C17—C241.514 (7)
N6—C61.487 (7)C17—C181.520 (8)
N6—H60.9300C17—H171.0000
N7—C251.160 (8)C18—C231.379 (8)
N8—C261.160 (8)C18—C191.384 (9)
C1—H1A0.9900C19—C201.381 (10)
C1—H1B0.9900C19—H190.9500
C2—H2A0.9900C20—C211.376 (11)
C2—H2B0.9900C20—H200.9500
C3—C41.518 (8)C21—C221.385 (11)
C3—H3A0.9900C21—H210.9500
C3—H3B0.9900C22—C231.389 (9)
C4—H4A0.9900C22—H220.9500
C4—H4B0.9900C23—H230.9500
C5—H5A0.9900C24—H24A0.9800
C5—H5B0.9900C24—H24B0.9800
C6—H6A0.9900C24—H24C0.9800
N3—Cu1—N485.80 (17)N6—C7—H7A110.3
N3—Cu1—N193.45 (17)C8—C7—H7A110.3
N4—Cu1—N1179.2 (2)N6—C7—H7B110.3
N3—Cu1—N6179.1 (2)C8—C7—H7B110.3
N4—Cu1—N694.36 (17)H7A—C7—H7B108.6
N1—Cu1—N686.38 (17)N1—C8—C7107.8 (4)
C8—N1—C1113.3 (4)N1—C8—H8A110.2
C8—N1—Cu1106.9 (3)C7—C8—H8A110.2
C1—N1—Cu1117.3 (3)N1—C8—H8B110.2
C8—N1—H1106.2C7—C8—H8B110.2
C1—N1—H1106.2H8A—C8—H8B108.5
Cu1—N1—H1106.2N2—C9—C16110.0 (4)
C2—N2—C1113.3 (4)N2—C9—C10114.6 (4)
C2—N2—C9114.7 (4)C16—C9—C10114.7 (5)
C1—N2—C9112.7 (4)N2—C9—H9105.6
C3—N3—C2114.1 (4)C16—C9—H9105.6
C3—N3—Cu1107.4 (3)C10—C9—H9105.6
C2—N3—Cu1114.1 (3)C15—C10—C11116.6 (6)
C3—N3—H3106.9C15—C10—C9121.2 (5)
C2—N3—H3106.9C11—C10—C9122.2 (5)
Cu1—N3—H3106.9C12—C11—C10121.2 (7)
C4—N4—C5114.1 (4)C12—C11—H11119.4
C4—N4—Cu1107.1 (3)C10—C11—H11119.4
C5—N4—Cu1115.5 (3)C11—C12—C13120.5 (7)
C4—N4—H4106.5C11—C12—H12119.8
C5—N4—H4106.5C13—C12—H12119.8
Cu1—N4—H4106.5C14—C13—C12120.2 (8)
C5—N5—C6113.4 (5)C14—C13—H13119.9
C5—N5—C17113.0 (4)C12—C13—H13119.9
C6—N5—C17117.8 (4)C13—C14—C15119.7 (7)
C7—N6—C6114.0 (5)C13—C14—H14120.2
C7—N6—Cu1106.2 (3)C15—C14—H14120.2
C6—N6—Cu1116.2 (3)C14—C15—C10121.9 (6)
C7—N6—H6106.6C14—C15—H15119.0
C6—N6—H6106.6C10—C15—H15119.0
Cu1—N6—H6106.6C9—C16—H16A109.5
N2—C1—N1109.0 (4)C9—C16—H16B109.5
N2—C1—H1A109.9H16A—C16—H16B109.5
N1—C1—H1A109.9C9—C16—H16C109.5
N2—C1—H1B109.9H16A—C16—H16C109.5
N1—C1—H1B109.9H16B—C16—H16C109.5
H1A—C1—H1B108.3N5—C17—C24111.2 (4)
N2—C2—N3109.4 (4)N5—C17—C18113.0 (5)
N2—C2—H2A109.8C24—C17—C18114.4 (4)
N3—C2—H2A109.8N5—C17—H17105.8
N2—C2—H2B109.8C24—C17—H17105.8
N3—C2—H2B109.8C18—C17—H17105.8
H2A—C2—H2B108.2C23—C18—C19117.5 (6)
N3—C3—C4108.1 (4)C23—C18—C17122.4 (6)
N3—C3—H3A110.1C19—C18—C17120.0 (6)
C4—C3—H3A110.1C20—C19—C18121.7 (7)
N3—C3—H3B110.1C20—C19—H19119.2
C4—C3—H3B110.1C18—C19—H19119.2
H3A—C3—H3B108.4C21—C20—C19119.4 (7)
N4—C4—C3107.3 (4)C21—C20—H20120.3
N4—C4—H4A110.2C19—C20—H20120.3
C3—C4—H4A110.2C20—C21—C22120.8 (7)
N4—C4—H4B110.2C20—C21—H21119.6
C3—C4—H4B110.2C22—C21—H21119.6
H4A—C4—H4B108.5C21—C22—C23118.2 (7)
N5—C5—N4108.8 (4)C21—C22—H22120.9
N5—C5—H5A109.9C23—C22—H22120.9
N4—C5—H5A109.9C18—C23—C22122.4 (7)
N5—C5—H5B109.9C18—C23—H23118.8
N4—C5—H5B109.9C22—C23—H23118.8
H5A—C5—H5B108.3C17—C24—H24A109.5
N5—C6—N6108.5 (4)C17—C24—H24B109.5
N5—C6—H6A110.0H24A—C24—H24B109.5
N6—C6—H6A110.0C17—C24—H24C109.5
N5—C6—H6B110.0H24A—C24—H24C109.5
N6—C6—H6B110.0H24B—C24—H24C109.5
H6A—C6—H6B108.4N7—C25—S1177.3 (6)
N6—C7—C8107.1 (4)N8—C26—S2179.3 (6)
N3—Cu1—N1—C8166.4 (3)C6—N6—C7—C8172.6 (4)
N6—Cu1—N1—C812.7 (3)Cu1—N6—C7—C843.4 (5)
N3—Cu1—N1—C138.0 (4)C1—N1—C8—C7170.5 (4)
