organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(2,6-Dimeth­­oxy­phen­yl)but­yl]-1,3-dimeth­­oxy­benzene

aDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA
*Correspondence e-mail: kth7@georgetown.edu

(Received 3 June 2010; accepted 28 June 2010; online 7 July 2010)

The title compound, C20H26O4, crystallizes such that the alkyl chain adopts an all-anti conformation. The crystal packing displays edge-to-face arene–arene inter­actions with a dihedral angle of 87°. The complete molecule is generated by inversion symmetry.

Related literature

For related compounds containing tethered 2,6-dimeth­oxy­benzene fragments, see: Ionkin et al. (2003[Ionkin, A. S. & Marshall, W. J. (2003). Heteroat. Chem. 14, 360-364.]); Evans et al. (1991[Evans, K. L., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 2729-2731.]); Yoshimura et al. (2008[Yoshimura, N., Momotake, A., Shinohara, Y., Nishimura, Y. & Arai, T. (2008). Chem. Lett. 37, 174-175.]); Shinohara et al. (2008[Shinohara, Y. & Arai, T. (2008). Bull. Chem. Soc. Jpn, 81, 1500-1504.]); Ono et al. (2008[Ono, K., Tsukamoto, K., Tomura, M. & Saito, K. (2008). Acta Cryst. E64, o1069.]). For a related structure, see: Fleck et al. (2005[Fleck, M. & Walter, M. (2005). Acta Cryst. E61, o4099-o4100.]). For the synthesis and further studies, see: Lettré et al. (1952[Lettré, H. & Jahn, A. (1952). Chem. Ber. 85, 346-350.]); Tanaka et al. (1989[Tanaka, Y., Ubukata, Y. & Aoyama, Y. (1989). Chem. Lett. pp. 1905-1908.]). The rather large crystal used for data collection was chosen in order to optimize data intensity. For weakly absorbing materials, SADABS is known to be effective at correcting for crystal sizes larger than the beam without introducing systematic errors, see, for example: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26O4

  • Mr = 330.41

  • Orthorhombic, P b c n

  • a = 22.692 (2) Å

  • b = 5.5460 (5) Å

  • c = 13.7099 (13) Å

  • V = 1725.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.98 × 0.36 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.981

  • 14196 measured reflections

  • 2071 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 2071 reflections

  • 161 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). Persistence of Vision (TM) Raytracer (POV-RAY). Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. http://www.povray.org/.]).

Supporting information


Comment top

Several tethered 2,6-dimethoxyphenyl derivatives have been synthesized containing conjugated linkers comprised of alkenyl and alkynyl units (Yoshimura et al., 2008, Shinohara et al., 2008, and Ono et. al., 2008).

The conformation of the title compound is similar to the hydrocarbon 1,4-diphenylbutane (Fleck et al., 2005). Both molecules exhibit an all anti aliphatic conformation. The title compound maintains aromatic C—C bond distances in the range of 1.3844 (16)–1.4042 (13) Å, and aliphatic C—C bonds from 1.5096 (12)–1.5349 (12) Å. One striking difference between the compounds is the crystal packing, which adopts a herringbone pattern for the title compound, whereas in 1,4-diphenylbutane, neither edge-to-face nor π-π stacking interactions are observed.

The rather large crystal (~1 mm) used for data collection was chosen in order to optimize data intensity. For weakly absorbing materials, SADABS is known to be effective at correcting for crystal sizes larger than the beam, without introducing systematic errors. See, for example: Görbitz (1999).

Related literature top

For related compounds containing tethered 2,6-dimethoxybenzene fragments, see: Ionkin et al. (2003); Evans et al. (1991); Yoshimura et al. (2008); Shinohara et al. (2008); Ono et al. (2008). For a related structure, see: Fleck et al. (2005). For the synthesis and further studies, see: Lettré et al. (1952); Tanaka et al. (1989). The rather large crystal used for data collection was chosen in order to optimize data intensity. For weakly absorbing materials, SADABS is known to be effective at correcting for crystal sizes larger than the beam without introducing systematic errors, see, for example: Görbitz & 1999 (1999).

Experimental top

The title compound was obtained by lithiation (10 ml, 2.5 M n-BuLi in hexanes) of 1,3-dimethoxybenzene (3.45 g, 25 mmol) under nitrogen atmosphere. Following distillation of hexanes and subsequent addition of 1,4-dibromohexane (2.16 g, 10 mmol), the mixture was heated to 150°C for 2 days. After cooling, the mixture was quenched with water (150 ml) and the product was removed and was recrystallized with a 3:1 hexanes/ethyl acetate solution to afford an off-white compound in 72% yield. Single crystals were obtained by slow evaporation from ethanol.

Structure description top

Several tethered 2,6-dimethoxyphenyl derivatives have been synthesized containing conjugated linkers comprised of alkenyl and alkynyl units (Yoshimura et al., 2008, Shinohara et al., 2008, and Ono et. al., 2008).

The conformation of the title compound is similar to the hydrocarbon 1,4-diphenylbutane (Fleck et al., 2005). Both molecules exhibit an all anti aliphatic conformation. The title compound maintains aromatic C—C bond distances in the range of 1.3844 (16)–1.4042 (13) Å, and aliphatic C—C bonds from 1.5096 (12)–1.5349 (12) Å. One striking difference between the compounds is the crystal packing, which adopts a herringbone pattern for the title compound, whereas in 1,4-diphenylbutane, neither edge-to-face nor π-π stacking interactions are observed.

The rather large crystal (~1 mm) used for data collection was chosen in order to optimize data intensity. For weakly absorbing materials, SADABS is known to be effective at correcting for crystal sizes larger than the beam, without introducing systematic errors. See, for example: Görbitz (1999).

For related compounds containing tethered 2,6-dimethoxybenzene fragments, see: Ionkin et al. (2003); Evans et al. (1991); Yoshimura et al. (2008); Shinohara et al. (2008); Ono et al. (2008). For a related structure, see: Fleck et al. (2005). For the synthesis and further studies, see: Lettré et al. (1952); Tanaka et al. (1989). The rather large crystal used for data collection was chosen in order to optimize data intensity. For weakly absorbing materials, SADABS is known to be effective at correcting for crystal sizes larger than the beam without introducing systematic errors, see, for example: Görbitz & 1999 (1999).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001) and POV-RAY (Persistence of Vision, 2004).

Figures top
[Figure 1] Fig. 1. Title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. View of title compound along C4 carbon chain.
[Figure 3] Fig. 3. Side view of title compound.
[Figure 4] Fig. 4. Packing of title compound as viewed down the b axis.
2-[4-(2,6-Dimethoxyphenyl)butyl]-1,3-dimethoxybenzene top
Crystal data top
C20H26O4Dx = 1.272 Mg m3
Mr = 330.41Melting point = 429–431 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6702 reflections
a = 22.692 (2) Åθ = 3.0–28.5°
b = 5.5460 (5) ŵ = 0.09 mm1
c = 13.7099 (13) ÅT = 100 K
V = 1725.4 (3) Å3Prism, colorless
Z = 40.98 × 0.36 × 0.22 mm
F(000) = 712
Data collection top
Bruker SMART APEXII CCD
diffractometer
2071 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2929
Tmin = 0.916, Tmax = 0.981k = 77
14196 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4726P]
where P = (Fo2 + 2Fc2)/3
2071 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H26O4V = 1725.4 (3) Å3
Mr = 330.41Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 22.692 (2) ŵ = 0.09 mm1
b = 5.5460 (5) ÅT = 100 K
c = 13.7099 (13) Å0.98 × 0.36 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1853 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.981Rint = 0.020
14196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.05Δρmax = 0.29 e Å3
2071 reflectionsΔρmin = 0.17 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15557 (4)0.35467 (17)0.12621 (6)0.0182 (2)
C20.19265 (4)0.29025 (19)0.20325 (7)0.0225 (2)
C30.18839 (5)0.4180 (2)0.28983 (7)0.0260 (2)
C40.14842 (5)0.6043 (2)0.30147 (7)0.0257 (2)
C50.11173 (4)0.66605 (18)0.22332 (7)0.0216 (2)
C60.11502 (4)0.54382 (17)0.13379 (6)0.0182 (2)
C70.07619 (4)0.61358 (17)0.04894 (7)0.0185 (2)
C80.01905 (4)0.46605 (17)0.04386 (7)0.0190 (2)
C90.06764 (6)0.9829 (2)0.31571 (9)0.0354 (3)
C100.19556 (4)0.04010 (18)0.02716 (8)0.0229 (2)
H20.2201 (6)0.161 (2)0.1972 (9)0.028 (3)*
H30.2143 (5)0.375 (2)0.3442 (10)0.030 (3)*
H40.1459 (6)0.689 (3)0.3613 (10)0.032 (3)*
H7A0.0984 (5)0.588 (2)0.0112 (9)0.021 (3)*
H7B0.0660 (5)0.785 (2)0.0535 (8)0.021 (3)*
H8A0.0292 (5)0.292 (2)0.0404 (8)0.021 (3)*
H8B0.0035 (5)0.491 (2)0.1046 (8)0.021 (3)*
H9A0.1055 (6)1.065 (2)0.3276 (10)0.031 (3)*
H9B0.0560 (7)0.878 (3)0.3713 (12)0.051 (4)*
H9C0.0387 (7)1.102 (3)0.3050 (11)0.043 (4)*
H10A0.2369 (6)0.091 (2)0.0350 (8)0.025 (3)*
H10B0.1868 (6)0.085 (2)0.0749 (10)0.030 (3)*
H10C0.1886 (6)0.025 (3)0.0395 (10)0.035 (4)*
O10.15679 (3)0.24072 (13)0.03720 (5)0.02170 (18)
O20.07098 (3)0.84683 (14)0.22717 (5)0.0297 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (4)0.0210 (4)0.0148 (4)0.0041 (3)0.0011 (3)0.0013 (3)
C20.0208 (5)0.0261 (5)0.0207 (5)0.0034 (4)0.0019 (3)0.0060 (4)
C30.0280 (5)0.0328 (5)0.0171 (4)0.0109 (4)0.0043 (4)0.0065 (4)
C40.0314 (5)0.0309 (5)0.0148 (4)0.0139 (4)0.0026 (4)0.0024 (4)
C50.0209 (5)0.0234 (5)0.0205 (5)0.0075 (3)0.0050 (3)0.0033 (4)
C60.0170 (4)0.0210 (4)0.0166 (4)0.0043 (3)0.0009 (3)0.0001 (3)
C70.0181 (4)0.0181 (4)0.0192 (4)0.0000 (3)0.0007 (3)0.0007 (3)
C80.0179 (4)0.0186 (4)0.0207 (5)0.0004 (3)0.0006 (3)0.0004 (3)
C90.0369 (6)0.0351 (6)0.0341 (6)0.0084 (5)0.0121 (5)0.0179 (5)
C100.0225 (5)0.0207 (5)0.0254 (5)0.0030 (4)0.0008 (4)0.0000 (4)
O10.0247 (4)0.0241 (4)0.0163 (3)0.0066 (3)0.0014 (2)0.0015 (2)
O20.0281 (4)0.0317 (4)0.0293 (4)0.0002 (3)0.0044 (3)0.0139 (3)
Geometric parameters (Å, º) top
O1—C11.3746 (11)C7—H7B0.979 (12)
O1—C101.4251 (11)C7—H7A0.976 (12)
O2—C51.3650 (13)C10—H10A0.986 (13)
O2—C91.4314 (12)C10—H10C0.995 (14)
C5—C41.3992 (14)C10—H10B0.975 (14)
C5—C61.4042 (13)C4—C31.3844 (16)
C8—C8i1.5283 (18)C4—H40.947 (14)
C8—C71.5349 (12)C2—C31.3857 (14)
C8—H8A0.992 (12)C2—H20.955 (13)
C8—H8B0.987 (11)C3—H30.979 (13)
C6—C11.3993 (13)C9—H9A0.985 (13)
C6—C71.5096 (12)C9—H9B0.994 (16)
C1—C21.3967 (13)C9—H9C0.943 (16)
C1—O1—C10117.20 (7)H7B—C7—H7A108.5 (10)
C5—O2—C9117.13 (9)O1—C10—H10A110.7 (7)
O2—C5—C4123.58 (9)O1—C10—H10C105.8 (8)
O2—C5—C6115.11 (8)H10A—C10—H10C110.8 (10)
C4—C5—C6121.31 (9)O1—C10—H10B111.4 (8)
C8i—C8—C7112.48 (9)H10A—C10—H10B109.1 (10)
C8i—C8—H8A109.4 (7)H10C—C10—H10B109.0 (11)
C7—C8—H8A109.0 (7)C3—C4—C5118.96 (9)
C8i—C8—H8B109.6 (7)C3—C4—H4120.7 (8)
C7—C8—H8B108.9 (7)C5—C4—H4120.4 (8)
H8A—C8—H8B107.3 (10)C3—C2—C1118.36 (9)
C1—C6—C5117.49 (8)C3—C2—H2120.4 (7)
C1—C6—C7121.24 (8)C1—C2—H2121.3 (7)
C5—C6—C7121.26 (8)C4—C3—C2121.73 (9)
O1—C1—C2122.79 (9)C4—C3—H3119.2 (8)
O1—C1—C6115.08 (8)C2—C3—H3119.1 (8)
C2—C1—C6122.12 (9)O2—C9—H9A109.7 (8)
C6—C7—C8113.04 (7)O2—C9—H9B110.9 (9)
C6—C7—H7B109.7 (7)H9A—C9—H9B111.9 (12)
C8—C7—H7B108.7 (7)O2—C9—H9C105.9 (9)
C6—C7—H7A108.2 (7)H9A—C9—H9C108.2 (12)
C8—C7—H7A108.6 (7)H9B—C9—H9C110.1 (12)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H26O4
Mr330.41
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)22.692 (2), 5.5460 (5), 13.7099 (13)
V3)1725.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.98 × 0.36 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.916, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14196, 2071, 1853
Rint0.020
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections2071
No. of parameters161
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and POV-RAY (Persistence of Vision, 2004).

 

Acknowledgements

The authors acknowledge grant support from the National Science Foundation (DMR-0349316).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, K. L., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 2729–2731.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFleck, M. & Walter, M. (2005). Acta Cryst. E61, o4099–o4100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIonkin, A. S. & Marshall, W. J. (2003). Heteroat. Chem. 14, 360–364.  Web of Science CSD CrossRef CAS Google Scholar
First citationLettré, H. & Jahn, A. (1952). Chem. Ber. 85, 346–350.  Google Scholar
First citationOno, K., Tsukamoto, K., Tomura, M. & Saito, K. (2008). Acta Cryst. E64, o1069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPersistence of Vision (2004). Persistence of Vision (TM) Raytracer (POV-RAY). Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinohara, Y. & Arai, T. (2008). Bull. Chem. Soc. Jpn, 81, 1500–1504.  Web of Science CSD CrossRef CAS Google Scholar
First citationTanaka, Y., Ubukata, Y. & Aoyama, Y. (1989). Chem. Lett. pp. 1905–1908.  CrossRef Web of Science Google Scholar
First citationYoshimura, N., Momotake, A., Shinohara, Y., Nishimura, Y. & Arai, T. (2008). Chem. Lett. 37, 174–175.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds