organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-2-phenyl-4-{[(E)-3,4,5-tri­methoxybenzyl­idene]amino}-1H-pyrazol-3(2H)-one

aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: bicaifeng301@163.com

(Received 20 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title compound, C21H23N3O4, the pyrazole ring forms dihedral angles of 21.58 (8) and 66.64 (7)° with the benzene and phenyl rings, respectively. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Atwood & Harvey (2001[Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.]); Che & Huang (2003[Che, C. M. & Huang, J. S. (2003). Coord. Chem. Rev. 242, 97-113.]). For the applications of metal–Schiff base complexes, see: Drozdzak et al. (2005[Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055-3074.]); Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]). For a related structure, see: Sun et al. (2007[Sun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007). Chin. J. Struc. Chem. 26, 511-514.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O4

  • Mr = 381.42

  • Monoclinic, P 21 /c

  • a = 12.3644 (12) Å

  • b = 14.0075 (16) Å

  • c = 11.2682 (11) Å

  • β = 96.4680 (1)°

  • V = 1939.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.17 × 0.13 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.988

  • 10089 measured reflections

  • 3422 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 0.99

  • 3422 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5C⋯O1i 0.96 2.31 3.211 (2) 155
C9—H9⋯O4ii 0.93 2.56 3.346 (3) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are among the most fundamental chelating systems in coordination chemistry (Atwood et al., 2001; Che et al., 2003). The metal complexes based on this type ligands have expanded enormously areas of catalytic activities (Drozdzak et al., 2005), molecular magnetism (Yuan et al., 2007) and biological activities, such as antitumor activities (Adsule et al., 2006). The examples given above clearly demonstrate that Schiff base ligands are of special interest in the field of chemistry. Herein, we present the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles can be compared to those in a related structure (Sun et al., 2007). The dihedral angles between the pyrazole ring and the benzene and phenyl rings are 21.58 (8)° and 66.64 (7)°, respectively. The crystal structure is stabilized by by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For general background to Schiff base compounds, see: Atwood et al. (2001); Che et al. (2003). For the applications of metal–Schiff base complexes, see: Drozdzak et al. (2005); Adsule et al. (2006); Yuan et al. (2007). For a related structure, see: Sun et al. (2007).

Experimental top

4-aminoantpyrine (10 mmol, 2.032 g) was added with stirring to anhydrous ethanol (30 ml) and an anhydrous ethanol solution (10 ml) of 3,4,5-trimethoxybenzaldehyde (10 mmol, 1.962 g) was slowly added. The reaction mixture was stirred at 353 K for 5 h, whereupon a yellow solid separated out. The precipitate formed was filtered off, washed several times with anhydrous ethanol and dried under vacuum. Yellow block-shaped crystals were obtained from an anhydrous ethanol solution of the title compound after 2 days by slow evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Schiff bases are among the most fundamental chelating systems in coordination chemistry (Atwood et al., 2001; Che et al., 2003). The metal complexes based on this type ligands have expanded enormously areas of catalytic activities (Drozdzak et al., 2005), molecular magnetism (Yuan et al., 2007) and biological activities, such as antitumor activities (Adsule et al., 2006). The examples given above clearly demonstrate that Schiff base ligands are of special interest in the field of chemistry. Herein, we present the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles can be compared to those in a related structure (Sun et al., 2007). The dihedral angles between the pyrazole ring and the benzene and phenyl rings are 21.58 (8)° and 66.64 (7)°, respectively. The crystal structure is stabilized by by weak intermolecular C—H···O hydrogen bonds.

For general background to Schiff base compounds, see: Atwood et al. (2001); Che et al. (2003). For the applications of metal–Schiff base complexes, see: Drozdzak et al. (2005); Adsule et al. (2006); Yuan et al. (2007). For a related structure, see: Sun et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure showing weak C—H···O hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.
1,5-Dimethyl-2-phenyl-4-{[(E)-3,4,5-trimethoxybenzylidene]amino}- 1H-pyrazol-3(2H)-one top
Crystal data top
C21H23N3O4F(000) = 808
Mr = 381.42Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 12.3644 (12) Åθ = 2.2–25.3°
b = 14.0075 (16) ŵ = 0.09 mm1
c = 11.2682 (11) ÅT = 298 K
β = 96.4680 (1)°Block, yellow
V = 1939.2 (3) Å30.40 × 0.17 × 0.13 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3422 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.964, Tmax = 0.988k = 1612
10089 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H23N3O4V = 1939.2 (3) Å3
Mr = 381.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3644 (12) ŵ = 0.09 mm1
b = 14.0075 (16) ÅT = 298 K
c = 11.2682 (11) Å0.40 × 0.17 × 0.13 mm
β = 96.4680 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2084 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.988Rint = 0.038
10089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.99Δρmax = 0.15 e Å3
3422 reflectionsΔρmin = 0.18 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58862 (12)0.17160 (11)0.75617 (14)0.0483 (4)
N20.55362 (12)0.07674 (11)0.73659 (14)0.0488 (4)
N30.38480 (12)0.18932 (11)0.49987 (13)0.0456 (4)
O10.56035 (11)0.31372 (9)0.65254 (13)0.0616 (4)
O20.14379 (11)0.51801 (9)0.24428 (12)0.0597 (4)
O30.06093 (10)0.38623 (9)0.08868 (12)0.0555 (4)
O40.12137 (12)0.20441 (10)0.10776 (12)0.0641 (4)
C10.53561 (15)0.22988 (14)0.66664 (17)0.0451 (5)
C20.45678 (14)0.16819 (13)0.60050 (16)0.0415 (5)
C30.46934 (14)0.07841 (13)0.64717 (17)0.0425 (5)
C40.40708 (16)0.00978 (13)0.61267 (19)0.0568 (6)
H4A0.45680.06130.60420.085*
H4B0.36280.00040.53820.085*
H4C0.36140.02550.67330.085*
C50.55506 (17)0.01888 (15)0.8440 (2)0.0682 (7)
H5A0.50770.04680.89630.102*
H5B0.62780.01620.88380.102*
H5C0.53060.04450.82270.102*
C60.70012 (16)0.18510 (13)0.80311 (17)0.0460 (5)
C70.72641 (19)0.24765 (15)0.89492 (19)0.0645 (6)
H70.67220.28070.92860.077*
C80.8353 (2)0.26125 (18)0.9374 (2)0.0788 (8)
H80.85440.30470.99850.095*
C90.9143 (2)0.2109 (2)0.8894 (3)0.0798 (8)
H90.98710.22000.91820.096*
C100.88698 (18)0.14758 (18)0.7999 (2)0.0765 (7)
H100.94110.11290.76830.092*
C110.78040 (17)0.13441 (15)0.7557 (2)0.0613 (6)
H110.76220.09130.69390.074*
C120.36413 (15)0.27582 (14)0.47241 (17)0.0478 (5)
H120.39860.32350.52010.057*
C130.28837 (15)0.30404 (13)0.36894 (16)0.0429 (5)
C140.25703 (15)0.39875 (13)0.35636 (17)0.0463 (5)
H140.28680.44370.41140.056*
C150.18193 (15)0.42704 (13)0.26269 (17)0.0439 (5)
C160.13902 (15)0.36017 (14)0.17957 (17)0.0446 (5)
C170.17022 (15)0.26509 (14)0.19268 (16)0.0460 (5)
C180.24460 (15)0.23685 (14)0.28662 (16)0.0461 (5)
H180.26530.17310.29470.055*
C190.17650 (18)0.58758 (14)0.33332 (19)0.0658 (6)
H19A0.15780.56590.40920.099*
H19B0.14000.64680.31290.099*
H19C0.25380.59700.33790.099*
C200.10337 (18)0.41981 (17)0.01563 (19)0.0735 (7)
H20A0.13880.48010.00090.110*
H20B0.04500.42750.07870.110*
H20C0.15490.37450.03960.110*
C210.12836 (19)0.10573 (14)0.1296 (2)0.0703 (7)
H21A0.20300.08590.13410.105*
H21B0.08640.07220.06600.105*
H21C0.10050.09170.20380.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0450 (10)0.0437 (10)0.0528 (11)0.0016 (8)0.0099 (8)0.0052 (8)
N20.0480 (10)0.0402 (10)0.0556 (11)0.0017 (8)0.0053 (8)0.0121 (9)
N30.0477 (10)0.0446 (10)0.0427 (10)0.0030 (7)0.0027 (8)0.0051 (8)
O10.0657 (10)0.0377 (9)0.0756 (11)0.0008 (7)0.0176 (8)0.0059 (7)
O20.0717 (10)0.0454 (9)0.0582 (9)0.0105 (7)0.0101 (8)0.0030 (7)
O30.0515 (9)0.0663 (10)0.0453 (9)0.0047 (7)0.0093 (7)0.0096 (7)
O40.0802 (11)0.0523 (10)0.0538 (9)0.0018 (7)0.0188 (8)0.0043 (8)
C10.0445 (12)0.0400 (12)0.0493 (13)0.0061 (9)0.0022 (9)0.0020 (10)
C20.0419 (11)0.0415 (12)0.0397 (12)0.0043 (9)0.0018 (9)0.0029 (9)
C30.0392 (11)0.0427 (12)0.0450 (12)0.0038 (9)0.0019 (9)0.0027 (10)
C40.0553 (13)0.0479 (13)0.0663 (15)0.0039 (10)0.0024 (11)0.0001 (11)
C50.0662 (15)0.0656 (15)0.0695 (16)0.0030 (12)0.0064 (12)0.0279 (13)
C60.0470 (12)0.0438 (12)0.0441 (12)0.0020 (10)0.0088 (10)0.0079 (10)
C70.0706 (16)0.0645 (15)0.0557 (14)0.0010 (12)0.0050 (12)0.0033 (12)
C80.089 (2)0.0772 (18)0.0617 (16)0.0245 (16)0.0266 (15)0.0002 (14)
C90.0563 (16)0.085 (2)0.091 (2)0.0145 (14)0.0253 (15)0.0310 (17)
C100.0463 (15)0.0813 (18)0.101 (2)0.0010 (12)0.0043 (14)0.0130 (16)
C110.0518 (14)0.0638 (15)0.0668 (16)0.0008 (11)0.0005 (12)0.0037 (12)
C120.0491 (12)0.0481 (13)0.0437 (12)0.0007 (10)0.0051 (9)0.0011 (10)
C130.0425 (11)0.0478 (12)0.0367 (11)0.0008 (9)0.0027 (9)0.0051 (10)
C140.0513 (12)0.0453 (12)0.0403 (12)0.0034 (9)0.0038 (9)0.0006 (9)
C150.0455 (12)0.0415 (11)0.0437 (12)0.0031 (9)0.0001 (9)0.0061 (10)
C160.0407 (11)0.0524 (13)0.0387 (12)0.0022 (9)0.0039 (9)0.0072 (10)
C170.0500 (12)0.0494 (13)0.0372 (12)0.0040 (10)0.0012 (10)0.0016 (10)
C180.0515 (12)0.0425 (12)0.0429 (12)0.0027 (9)0.0010 (10)0.0035 (10)
C190.0833 (17)0.0464 (13)0.0663 (15)0.0053 (12)0.0020 (13)0.0007 (12)
C200.0790 (17)0.0973 (19)0.0432 (14)0.0217 (14)0.0019 (12)0.0140 (13)
C210.0875 (18)0.0523 (15)0.0675 (16)0.0072 (12)0.0063 (13)0.0076 (12)
Geometric parameters (Å, º) top
N1—C11.402 (2)C8—C91.364 (3)
N1—N21.407 (2)C8—H80.9300
N1—C61.432 (2)C9—C101.357 (3)
N2—C31.366 (2)C9—H90.9300
N2—C51.455 (2)C10—C111.368 (3)
N3—C121.269 (2)C10—H100.9300
N3—C21.392 (2)C11—H110.9300
O1—C11.228 (2)C12—C131.465 (3)
O2—C151.367 (2)C12—H120.9300
O2—C191.424 (2)C13—C141.385 (2)
O3—C161.375 (2)C13—C181.388 (2)
O3—C201.420 (2)C14—C151.383 (3)
O4—C171.368 (2)C14—H140.9300
O4—C211.405 (2)C15—C161.387 (3)
C1—C21.445 (3)C16—C171.390 (3)
C2—C31.365 (2)C17—C181.380 (2)
C3—C41.484 (2)C18—H180.9300
C4—H4A0.9600C19—H19A0.9600
C4—H4B0.9600C19—H19B0.9600
C4—H4C0.9600C19—H19C0.9600
C5—H5A0.9600C20—H20A0.9600
C5—H5B0.9600C20—H20B0.9600
C5—H5C0.9600C20—H20C0.9600
C6—C71.367 (3)C21—H21A0.9600
C6—C111.376 (3)C21—H21B0.9600
C7—C81.391 (3)C21—H21C0.9600
C7—H70.9300
C1—N1—N2109.06 (15)C9—C10—H10119.7
C1—N1—C6122.78 (15)C11—C10—H10119.7
N2—N1—C6116.67 (14)C10—C11—C6119.8 (2)
C3—N2—N1107.16 (14)C10—C11—H11120.1
C3—N2—C5124.06 (15)C6—C11—H11120.1
N1—N2—C5114.90 (16)N3—C12—C13122.99 (18)
C12—N3—C2119.61 (16)N3—C12—H12118.5
C15—O2—C19117.73 (15)C13—C12—H12118.5
C16—O3—C20114.23 (15)C14—C13—C18119.85 (18)
C17—O4—C21118.35 (16)C14—C13—C12119.09 (18)
O1—C1—N1123.15 (18)C18—C13—C12121.01 (17)
O1—C1—C2131.93 (18)C15—C14—C13120.58 (18)
N1—C1—C2104.86 (16)C15—C14—H14119.7
C3—C2—N3122.96 (17)C13—C14—H14119.7
C3—C2—C1108.14 (16)O2—C15—C14125.01 (18)
N3—C2—C1128.69 (17)O2—C15—C16115.34 (17)
C2—C3—N2110.13 (16)C14—C15—C16119.65 (17)
C2—C3—C4129.25 (18)O3—C16—C15120.43 (17)
N2—C3—C4120.61 (17)O3—C16—C17119.79 (18)
C3—C4—H4A109.5C15—C16—C17119.65 (18)
C3—C4—H4B109.5O4—C17—C18124.20 (18)
H4A—C4—H4B109.5O4—C17—C16115.18 (17)
C3—C4—H4C109.5C18—C17—C16120.62 (18)
H4A—C4—H4C109.5C17—C18—C13119.64 (18)
H4B—C4—H4C109.5C17—C18—H18120.2
N2—C5—H5A109.5C13—C18—H18120.2
N2—C5—H5B109.5O2—C19—H19A109.5
H5A—C5—H5B109.5O2—C19—H19B109.5
N2—C5—H5C109.5H19A—C19—H19B109.5
H5A—C5—H5C109.5O2—C19—H19C109.5
H5B—C5—H5C109.5H19A—C19—H19C109.5
C7—C6—C11120.3 (2)H19B—C19—H19C109.5
C7—C6—N1120.07 (19)O3—C20—H20A109.5
C11—C6—N1119.66 (18)O3—C20—H20B109.5
C6—C7—C8119.1 (2)H20A—C20—H20B109.5
C6—C7—H7120.4O3—C20—H20C109.5
C8—C7—H7120.4H20A—C20—H20C109.5
C9—C8—C7120.1 (2)H20B—C20—H20C109.5
C9—C8—H8120.0O4—C21—H21A109.5
C7—C8—H8120.0O4—C21—H21B109.5
C10—C9—C8120.2 (2)H21A—C21—H21B109.5
C10—C9—H9119.9O4—C21—H21C109.5
C8—C9—H9119.9H21A—C21—H21C109.5
C9—C10—C11120.5 (2)H21B—C21—H21C109.5
C1—N1—N2—C38.40 (19)C8—C9—C10—C110.9 (4)
C6—N1—N2—C3152.94 (16)C9—C10—C11—C60.6 (4)
C1—N1—N2—C5150.54 (16)C7—C6—C11—C100.8 (3)
C6—N1—N2—C564.9 (2)N1—C6—C11—C10179.61 (18)
N2—N1—C1—O1170.55 (17)C2—N3—C12—C13179.20 (16)
C6—N1—C1—O128.6 (3)N3—C12—C13—C14169.61 (17)
N2—N1—C1—C26.95 (19)N3—C12—C13—C187.8 (3)
C6—N1—C1—C2148.88 (17)C18—C13—C14—C150.3 (3)
C12—N3—C2—C3168.73 (17)C12—C13—C14—C15177.09 (17)
C12—N3—C2—C117.2 (3)C19—O2—C15—C145.6 (3)
O1—C1—C2—C3174.1 (2)C19—O2—C15—C16173.74 (17)
N1—C1—C2—C33.0 (2)C13—C14—C15—O2178.25 (17)
O1—C1—C2—N30.6 (3)C13—C14—C15—C161.1 (3)
N1—C1—C2—N3177.84 (17)C20—O3—C16—C1588.4 (2)
N3—C2—C3—N2173.05 (16)C20—O3—C16—C1795.6 (2)
C1—C2—C3—N22.1 (2)O2—C15—C16—O32.1 (3)
N3—C2—C3—C46.2 (3)C14—C15—C16—O3177.30 (16)
C1—C2—C3—C4178.61 (18)O2—C15—C16—C17178.04 (16)
N1—N2—C3—C26.4 (2)C14—C15—C16—C171.3 (3)
C5—N2—C3—C2144.21 (18)C21—O4—C17—C1814.1 (3)
N1—N2—C3—C4174.22 (15)C21—O4—C17—C16165.26 (17)
C5—N2—C3—C436.4 (3)O3—C16—C17—O42.5 (3)
C1—N1—C6—C786.2 (2)C15—C16—C17—O4178.47 (17)
N2—N1—C6—C7134.48 (18)O3—C16—C17—C18176.90 (16)
C1—N1—C6—C1194.1 (2)C15—C16—C17—C180.9 (3)
N2—N1—C6—C1145.2 (2)O4—C17—C18—C13179.14 (17)
C11—C6—C7—C81.8 (3)C16—C17—C18—C130.2 (3)
N1—C6—C7—C8178.59 (18)C14—C13—C18—C170.1 (3)
C6—C7—C8—C91.5 (3)C12—C13—C18—C17177.48 (17)
C7—C8—C9—C100.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O1i0.962.313.211 (2)155
C9—H9···O4ii0.932.563.346 (3)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H23N3O4
Mr381.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3644 (12), 14.0075 (16), 11.2682 (11)
β (°) 96.4680 (1)
V3)1939.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.17 × 0.13
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10089, 3422, 2084
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 0.99
No. of reflections3422
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O1i0.962.313.211 (2)155
C9—H9···O4ii0.932.563.346 (3)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China for its financial support of this project (grant No. 20971115).

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChe, C. M. & Huang, J. S. (2003). Coord. Chem. Rev. 242, 97–113.  Web of Science CrossRef CAS Google Scholar
First citationDrozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007). Chin. J. Struc. Chem. 26, 511–514.  CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds