metal-organic compounds
trans-{1,8-Bis[(S)-1-phenylethyl]-1,3,6,8,10,13-hexaazacyclotetradecane}bis(thiocyanato-κN)copper(II)
aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr
In the title thiocyanate-coordinated aza-macrocyclic copper(II) complex, [Cu(NCS)2(C24H38N6)], the CuII atom is coordinated by the four secondary N atoms of the aza-macrocyclic ligand and by the two N atoms of the thiocyanate ions in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond length is shorter than the average axial Cu—N bond length [2.010 (2) and 2.528 (4) Å, respectively]. An N—H⋯N hydrogen-bonding interaction between the secondary amine N atom and the adjacent thiocyanate ion leads to a polymeric chain along the a axis.
Related literature
For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000); Lehn (1995) and as chiral building blocks, see: Du et al. (2003); Gao et al. (2005). It has been reported that the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic see: Randazzo et al. (2008). For typical C—S bond lengths, see: Banerjee & Zubieta (2004); Stølevik & Postmyr (1997). For the preparation, see: Han et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810026632/jh2175sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026632/jh2175Isup2.hkl
The title compound is prepared as follows. [Cu(C24H38N6)](ClO4)2 was prepared by a slightly modified literature procedure: as CuCl2.2H2O and S-(-)-1-Phenylethylamine were used instead of NiCl2.6H2O and R-(+)-1-Phenylethylamine (Han et al., 2008). To an MeCN solution (10 ml) of [Cu(C24H38N6)](ClO4)2 (90 mg, 0.15 mmol) was added dropwise an aqueous solution (10 ml) containing NaSCN (24 mg, 0.30 mmol) at ambient temperature. The color of the solution changed to pale pink. The mixture was stirred for 30 min during which time a pink precipitate of formed which was collected by filtration, washed with MeCN and water, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were grown by layering of the MeCN solution of [Cu(C24H38N6)](ClO4)2 on the aqueous solution of NaSCN within one week.
All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99–1.00 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.
Chiral metal complexes have attracted considerable attention in chemistry and material science because of their potential applications for chiral recognition and chiral catalysis (Lehn, 1995; Katsuki et al., 2000). Very recently, it has reported the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic α-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclotetradecane)copper(II), with two thiocyanate ions axially.
and that the complexes can transfer molecular information, i.e. energy and (Randazzo et al., 2008). However, the study of chiral macrocyclic metal complexes has been limited due to the difficult of preparation, although these complexes are ve ry useful for chiral building blocks (Du et al., 2003; Gao et al., 2005). Here, we report the synthesis and of copper(II) azamacrocyclic chiral complex, trans-Dithiocyanato(1,8-di(S-In the title compound, the coordination geometry around copper(II) ion is a tetragonally distorted octahedron in which copper(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in the square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—Neq and Ni—Nax bond distances are 2.010 (2) and 2.528 (4) Å, respectively. The former is much less than the latter, which can be attributed to a rather large Jahn-Teller distortion of the copper(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.160 (6) and 1.638 (5) Å, respectively. The former is very similar to CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of azamacrocyclic ligand have chiral carbon atoms (S type). All thiocyanate ions binding copper(II) ions axially are involved in an N—H···N(of NCS) hydrogen bonding interactions (Table 1), which gives rise to a one-dimensional polymeric chain propagating along the a axis (Figure 2). The shortest Cu···Cu intrachain separation within the hydrogen-bonded one-dimensional polymer is 6.598 (1) Å and is about 37% shorter than the shortest interchain Cu···Cu distance of 10.448 (1) Å.
For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000); Lehn (1995) and as chiral building blocks, see: Du et al. (2003); Gao et al. (2005). It has been reported that the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic
see: Randazzo et al. (2008). For typical C—S bond lengths, see: Banerjee & Zubieta (2004); Stølevik & Postmyr (1997). For the preparation, see: Han et al. (2008).Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(NCS)2(C24H38N6)] | F(000) = 622 |
Mr = 590.30 | Dx = 1.337 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 4491 reflections |
a = 6.5976 (5) Å | θ = 2.7–27.9° |
b = 14.7609 (11) Å | µ = 0.92 mm−1 |
c = 15.2847 (12) Å | T = 195 K |
β = 99.952 (2)° | Block, purple |
V = 1466.13 (19) Å3 | 0.38 × 0.26 × 0.15 mm |
Z = 2 |
Siemens SMART CCD diffractometer | 6272 independent reflections |
Radiation source: fine-focus sealed tube | 4364 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 28.3°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→8 |
Tmin = 0.751, Tmax = 0.871 | k = −19→19 |
10954 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0195P)2 + 1.3207P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
6272 reflections | Δρmax = 0.69 e Å−3 |
336 parameters | Δρmin = −0.68 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2485 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
[Cu(NCS)2(C24H38N6)] | V = 1466.13 (19) Å3 |
Mr = 590.30 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.5976 (5) Å | µ = 0.92 mm−1 |
b = 14.7609 (11) Å | T = 195 K |
c = 15.2847 (12) Å | 0.38 × 0.26 × 0.15 mm |
β = 99.952 (2)° |
Siemens SMART CCD diffractometer | 6272 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4364 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 0.871 | Rint = 0.034 |
10954 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.115 | Δρmax = 0.69 e Å−3 |
S = 1.11 | Δρmin = −0.68 e Å−3 |
6272 reflections | Absolute structure: Flack (1983), 2485 Friedel pairs |
336 parameters | Absolute structure parameter: −0.01 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50430 (12) | 0.54334 (8) | 0.25843 (4) | 0.03442 (15) | |
S1 | 0.7793 (3) | 0.26210 (11) | 0.15869 (12) | 0.0543 (5) | |
S2 | 0.2363 (3) | 0.82615 (11) | 0.34351 (12) | 0.0583 (5) | |
N1 | 0.2789 (7) | 0.4510 (3) | 0.2305 (2) | 0.0254 (9) | |
H1 | 0.1630 | 0.4766 | 0.2476 | 0.030* | |
N2 | 0.3528 (7) | 0.3783 (3) | 0.3734 (3) | 0.0274 (10) | |
N3 | 0.5658 (7) | 0.5102 (3) | 0.3877 (2) | 0.0303 (11) | |
H3 | 0.4650 | 0.5373 | 0.4146 | 0.036* | |
N4 | 0.7316 (7) | 0.6346 (3) | 0.2878 (2) | 0.0273 (10) | |
H4 | 0.8493 | 0.6078 | 0.2736 | 0.033* | |
N5 | 0.6763 (8) | 0.7003 (3) | 0.1436 (3) | 0.0342 (11) | |
N6 | 0.4452 (7) | 0.5748 (3) | 0.1283 (2) | 0.0294 (11) | |
H6 | 0.5388 | 0.5424 | 0.1015 | 0.035* | |
N7 | 0.7810 (9) | 0.4420 (4) | 0.2165 (3) | 0.0486 (14) | |
N8 | 0.2189 (8) | 0.6434 (4) | 0.2945 (3) | 0.0484 (14) | |
C1 | 0.3104 (9) | 0.3626 (4) | 0.2767 (3) | 0.0297 (12) | |
H1A | 0.1858 | 0.3246 | 0.2609 | 0.036* | |
H1B | 0.4275 | 0.3303 | 0.2582 | 0.036* | |
C2 | 0.5574 (9) | 0.4111 (4) | 0.4052 (3) | 0.0339 (13) | |
H2A | 0.6567 | 0.3789 | 0.3746 | 0.041* | |
H2B | 0.5953 | 0.3994 | 0.4697 | 0.041* | |
C3 | 0.7627 (7) | 0.5530 (5) | 0.4258 (3) | 0.0288 (12) | |
H3A | 0.8787 | 0.5158 | 0.4127 | 0.035* | |
H3B | 0.7747 | 0.5582 | 0.4910 | 0.035* | |
C4 | 0.7689 (9) | 0.6463 (4) | 0.3847 (3) | 0.0359 (14) | |
H4A | 0.6618 | 0.6857 | 0.4027 | 0.043* | |
H4B | 0.9049 | 0.6748 | 0.4047 | 0.043* | |
C5 | 0.7015 (10) | 0.7205 (4) | 0.2374 (3) | 0.0341 (13) | |
H5A | 0.5780 | 0.7522 | 0.2505 | 0.041* | |
H5B | 0.8222 | 0.7605 | 0.2549 | 0.041* | |
C6 | 0.4694 (9) | 0.6717 (4) | 0.1056 (3) | 0.0345 (13) | |
H6A | 0.4461 | 0.6794 | 0.0403 | 0.041* | |
H6B | 0.3674 | 0.7091 | 0.1298 | 0.041* | |
C7 | 0.2393 (8) | 0.5371 (5) | 0.0934 (3) | 0.0348 (12) | |
H7A | 0.2174 | 0.5339 | 0.0278 | 0.042* | |
H7B | 0.1307 | 0.5758 | 0.1111 | 0.042* | |
C8 | 0.2317 (9) | 0.4425 (4) | 0.1326 (3) | 0.0311 (12) | |
H8A | 0.0933 | 0.4158 | 0.1142 | 0.037* | |
H8B | 0.3339 | 0.4027 | 0.1115 | 0.037* | |
C9 | 0.2883 (9) | 0.3009 (4) | 0.4249 (3) | 0.0361 (13) | |
H9 | 0.3499 | 0.3132 | 0.4883 | 0.043* | |
C10 | 0.3729 (9) | 0.2099 (3) | 0.4034 (3) | 0.0331 (13) | |
C11 | 0.2610 (11) | 0.1501 (5) | 0.3414 (4) | 0.0534 (18) | |
H11 | 0.1285 | 0.1674 | 0.3112 | 0.064* | |
C12 | 0.3396 (14) | 0.0674 (5) | 0.3239 (4) | 0.066 (2) | |
H12 | 0.2606 | 0.0278 | 0.2824 | 0.079* | |
C13 | 0.5321 (13) | 0.0415 (7) | 0.3659 (4) | 0.0688 (19) | |
H13 | 0.5858 | −0.0158 | 0.3530 | 0.083* | |
C14 | 0.6468 (11) | 0.0979 (5) | 0.4265 (4) | 0.0541 (18) | |
H14 | 0.7794 | 0.0797 | 0.4558 | 0.065* | |
C15 | 0.5689 (9) | 0.1810 (4) | 0.4445 (4) | 0.0402 (14) | |
H15 | 0.6501 | 0.2199 | 0.4860 | 0.048* | |
C16 | 0.0579 (8) | 0.3032 (4) | 0.4214 (4) | 0.0473 (15) | |
H16A | −0.0116 | 0.3002 | 0.3594 | 0.071* | |
H16B | 0.0197 | 0.3595 | 0.4483 | 0.071* | |
H16C | 0.0163 | 0.2513 | 0.4542 | 0.071* | |
C17 | 0.7789 (9) | 0.7675 (4) | 0.0932 (3) | 0.0380 (14) | |
H17 | 0.9250 | 0.7709 | 0.1244 | 0.046* | |
C18 | 0.6930 (9) | 0.8627 (4) | 0.0969 (3) | 0.0390 (14) | |
C19 | 0.8066 (12) | 0.9284 (5) | 0.1483 (4) | 0.059 (2) | |
H19 | 0.9418 | 0.9143 | 0.1778 | 0.071* | |
C20 | 0.7286 (15) | 1.0139 (5) | 0.1579 (4) | 0.074 (3) | |
H20 | 0.8100 | 1.0583 | 0.1928 | 0.089* | |
C21 | 0.5318 (14) | 1.0343 (6) | 0.1165 (4) | 0.070 (2) | |
H21 | 0.4761 | 1.0925 | 0.1243 | 0.084* | |
C22 | 0.4137 (12) | 0.9710 (5) | 0.0634 (4) | 0.060 (2) | |
H22 | 0.2793 | 0.9855 | 0.0334 | 0.072* | |
C23 | 0.4972 (10) | 0.8857 (4) | 0.0553 (4) | 0.0453 (16) | |
H23 | 0.4166 | 0.8415 | 0.0198 | 0.054* | |