N6—Cu1—N1—C1141.1 (4)Cu1—N1—C8—C739.7 (5)
N4—Cu1—N3—C312.5 (4)N6—C7—C8—N156.3 (6)
N1—Cu1—N3—C3167.1 (4)C2—N2—C9—C16150.3 (5)
N4—Cu1—N3—C2140.0 (4)C1—N2—C9—C1678.0 (6)
N1—Cu1—N3—C239.6 (4)C2—N2—C9—C1078.8 (6)
N3—Cu1—N4—C416.9 (4)C1—N2—C9—C1052.9 (6)
N6—Cu1—N4—C4164.0 (4)N2—C9—C10—C1584.8 (6)
N3—Cu1—N4—C5145.2 (4)C16—C9—C10—C15146.6 (5)
N6—Cu1—N4—C535.7 (4)N2—C9—C10—C1195.1 (6)
N4—Cu1—N6—C7162.9 (4)C16—C9—C10—C1133.5 (7)
N1—Cu1—N6—C717.4 (4)C15—C10—C11—C121.1 (9)
N4—Cu1—N6—C635.0 (4)C9—C10—C11—C12179.1 (6)
N1—Cu1—N6—C6145.4 (4)C10—C11—C12—C130.9 (11)
C2—N2—C1—N175.4 (6)C11—C12—C13—C140.5 (11)
C9—N2—C1—N1152.3 (4)C12—C13—C14—C150.5 (11)
C8—N1—C1—N2179.1 (4)C13—C14—C15—C100.7 (10)
Cu1—N1—C1—N255.6 (5)C11—C10—C15—C141.0 (9)
C1—N2—C2—N380.1 (5)C9—C10—C15—C14179.1 (5)
C9—N2—C2—N3148.6 (4)C5—N5—C17—C24168.0 (5)
C3—N3—C2—N2174.0 (4)C6—N5—C17—C2456.7 (7)
Cu1—N3—C2—N262.0 (5)C5—N5—C17—C1861.8 (6)
C2—N3—C3—C4166.4 (4)C6—N5—C17—C1873.6 (6)
Cu1—N3—C3—C438.9 (5)N5—C17—C18—C2368.8 (7)
C5—N4—C4—C3171.2 (4)C24—C17—C18—C2359.8 (7)
Cu1—N4—C4—C342.1 (5)N5—C17—C18—C19106.6 (6)
N3—C3—C4—N454.6 (6)C24—C17—C18—C19124.8 (6)
C6—N5—C5—N481.0 (6)C23—C18—C19—C200.1 (10)
C17—N5—C5—N4141.6 (5)C17—C18—C19—C20175.8 (6)
C4—N4—C5—N5177.3 (5)C18—C19—C20—C211.0 (11)
Cu1—N4—C5—N558.0 (6)C19—C20—C21—C221.8 (11)
C5—N5—C6—N679.4 (5)C20—C21—C22—C231.8 (10)
C17—N5—C6—N6145.4 (5)C19—C18—C23—C220.2 (9)
C7—N6—C6—N5179.9 (4)C17—C18—C23—C22175.7 (5)
Cu1—N6—C6—N555.9 (6)C21—C22—C23—C181.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.932.543.258 (7)135
N4—H4···N8ii0.932.463.202 (7)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C24H38N6)]
Mr590.30
Crystal system, space groupMonoclinic, P21
Temperature (K)195
a, b, c (Å)6.5976 (5), 14.7609 (11), 15.2847 (12)
β (°) 99.952 (2)
V3)1466.13 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.38 × 0.26 × 0.15
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
10954, 6272, 4364
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.11
No. of reflections6272
No. of parameters336
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.68
Absolute structureFlack (1983), 2485 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.932.543.258 (7)135
N4—H4···N8ii0.932.463.202 (7)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. R01–2008-000–20955-0). The authors acknowledge the Korea Basic Science Institute for the X-ray data collections.

References

First citationBanerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208–m209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDu, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873–877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232–241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745–748.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350–3354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationRandazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. (2008). Angew. Chem. Int. Ed. 47, 9879–9882.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207–211.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds