organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl­anilinium 2-carb­­oxy­acetate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wudh1971@sohu.com

(Received 12 July 2010; accepted 26 July 2010; online 31 July 2010)

In the crystal structure of the title compound, C8H12N+·C3H3O4, the hydrogen malonate anions are linked into infinite chains parallel to the b axis by inter­molecular O—H⋯O hydrogen bonds of the type COO⋯HO2C in a head-to-tail fashion. The 4-ethyl­anilinium cations link adjacent anion chains by inter­molecular N—H⋯O hydrogen bonds into a two-dimensional network parallel to the b and c axes.

Related literature

For background to mol­ecular–ionic compounds, see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]); Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2626.]); Wang (2010[Wang, B. (2010). Acta Cryst. E66, o1473.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C3H3O4

  • Mr = 225.24

  • Monoclinic, P 21 /c

  • a = 13.439 (3) Å

  • b = 9.2914 (19) Å

  • c = 8.8827 (18) Å

  • β = 99.177 (10)°

  • V = 1095.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.971

  • 11013 measured reflections

  • 2510 independent reflections

  • 1995 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.161

  • S = 1.05

  • 2510 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.89 2.08 2.777 (2) 134
N1—H1B⋯O1i 0.89 2.57 3.200 (3) 129
N1—H1B⋯O2ii 0.89 2.27 2.930 (2) 131
N1—H1C⋯O3iii 0.89 2.31 2.815 (2) 116
N1—H1A⋯O4ii 0.89 2.28 2.885 (2) 125
O4—H4⋯O2iv 0.91 1.64 2.532 (2) 167
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 2006). For similar structures, see: Chen, 2009; Wang, 2010. The title compound has been synthesized in our laboratory and its crystal structure is reported here.

The asymmetric unit of the title compound consists of one 4-ethylanilinium cation and one hydrogen malonate anion (Fig 1), in which complete transfer of a single H atom from the acid component to the basic component has occurred. In the crystal structure, the hydrogen malonate anions are linked into one-dimensional infinite chains parallel to b-axis by intermolecular O—H···O hydrogen bonds of the type COO-···HO2C in a "head-to-tail" fashion. The 4-ethylanilinium cations link adjacent anion chains by intermolecular N—H···O hydrogen bonds into a two-dimensional network running parallel to the b and c-axes .(Fig 2). Hydrogen bonds of intermolecular N—H···O and O—H···O make great contribution to the stability of the crystal structure (Table 1).

Related literature top

For background to molecular–ionic compounds, see: Czupiński et al. (2002); Katrusiak & Szafrański (2006); Chen (2009); Wang (2010).

Experimental top

1.04 g (10 mmol) malonic acid hydrate was dissolved in 50 ml ethanol, to which 1.21 g (10 mmol) 4-ethybenzenamine was added to afford a solution without any precipitation under stirring at ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 3 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 362 K (m.p. 99 oC).

Refinement top

H atoms except for H4 were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride. The H4 atom bonding with O4 was found with O—H bond distance of 0.9084Åin the difference electron density map.

Structure description top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 2006). For similar structures, see: Chen, 2009; Wang, 2010. The title compound has been synthesized in our laboratory and its crystal structure is reported here.

The asymmetric unit of the title compound consists of one 4-ethylanilinium cation and one hydrogen malonate anion (Fig 1), in which complete transfer of a single H atom from the acid component to the basic component has occurred. In the crystal structure, the hydrogen malonate anions are linked into one-dimensional infinite chains parallel to b-axis by intermolecular O—H···O hydrogen bonds of the type COO-···HO2C in a "head-to-tail" fashion. The 4-ethylanilinium cations link adjacent anion chains by intermolecular N—H···O hydrogen bonds into a two-dimensional network running parallel to the b and c-axes .(Fig 2). Hydrogen bonds of intermolecular N—H···O and O—H···O make great contribution to the stability of the crystal structure (Table 1).