C24 | 0.7881 (9) | 0.7340 (4) | 0.0004 (3) | 0.0456 (14) | |
H24A | 0.8273 | 0.6699 | 0.0028 | 0.068* | |
H24B | 0.8902 | 0.7693 | −0.0246 | 0.068* | |
H24C | 0.6527 | 0.7411 | −0.0371 | 0.068* | |
C25 | 0.7772 (9) | 0.3680 (5) | 0.1908 (4) | 0.0360 (14) | |
C26 | 0.2274 (9) | 0.7192 (4) | 0.3148 (4) | 0.0368 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0461 (3) | 0.0263 (2) | 0.0280 (3) | −0.0102 (3) | −0.0019 (2) | 0.0032 (3) |
S1 | 0.0567 (12) | 0.0369 (10) | 0.0655 (11) | −0.0006 (9) | −0.0005 (9) | −0.0091 (8) |
S2 | 0.0683 (13) | 0.0330 (10) | 0.0674 (11) | −0.0024 (9) | −0.0058 (9) | −0.0068 (8) |
N1 | 0.029 (2) | 0.020 (2) | 0.028 (2) | −0.0074 (19) | 0.0044 (17) | −0.0053 (16) |
N2 | 0.027 (2) | 0.024 (2) | 0.031 (2) | −0.0027 (19) | 0.0019 (18) | 0.0087 (17) |
N3 | 0.035 (3) | 0.027 (2) | 0.029 (2) | −0.004 (2) | 0.0039 (18) | −0.0033 (16) |
N4 | 0.029 (2) | 0.023 (2) | 0.029 (2) | −0.008 (2) | 0.0031 (17) | −0.0032 (18) |
N5 | 0.041 (3) | 0.033 (3) | 0.028 (2) | −0.008 (2) | 0.004 (2) | 0.0076 (19) |
N6 | 0.040 (3) | 0.023 (2) | 0.0237 (19) | −0.003 (2) | 0.0022 (18) | −0.0013 (15) |
N7 | 0.048 (4) | 0.036 (3) | 0.062 (3) | 0.007 (3) | 0.012 (3) | −0.007 (3) |
N8 | 0.047 (4) | 0.034 (3) | 0.063 (3) | 0.001 (3) | 0.009 (3) | −0.009 (3) |
C1 | 0.039 (3) | 0.020 (3) | 0.031 (3) | −0.008 (2) | 0.008 (2) | 0.002 (2) |
C2 | 0.041 (3) | 0.023 (3) | 0.033 (3) | 0.003 (3) | −0.005 (2) | 0.011 (2) |
C3 | 0.031 (3) | 0.028 (3) | 0.026 (2) | −0.001 (3) | −0.0013 (18) | −0.003 (2) |
C4 | 0.043 (4) | 0.039 (3) | 0.024 (2) | −0.004 (3) | 0.002 (2) | −0.002 (2) |
C5 | 0.042 (4) | 0.025 (3) | 0.033 (3) | −0.006 (3) | 0.002 (2) | 0.004 (2) |
C6 | 0.039 (3) | 0.033 (3) | 0.031 (3) | −0.006 (3) | 0.004 (2) | 0.008 (2) |
C7 | 0.041 (3) | 0.039 (3) | 0.0217 (19) | −0.007 (3) | −0.0029 (18) | −0.001 (3) |
C8 | 0.040 (3) | 0.026 (3) | 0.027 (2) | 0.001 (3) | 0.006 (2) | −0.001 (2) |
C9 | 0.041 (3) | 0.036 (3) | 0.033 (3) | 0.002 (3) | 0.010 (2) | 0.015 (2) |
C10 | 0.041 (3) | 0.021 (3) | 0.038 (3) | −0.004 (2) | 0.009 (2) | 0.008 (2) |
C11 | 0.064 (5) | 0.040 (4) | 0.050 (4) | −0.008 (3) | −0.006 (3) | 0.011 (3) |
C12 | 0.097 (6) | 0.041 (4) | 0.056 (4) | −0.009 (4) | 0.005 (4) | −0.005 (3) |
C13 | 0.099 (6) | 0.045 (4) | 0.068 (4) | 0.008 (5) | 0.029 (4) | 0.000 (5) |
C14 | 0.051 (4) | 0.043 (4) | 0.073 (4) | 0.014 (3) | 0.023 (3) | 0.011 (3) |
C15 | 0.029 (3) | 0.041 (3) | 0.050 (3) | 0.003 (3) | 0.007 (3) | 0.007 (3) |
C16 | 0.027 (3) | 0.059 (4) | 0.056 (4) | −0.003 (3) | 0.009 (3) | 0.021 (3) |
C17 | 0.050 (4) | 0.025 (3) | 0.040 (3) | −0.003 (3) | 0.010 (3) | 0.005 (2) |
C18 | 0.050 (4) | 0.032 (3) | 0.035 (3) | −0.003 (3) | 0.007 (3) | 0.008 (2) |
C19 | 0.091 (6) | 0.031 (3) | 0.048 (4) | −0.009 (4) | −0.007 (4) | 0.007 (3) |
C20 | 0.123 (8) | 0.042 (4) | 0.050 (4) | −0.005 (4) | −0.009 (4) | 0.001 (3) |
C21 | 0.131 (7) | 0.026 (3) | 0.058 (4) | 0.002 (5) | 0.029 (4) | 0.000 (4) |
C22 | 0.077 (5) | 0.046 (4) | 0.059 (4) | 0.021 (4) | 0.021 (4) | 0.018 (3) |
C23 | 0.056 (4) | 0.032 (3) | 0.051 (3) | 0.004 (3) | 0.018 (3) | 0.009 (3) |
C24 | 0.058 (4) | 0.040 (3) | 0.044 (3) | 0.002 (3) | 0.022 (3) | 0.007 (3) |
C25 | 0.032 (3) | 0.042 (4) | 0.033 (3) | 0.004 (3) | 0.003 (2) | 0.005 (3) |
C26 | 0.033 (3) | 0.037 (4) | 0.040 (3) | 0.005 (3) | 0.005 (3) | 0.004 (3) |
Cu1—N3 | 2.008 (4) | C6—H6B | 0.9900 |
Cu1—N4 | 2.008 (4) | C7—C8 | 1.523 (9) |
Cu1—N1 | 2.008 (4) | C7—H7A | 0.9900 |
Cu1—N6 | 2.014 (4) | C7—H7B | 0.9900 |
Cu1—N7 | 2.527 (6) | C8—H8A | 0.9900 |
Cu1—N8 | 2.528 (6) | C8—H8B | 0.9900 |
S1—C25 | 1.639 (7) | C9—C16 | 1.512 (7) |
S2—C26 | 1.636 (7) | C9—C10 | 1.513 (8) |
N1—C8 | 1.480 (6) | C9—H9 | 1.0000 |
N1—C1 | 1.482 (6) | C10—C15 | 1.403 (7) |
N1—H1 | 0.9300 | C10—C11 | 1.406 (8) |
N2—C2 | 1.437 (7) | C11—C12 | 1.372 (10) |
N2—C1 | 1.474 (6) | C11—H11 | 0.9500 |
N2—C9 | 1.490 (6) | C12—C13 | 1.375 (10) |
N3—C3 | 1.470 (7) | C12—H12 | 0.9500 |
N3—C2 | 1.490 (6) | C13—C14 | 1.372 (10) |
N3—H3 | 0.9300 | C13—H13 | 0.9500 |
N4—C4 | 1.469 (6) | C14—C15 | 1.376 (8) |
N4—C5 | 1.479 (7) | C14—H14 | 0.9500 |
N4—H4 | 0.9300 | C15—H15 | 0.9500 |
N5—C5 | 1.445 (6) | C16—H16A | 0.9800 |
N5—C6 | 1.450 (7) | C16—H16B | 0.9800 |
N5—C17 | 1.490 (7) | C16—H16C | 0.9800 |
N6—C7 | 1.480 (7) | C17—C24 | 1.514 (7) |
N6—C6 | 1.487 (7) | C17—C18 | 1.520 (8) |
N6—H6 | 0.9300 | C17—H17 | 1.0000 |
N7—C25 | 1.160 (8) | C18—C23 | 1.379 (8) |
N8—C26 | 1.160 (8) | C18—C19 | 1.384 (9) |
C1—H1A | 0.9900 | C19—C20 | 1.381 (10) |
C1—H1B | 0.9900 | C19—H19 | 0.9500 |
C2—H2A | 0.9900 | C20—C21 | 1.376 (11) |
C2—H2B | 0.9900 | C20—H20 | 0.9500 |
C3—C4 | 1.518 (8) | C21—C22 | 1.385 (11) |
C3—H3A | 0.9900 | C21—H21 | 0.9500 |
C3—H3B | 0.9900 | C22—C23 | 1.389 (9) |
C4—H4A | 0.9900 | C22—H22 | 0.9500 |
C4—H4B | 0.9900 | C23—H23 | 0.9500 |
C5—H5A | 0.9900 | C24—H24A | 0.9800 |
C5—H5B | 0.9900 | C24—H24B | 0.9800 |
C6—H6A | 0.9900 | C24—H24C | 0.9800 |
N3—Cu1—N4 | 85.80 (17) | N6—C7—H7A | 110.3 |
N3—Cu1—N1 | 93.45 (17) | C8—C7—H7A | 110.3 |
N4—Cu1—N1 | 179.2 (2) | N6—C7—H7B | 110.3 |
N3—Cu1—N6 | 179.1 (2) | C8—C7—H7B | 110.3 |
N4—Cu1—N6 | 94.36 (17) | H7A—C7—H7B | 108.6 |
N1—Cu1—N6 | 86.38 (17) | N1—C8—C7 | 107.8 (4) |
C8—N1—C1 | 113.3 (4) | N1—C8—H8A | 110.2 |
C8—N1—Cu1 | 106.9 (3) | C7—C8—H8A | 110.2 |
C1—N1—Cu1 | 117.3 (3) | N1—C8—H8B | 110.2 |
C8—N1—H1 | 106.2 | C7—C8—H8B | 110.2 |
C1—N1—H1 | 106.2 | H8A—C8—H8B | 108.5 |
Cu1—N1—H1 | 106.2 | N2—C9—C16 | 110.0 (4) |
C2—N2—C1 | 113.3 (4) | N2—C9—C10 | 114.6 (4) |
C2—N2—C9 | 114.7 (4) | C16—C9—C10 | 114.7 (5) |
C1—N2—C9 | 112.7 (4) | N2—C9—H9 | 105.6 |
C3—N3—C2 | 114.1 (4) | C16—C9—H9 | 105.6 |
C3—N3—Cu1 | 107.4 (3) | C10—C9—H9 | 105.6 |
C2—N3—Cu1 | 114.1 (3) | C15—C10—C11 | 116.6 (6) |
C3—N3—H3 | 106.9 | C15—C10—C9 | 121.2 (5) |
C2—N3—H3 | 106.9 | C11—C10—C9 | 122.2 (5) |
Cu1—N3—H3 | 106.9 | C12—C11—C10 | 121.2 (7) |
C4—N4—C5 | 114.1 (4) | C12—C11—H11 | 119.4 |
C4—N4—Cu1 | 107.1 (3) | C10—C11—H11 | 119.4 |
C5—N4—Cu1 | 115.5 (3) | C11—C12—C13 | 120.5 (7) |
C4—N4—H4 | 106.5 | C11—C12—H12 | 119.8 |
C5—N4—H4 | 106.5 | C13—C12—H12 | 119.8 |
Cu1—N4—H4 | 106.5 | C14—C13—C12 | 120.2 (8) |
C5—N5—C6 | 113.4 (5) | C14—C13—H13 | 119.9 |
C5—N5—C17 | 113.0 (4) | C12—C13—H13 | 119.9 |
C6—N5—C17 | 117.8 (4) | C13—C14—C15 | 119.7 (7) |
C7—N6—C6 | 114.0 (5) | C13—C14—H14 | 120.2 |
C7—N6—Cu1 | 106.2 (3) | C15—C14—H14 | 120.2 |
C6—N6—Cu1 | 116.2 (3) | C14—C15—C10 | 121.9 (6) |
C7—N6—H6 | 106.6 | C14—C15—H15 | 119.0 |
C6—N6—H6 | 106.6 | C10—C15—H15 | 119.0 |
Cu1—N6—H6 | 106.6 | C9—C16—H16A | 109.5 |
N2—C1—N1 | 109.0 (4) | C9—C16—H16B | 109.5 |
N2—C1—H1A | 109.9 | H16A—C16—H16B | 109.5 |
N1—C1—H1A | 109.9 | C9—C16—H16C | 109.5 |
N2—C1—H1B | 109.9 | H16A—C16—H16C | 109.5 |
N1—C1—H1B | 109.9 | H16B—C16—H16C | 109.5 |
H1A—C1—H1B | 108.3 | N5—C17—C24 | 111.2 (4) |
N2—C2—N3 | 109.4 (4) | N5—C17—C18 | 113.0 (5) |
N2—C2—H2A | 109.8 | C24—C17—C18 | 114.4 (4) |
N3—C2—H2A | 109.8 | N5—C17—H17 | 105.8 |
N2—C2—H2B | 109.8 | C24—C17—H17 | 105.8 |
N3—C2—H2B | 109.8 | C18—C17—H17 | 105.8 |
H2A—C2—H2B | 108.2 | C23—C18—C19 | 117.5 (6) |
N3—C3—C4 | 108.1 (4) | C23—C18—C17 | 122.4 (6) |
N3—C3—H3A | 110.1 | C19—C18—C17 | 120.0 (6) |
C4—C3—H3A | 110.1 | C20—C19—C18 | 121.7 (7) |
N3—C3—H3B | 110.1 | C20—C19—H19 | 119.2 |
C4—C3—H3B | 110.1 | C18—C19—H19 | 119.2 |
H3A—C3—H3B | 108.4 | C21—C20—C19 | 119.4 (7) |
N4—C4—C3 | 107.3 (4) | C21—C20—H20 | 120.3 |
N4—C4—H4A | 110.2 | C19—C20—H20 | 120.3 |
C3—C4—H4A | 110.2 | C20—C21—C22 | 120.8 (7) |
N4—C4—H4B | 110.2 | C20—C21—H21 | 119.6 |
C3—C4—H4B | 110.2 | C22—C21—H21 | 119.6 |
H4A—C4—H4B | 108.5 | C21—C22—C23 | 118.2 (7) |
N5—C5—N4 | 108.8 (4) | C21—C22—H22 | 120.9 |
N5—C5—H5A | 109.9 | C23—C22—H22 | 120.9 |
N4—C5—H5A | 109.9 | C18—C23—C22 | 122.4 (7) |
N5—C5—H5B | 109.9 | C18—C23—H23 | 118.8 |
N4—C5—H5B | 109.9 | C22—C23—H23 | 118.8 |
H5A—C5—H5B | 108.3 | C17—C24—H24A | 109.5 |
N5—C6—N6 | 108.5 (4) | C17—C24—H24B | 109.5 |
N5—C6—H6A | 110.0 | H24A—C24—H24B | 109.5 |
N6—C6—H6A | 110.0 | C17—C24—H24C | 109.5 |
N5—C6—H6B | 110.0 | H24A—C24—H24C | 109.5 |
N6—C6—H6B | 110.0 | H24B—C24—H24C | 109.5 |
H6A—C6—H6B | 108.4 | N7—C25—S1 | 177.3 (6) |
N6—C7—C8 | 107.1 (4) | N8—C26—S2 | 179.3 (6) |
N3—Cu1—N1—C8 | −166.4 (3) | C6—N6—C7—C8 | −172.6 (4) |
N6—Cu1—N1—C8 | 12.7 (3) | Cu1—N6—C7—C8 | −43.4 (5) |
N3—Cu1—N1—C1 | −38.0 (4) | C1—N1—C8—C7 | −170.5 (4) |
N6—Cu1—N1—C1 | 141.1 (4) | Cu1—N1—C8—C7 | −39.7 (5) |
N4—Cu1—N3—C3 | −12.5 (4) | N6—C7—C8—N1 | 56.3 (6) |
N1—Cu1—N3—C3 | 167.1 (4) | C2—N2—C9—C16 | 150.3 (5) |
N4—Cu1—N3—C2 | −140.0 (4) | C1—N2—C9—C16 | −78.0 (6) |
N1—Cu1—N3—C2 | 39.6 (4) | C2—N2—C9—C10 | −78.8 (6) |
N3—Cu1—N4—C4 | −16.9 (4) | C1—N2—C9—C10 | 52.9 (6) |
N6—Cu1—N4—C4 | 164.0 (4) | N2—C9—C10—C15 | 84.8 (6) |
N3—Cu1—N4—C5 | −145.2 (4) | C16—C9—C10—C15 | −146.6 (5) |
N6—Cu1—N4—C5 | 35.7 (4) | N2—C9—C10—C11 | −95.1 (6) |
N4—Cu1—N6—C7 | −162.9 (4) | C16—C9—C10—C11 | 33.5 (7) |
N1—Cu1—N6—C7 | 17.4 (4) | C15—C10—C11—C12 | 1.1 (9) |
N4—Cu1—N6—C6 | −35.0 (4) | C9—C10—C11—C12 | −179.1 (6) |
N1—Cu1—N6—C6 | 145.4 (4) | C10—C11—C12—C13 | −0.9 (11) |
C2—N2—C1—N1 | −75.4 (6) | C11—C12—C13—C14 | 0.5 (11) |
C9—N2—C1—N1 | 152.3 (4) | C12—C13—C14—C15 | −0.5 (11) |
C8—N1—C1—N2 | −179.1 (4) | C13—C14—C15—C10 | 0.7 (10) |
Cu1—N1—C1—N2 | 55.6 (5) | C11—C10—C15—C14 | −1.0 (9) |
C1—N2—C2—N3 | 80.1 (5) | C9—C10—C15—C14 | 179.1 (5) |
C9—N2—C2—N3 | −148.6 (4) | C5—N5—C17—C24 | 168.0 (5) |
C3—N3—C2—N2 | 174.0 (4) | C6—N5—C17—C24 | −56.7 (7) |
Cu1—N3—C2—N2 | −62.0 (5) | C5—N5—C17—C18 | −61.8 (6) |
C2—N3—C3—C4 | 166.4 (4) | C6—N5—C17—C18 | 73.6 (6) |
Cu1—N3—C3—C4 | 38.9 (5) | N5—C17—C18—C23 | −68.8 (7) |
C5—N4—C4—C3 | 171.2 (4) | C24—C17—C18—C23 | 59.8 (7) |
Cu1—N4—C4—C3 | 42.1 (5) | N5—C17—C18—C19 | 106.6 (6) |
N3—C3—C4—N4 | −54.6 (6) | C24—C17—C18—C19 | −124.8 (6) |
C6—N5—C5—N4 | 81.0 (6) | C23—C18—C19—C20 | −0.1 (10) |
C17—N5—C5—N4 | −141.6 (5) | C17—C18—C19—C20 | −175.8 (6) |
C4—N4—C5—N5 | 177.3 (5) | C18—C19—C20—C21 | 1.0 (11) |
Cu1—N4—C5—N5 | −58.0 (6) | C19—C20—C21—C22 | −1.8 (11) |
C5—N5—C6—N6 | −79.4 (5) | C20—C21—C22—C23 | 1.8 (10) |
C17—N5—C6—N6 | 145.4 (5) | C19—C18—C23—C22 | 0.2 (9) |
C7—N6—C6—N5 | 179.9 (4) | C17—C18—C23—C22 | 175.7 (5) |
Cu1—N6—C6—N5 | 55.9 (6) | C21—C22—C23—C18 | −1.0 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N7i | 0.93 | 2.54 | 3.258 (7) | 135 |
N4—H4···N8ii | 0.93 | 2.46 | 3.202 (7) | 137 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NCS)2(C24H38N6)] |
Mr | 590.30 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 195 |
a, b, c (Å) | 6.5976 (5), 14.7609 (11), 15.2847 (12) |
β (°) | 99.952 (2) |
V (Å3) | 1466.13 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.38 × 0.26 × 0.15 |
Data collection | |
Diffractometer | Siemens SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.751, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10954, 6272, 4364 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.115, 1.11 |
No. of reflections | 6272 |
No. of parameters | 336 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.68 |
Absolute structure | Flack (1983), 2485 Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N7i | 0.93 | 2.54 | 3.258 (7) | 135 |
N4—H4···N8ii | 0.93 | 2.46 | 3.202 (7) | 137 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. R01–2008-000–20955-0). The authors acknowledge the Korea Basic Science Institute for the X-ray data collections.
References
Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208–m209. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Du, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873–877. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232–241. Web of Science CSD CrossRef PubMed CAS Google Scholar
Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745–748. Web of Science CSD CrossRef CAS Google Scholar
Katsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350–3354. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH. Google Scholar
Randazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. (2008). Angew. Chem. Int. Ed. 47, 9879–9882. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Stølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207–211. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral metal complexes have attracted considerable attention in chemistry and material science because of their potential applications for chiral recognition and chiral catalysis (Lehn, 1995; Katsuki et al., 2000). Very recently, it has reported the enantiomers of [Ru(1,10-phenanthroline)3]2+ induce chiral aggregation of various achiral anionic porphyrins and that the complexes can transfer molecular information, i.e. energy and chirality (Randazzo et al., 2008). However, the study of chiral macrocyclic metal complexes has been limited due to the difficult of preparation, although these complexes are ve ry useful for chiral building blocks (Du et al., 2003; Gao et al., 2005). Here, we report the synthesis and crystal structure of copper(II) azamacrocyclic chiral complex, trans-Dithiocyanato(1,8-di(S-α-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclotetradecane)copper(II), with two thiocyanate ions axially.
In the title compound, the coordination geometry around copper(II) ion is a tetragonally distorted octahedron in which copper(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in the square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—Neq and Ni—Nax bond distances are 2.010 (2) and 2.528 (4) Å, respectively. The former is much less than the latter, which can be attributed to a rather large Jahn-Teller distortion of the copper(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.160 (6) and 1.638 (5) Å, respectively. The former is very similar to CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of azamacrocyclic ligand have chiral carbon atoms (S type). All thiocyanate ions binding copper(II) ions axially are involved in an N—H···N(of NCS) hydrogen bonding interactions (Table 1), which gives rise to a one-dimensional polymeric chain propagating along the a axis (Figure 2). The shortest Cu···Cu intrachain separation within the hydrogen-bonded one-dimensional polymer is 6.598 (1) Å and is about 37% shorter than the shortest interchain Cu···Cu distance of 10.448 (1) Å.