For background to molecular–ionic compounds, see: Czupiński et al. (2002); Katrusiak & Szafrański (2006); Chen (2009); Wang (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Ethylanilinium 2-carboxyacetate top
Crystal data top
C8H12N+·C3H3O4F(000) = 480
Mr = 225.24Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9421 reflections
a = 13.439 (3) Åθ = 3.1–27.6°
b = 9.2914 (19) ŵ = 0.10 mm1
c = 8.8827 (18) ÅT = 291 K
β = 99.177 (10)°Block, colorless
V = 1095.0 (4) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2510 independent reflections
Radiation source: fine-focus sealed tube1995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.963, Tmax = 0.971l = 1111
11013 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.8364P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2510 reflectionsΔρmax = 0.42 e Å3
147 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (5)
Crystal data top
C8H12N+·C3H3O4V = 1095.0 (4) Å3
Mr = 225.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.439 (3) ŵ = 0.10 mm1
b = 9.2914 (19) ÅT = 291 K
c = 8.8827 (18) Å0.36 × 0.32 × 0.28 mm
β = 99.177 (10)°
Data collection top
Rigaku SCXmini
diffractometer
2510 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1995 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.042
11013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
2510 reflectionsΔρmin = 0.43 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90859 (14)0.4455 (2)0.0928 (2)0.0260 (4)
C20.89084 (16)0.3160 (2)0.0141 (2)0.0290 (5)
H2A0.82130.31770.06450.035*
H2B0.93320.32610.09230.035*
C30.91163 (15)0.1717 (2)0.0613 (2)0.0265 (4)
C40.3837 (2)0.7987 (4)0.3598 (4)0.0718 (10)
H4A0.32810.77970.41240.108*
H4B0.37040.75730.25950.108*
H4C0.39260.90080.35170.108*
C50.4769 (2)0.7341 (4)0.4458 (3)0.0605 (8)
H5A0.46570.63160.45550.073*
H5B0.48770.77450.54780.073*
C60.57213 (18)0.7548 (3)0.3778 (3)0.0405 (6)
C70.63668 (19)0.6409 (3)0.3677 (3)0.0442 (6)
H7A0.62050.55080.40250.053*
C80.72484 (18)0.6569 (2)0.3073 (3)0.0388 (5)
H8A0.76690.57850.30060.047*
C90.74915 (15)0.7901 (2)0.2574 (2)0.0300 (5)
C100.68750 (17)0.9066 (2)0.2664 (3)0.0388 (5)
H10A0.70460.99670.23280.047*
C110.59904 (19)0.8877 (3)0.3267 (3)0.0453 (6)
H11A0.55700.96620.33270.054*
N10.84388 (13)0.80909 (19)0.1986 (2)0.0347 (5)
H1A0.87550.72490.19920.052*
H1B0.88280.87140.25710.052*
H1C0.83110.84260.10360.052*
O10.88090 (13)0.56380 (16)0.03767 (19)0.0412 (4)
O20.95091 (12)0.42353 (15)0.22859 (17)0.0352 (4)
O30.84347 (12)0.08947 (16)0.0783 (2)0.0413 (4)
O41.00669 (11)0.14348 (15)0.10516 (18)0.0337 (4)
H41.01530.05790.15490.105 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (9)0.0210 (9)0.0323 (10)0.0010 (7)0.0058 (8)0.0015 (7)
C20.0335 (11)0.0246 (10)0.0277 (10)0.0018 (8)0.0011 (8)0.0019 (8)
C30.0333 (11)0.0210 (9)0.0261 (10)0.0025 (8)0.0072 (8)0.0048 (7)
C40.0498 (17)0.083 (2)0.088 (2)0.0032 (16)0.0301 (17)0.0124 (19)
C50.0609 (18)0.071 (2)0.0559 (17)0.0003 (15)0.0279 (14)0.0118 (15)
C60.0422 (13)0.0461 (14)0.0340 (11)0.0037 (10)0.0088 (10)0.0026 (10)
C70.0531 (15)0.0344 (12)0.0463 (14)0.0079 (11)0.0117 (11)0.0074 (10)
C80.0417 (13)0.0267 (11)0.0481 (13)0.0004 (9)0.0074 (10)0.0040 (9)
C90.0277 (10)0.0285 (10)0.0316 (10)0.0039 (8)0.0019 (8)0.0002 (8)
C100.0370 (12)0.0269 (11)0.0514 (14)0.0021 (9)0.0037 (10)0.0037 (9)
C110.0422 (13)0.0398 (13)0.0543 (15)0.0065 (10)0.0091 (11)0.0003 (11)
N10.0280 (9)0.0244 (9)0.0497 (11)0.0017 (7)0.0003 (8)0.0051 (8)
O10.0511 (10)0.0242 (8)0.0454 (9)0.0081 (7)0.0010 (7)0.0041 (7)
O20.0499 (9)0.0225 (7)0.0305 (8)0.0008 (6)0.0021 (7)0.0014 (6)
O30.0363 (9)0.0264 (8)0.0626 (11)0.0054 (6)0.0118 (8)0.0058 (7)
O40.0328 (8)0.0222 (7)0.0445 (9)0.0023 (6)0.0010 (6)0.0024 (6)
Geometric parameters (Å, º) top
C1—O11.237 (2)C6—C71.381 (4)
C1—O21.265 (2)C6—C111.383 (3)
C1—C21.528 (3)C7—C81.384 (3)
C2—C31.505 (3)C7—H7A0.9300
C2—H2A0.9700C8—C91.372 (3)
C2—H2B0.9700C8—H8A0.9300
C3—O31.220 (2)C9—C101.373 (3)
C3—O41.301 (2)C9—N11.462 (3)
C4—C51.485 (5)C10—C111.390 (3)
C4—H4A0.9600C10—H10A0.9300
C4—H4B0.9600C11—H11A0.9300
C4—H4C0.9600N1—H1A0.8900
C5—C61.512 (4)N1—H1B0.8900
C5—H5A0.9700N1—H1C0.8900
C5—H5B0.9700O4—H40.9084
O1—C1—O2125.59 (19)C7—C6—C5120.6 (2)
O1—C1—C2116.51 (18)C11—C6—C5121.8 (2)
O2—C1—C2117.89 (17)C6—C7—C8121.9 (2)
C3—C2—C1115.15 (16)C6—C7—H7A119.1
C3—C2—H2A108.5C8—C7—H7A119.1
C1—C2—H2A108.5C9—C8—C7119.0 (2)
C3—C2—H2B108.5C9—C8—H8A120.5
C1—C2—H2B108.5C7—C8—H8A120.5
H2A—C2—H2B107.5C8—C9—C10121.0 (2)
O3—C3—O4123.86 (19)C8—C9—N1119.35 (19)
O3—C3—C2121.53 (19)C10—C9—N1119.61 (19)
O4—C3—C2114.60 (17)C9—C10—C11119.0 (2)
C5—C4—H4A109.5C9—C10—H10A120.5
C5—C4—H4B109.5C11—C10—H10A120.5
H4A—C4—H4B109.5C6—C11—C10121.6 (2)
C5—C4—H4C109.5C6—C11—H11A119.2
H4A—C4—H4C109.5C10—C11—H11A119.2
H4B—C4—H4C109.5C9—N1—H1A109.5
C4—C5—C6116.2 (2)C9—N1—H1B109.5
C4—C5—H5A108.2H1A—N1—H1B109.5
C6—C5—H5A108.2C9—N1—H1C109.5
C4—C5—H5B108.2H1A—N1—H1C109.5
C6—C5—H5B108.2H1B—N1—H1C109.5
H5A—C5—H5B107.4C3—O4—H4111.3
C7—C6—C11117.6 (2)
O1—C1—C2—C3171.71 (18)C6—C7—C8—C90.6 (4)
O2—C1—C2—C39.0 (3)C7—C8—C9—C100.1 (3)
C1—C2—C3—O3108.1 (2)C7—C8—C9—N1177.8 (2)
C1—C2—C3—O472.1 (2)C8—C9—C10—C110.3 (3)
C4—C5—C6—C7134.2 (3)N1—C9—C10—C11178.2 (2)
C4—C5—C6—C1147.1 (4)C7—C6—C11—C100.3 (4)
C11—C6—C7—C80.7 (4)C5—C6—C11—C10179.0 (2)
C5—C6—C7—C8179.4 (3)C9—C10—C11—C60.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.892.082.777 (2)134
N1—H1B···O1i0.892.573.200 (3)129
N1—H1B···O2ii0.892.272.930 (2)131
N1—H1C···O3iii0.892.312.815 (2)116
N1—H1A···O4ii0.892.282.885 (2)125
O4—H4···O2iv0.911.642.532 (2)167
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N+·C3H3O4
Mr225.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.439 (3), 9.2914 (19), 8.8827 (18)
β (°) 99.177 (10)
V3)1095.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11013, 2510, 1995
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.161, 1.05
No. of reflections2510
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.892.082.777 (2)134.1
N1—H1B···O1i0.892.573.200 (3)128.6
N1—H1B···O2ii0.892.272.930 (2)130.7
N1—H1C···O3iii0.892.312.815 (2)115.6
N1—H1A···O4ii0.892.282.885 (2)124.6
O4—H4···O2iv0.911.642.532 (2)167.2
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

D-HW thanks the China Postdoctoral Science Foundation funded project (20090451147), Jiangsu Planned Projects for Postdoctoral Research Funds (0802003B) and the SEU Major Postdoctoral Research Funds (3212000901) for financial support.

References

First citationChen, L.-Z. (2009). Acta Cryst. E65, o2626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. (2010). Acta Cryst. E66, o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds