metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[1-(2-eth­­oxy­phen­yl)3-(4-nitro­phen­yl)triazenido]mercury(II)

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: m.melardi@kiau.ac.ir

(Received 6 June 2010; accepted 13 July 2010; online 21 July 2010)

In the title compound, [Hg(C14H13N4O3)Cl], the HgII atom is four-coordinated by one O atom and two N atoms from a tridentate 1-(2-eth­oxy­phen­yl)-3-(4-nitro­phen­yl)triazenide ligand and one terminal chloride ion in a distorted square-planar geometry. In the crystal structure, the mononuclear complexes are linked into pairs through C—H⋯O and C—H⋯Cl hydrogen bonds as well as ππ and C—H⋯π stacking inter­actions. In addition, weak Hg–μ6-arene π-inter­actions [mean distance of 3.667 (2) Å] are present between these dimers. The ππ stacking inter­actions are between aromatic rings with a centroid–centroid distance of 3.884 (2) Å. Moreover, edge-to-face inter­actions are present between eth­oxy CH groups and aromatic rings with H⋯π distances of 2.81 Å.

Related literature

For transition-metal complexes containing 1,3-diaryltriazenide ligands, see: Moore & Robinson (1986[Moore, D. S. & Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1-68.]); Vrieze & Van Koten, (1987[Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189-244. Oxford: Pergamon Press.]); Horner et al. (2006[Horner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem. 691, 655-658.]). For related structures, see: Melardi et al. (2007[Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67-x68.], 2009[Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302.]); Rofouei et al. (2009[Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777-3784.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C14H13N4O3)Cl]

  • Mr = 521.32

  • Monoclinic, C c

  • a = 13.4829 (5) Å

  • b = 15.5746 (6) Å

  • c = 7.7545 (3) Å

  • β = 107.6355 (6)°

  • V = 1551.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.11 mm−1

  • T = 120 K

  • 0.44 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus. and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.142, Tmax = 0.618

  • 11603 measured reflections

  • 5612 independent reflections

  • 5130 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.047

  • S = 0.76

  • 5612 reflections

  • 209 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2739 Friedel pairs

  • Flack parameter: 0.003 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.54 3.489 (5) 174
C5—H5⋯O2ii 0.95 2.55 3.390 (5) 147
C9—H9⋯Cl1iii 0.95 2.80 3.738 (4) 169
C13—H13A⋯O3iv 0.99 2.47 3.431 (5) 162
C13—H13BCg2v 0.99 2.81 3.570 (4) 134
Symmetry codes: (i) [x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazene compounds characterized by having a diazoamino group (–NNN–) commonly adopt a trans configuration in the ground state. The study of transition-metal complexes containing 1,3-diaryltriaznide ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity (Moore & Robinson, 1986; Vrieze & Van Koten, 1987; Horner et al.., 2006). The crystal structures of a few complexes related to the title compound have been reported recently (Melardi et al., 2007; Rofouei et al., 2009).

In the title complex (Fig. 1), the [1-(2-ethoxyphenyl)3-(4-nitrophenyl)]triazenide ion is coordinated to the central atom Hg(II) through two N atoms [Hg1—N1 = 2.070 (3) Å and Hg1—N3 = 2.711 (3) Å] and one O atom [Hg1—O1 = 2.662 (2) Å]. In addition, a Cl- ion is coordinated to Hg(II) atom with the bond distance Hg1—Cl1 = 2.269 (9) Å. These bond distances agree very well with the corresponding distances reported in related structures (Melardi et al., 2007; Rofouei et al., 2009). The atoms of the ligand and lie in a plane (maximum deviation from coplanarity being 0.115 (4)Å for O2 while Cl1 and Hg1 lie 1.402 (3) and 0.606 (2)Å, respecively, out of this plane. The molecules of the title complex are linked to form pairs through non-classical C—H···O and C—H···Cl hydrogen bond, as well as ππ and C—H···π stacking interactions.

There are ππ stacking interactions present between aromatic rings with centroid-centroid distance of 3.884 (2) Å for Cg1···Cg1 (Cg1 = C7—C12, x, 1 - y, z-1/2), and also edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.81 Å for C13—H13B···Cg2 (Cg2 = C1—C6 x, 1 - y, z-1/2). In addition, weak Hg-µ6-arene π-interactions (mean distance 3.667 (2) Å) are present between these dimers. The secondary Hg-µ6-arene π-interactions involve carbon atoms of the C1—C6 phenyl rings (Table 1, Fig. 2). The weak non-covalent interactions seem to play important role in the crystal packing and the formation of a desired framework. The unit cell packing of the title compound is shown in Fig. 3.

Related literature top

For transition-metal complexes containing 1,3-diaryltriaznide ligands, see: Moore & Robinson (1986). Vrieze & Van Koten, (1987); Horner et al. (2006). For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009).

Experimental top

A methanol solution of 1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazene (0.286 g, 1 mmol) was added to a solution of mercury(II) chloride (0.270 g, 1 mmol). After mixing for 30 minutes at room temperature, solution of sodium acetate in water was added to adjust the pH at 6–6.2. After 2 h, a red solid was readily precipitated out. It was filtered off, washed with methanol and dried in vacuum. The orange crude material was dissolved in 10 ml of dichloromethane (CH2Cl2), and placed in a freezer without covering. After two weeks beautiful orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent; m.p. 460–462 K.

Refinement top

An absolute structure was established using Flack (1983) method. The H-atoms were placed in calculated positions with C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively, and included in the refinement in riding mode with fixed isotropic displacement parameters (Uiso(H) = 1.5Ueq(C) for the CH3-groups and Uiso(H) = 1.2Ueq(C) for the other groups). The highest positive residual electron density peak of 0.87 eÅ3 was localized at a distance of 0.91 Å from the Hg1 atom and was meaningless.

Structure description top

Triazene compounds characterized by having a diazoamino group (–NNN–) commonly adopt a trans configuration in the ground state. The study of transition-metal complexes containing 1,3-diaryltriaznide ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity (Moore & Robinson, 1986; Vrieze & Van Koten, 1987; Horner et al.., 2006). The crystal structures of a few complexes related to the title compound have been reported recently (Melardi et al., 2007; Rofouei et al., 2009).

In the title complex (Fig. 1), the [1-(2-ethoxyphenyl)3-(4-nitrophenyl)]triazenide ion is coordinated to the central atom Hg(II) through two N atoms [Hg1—N1 = 2.070 (3) Å and Hg1—N3 = 2.711 (3) Å] and one O atom [Hg1—O1 = 2.662 (2) Å]. In addition, a Cl- ion is coordinated to Hg(II) atom with the bond distance Hg1—Cl1 = 2.269 (9) Å. These bond distances agree very well with the corresponding distances reported in related structures (Melardi et al., 2007; Rofouei et al., 2009). The atoms of the ligand and lie in a plane (maximum deviation from coplanarity being 0.115 (4)Å for O2 while Cl1 and Hg1 lie 1.402 (3) and 0.606 (2)Å, respecively, out of this plane. The molecules of the title complex are linked to form pairs through non-classical C—H···O and C—H···Cl hydrogen bond, as well as ππ and C—H···π stacking interactions.

There are ππ stacking interactions present between aromatic rings with centroid-centroid distance of 3.884 (2) Å for Cg1···Cg1 (Cg1 = C7—C12, x, 1 - y, z-1/2), and also edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H···π distance of 2.81 Å for C13—H13B···Cg2 (Cg2 = C1—C6 x, 1 - y, z-1/2). In addition, weak Hg-µ6-arene π-interactions (mean distance 3.667 (2) Å) are present between these dimers. The secondary Hg-µ6-arene π-interactions involve carbon atoms of the C1—C6 phenyl rings (Table 1, Fig. 2). The weak non-covalent interactions seem to play important role in the crystal packing and the formation of a desired framework. The unit cell packing of the title compound is shown in Fig. 3.

For transition-metal complexes containing 1,3-diaryltriaznide ligands, see: Moore & Robinson (1986). Vrieze & Van Koten, (1987); Horner et al. (2006). For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and weak Hg-µ6-arene stacking interactions between two [Hg(C14H13N4O3)Cl] moieties.
[Figure 3] Fig. 3. The unit cell packing diagram of the title compound along the c axis.
Chlorido[1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido]mercury(II) top
Crystal data top
[Hg(C14H13N4O3)Cl]F(000) = 984
Mr = 521.32Dx = 2.231 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5899 reflections
a = 13.4829 (5) Åθ = 2.6–32.6°
b = 15.5746 (6) ŵ = 10.11 mm1
c = 7.7545 (3) ÅT = 120 K
β = 107.6355 (6)°Needle, red
V = 1551.84 (10) Å30.44 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5612 independent reflections
Radiation source: fine-focus sealed tube5130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 32.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2020
Tmin = 0.142, Tmax = 0.618k = 2323
11603 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.76(Δ/σ)max = 0.002
5612 reflectionsΔρmax = 0.87 e Å3
209 parametersΔρmin = 0.73 e Å3
2 restraintsAbsolute structure: Flack (1983), 2739 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (5)
Crystal data top
[Hg(C14H13N4O3)Cl]V = 1551.84 (10) Å3
Mr = 521.32Z = 4
Monoclinic, CcMo Kα radiation
a = 13.4829 (5) ŵ = 10.11 mm1
b = 15.5746 (6) ÅT = 120 K
c = 7.7545 (3) Å0.44 × 0.10 × 0.08 mm
β = 107.6355 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
5612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5130 reflections with I > 2σ(I)
Tmin = 0.142, Tmax = 0.618Rint = 0.031
11603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.047Δρmax = 0.87 e Å3
S = 0.76Δρmin = 0.73 e Å3
5612 reflectionsAbsolute structure: Flack (1983), 2739 Friedel pairs
209 parametersAbsolute structure parameter: 0.003 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.12017 (2)0.366861 (6)0.01531 (2)0.01598 (3)
Cl10.09959 (7)0.22761 (6)0.07489 (13)0.02390 (18)
O10.29846 (19)0.43726 (16)0.0064 (3)0.0186 (5)
O20.3935 (2)0.61872 (18)0.3415 (5)0.0284 (6)
O30.4252 (2)0.48304 (18)0.3448 (4)0.0251 (6)
N10.1308 (2)0.49607 (17)0.0809 (4)0.0139 (5)
N20.0536 (2)0.52465 (18)0.1369 (4)0.0143 (5)
N30.0072 (2)0.46291 (18)0.1493 (4)0.0135 (5)
N40.3717 (2)0.5440 (2)0.3237 (4)0.0178 (6)
C10.1976 (2)0.5559 (2)0.0397 (4)0.0141 (6)
C20.2875 (3)0.5247 (2)0.0013 (4)0.0158 (6)
C30.3560 (3)0.5818 (2)0.0381 (5)0.0207 (7)
H30.41690.56120.06200.025*
C40.3359 (3)0.6695 (3)0.0427 (5)0.0240 (8)
H40.38400.70860.06750.029*
C50.2464 (3)0.7004 (2)0.0112 (5)0.0240 (7)
H50.23260.76040.01690.029*
C60.1767 (3)0.6436 (2)0.0287 (5)0.0177 (6)
H60.11490.66460.04840.021*
C70.0947 (2)0.4891 (2)0.1988 (4)0.0126 (6)
C80.1560 (3)0.4226 (2)0.2309 (5)0.0162 (6)
H80.13480.36470.22520.019*
C90.2472 (3)0.4396 (2)0.2710 (5)0.0169 (6)
H90.28880.39430.29310.020*
C100.2762 (3)0.5245 (2)0.2780 (5)0.0158 (6)
C110.2170 (3)0.5921 (2)0.2465 (5)0.0155 (6)
H110.23850.64980.25310.019*
C120.1261 (3)0.5744 (2)0.2052 (5)0.0155 (6)
H120.08530.62000.18130.019*
C130.3904 (3)0.4016 (3)0.0273 (5)0.0206 (7)
H13A0.45410.42280.06410.025*
H13B0.39300.41880.14870.025*
C140.3835 (3)0.3054 (2)0.0161 (6)0.0251 (8)
H14A0.44500.27920.03680.038*
H14B0.32070.28510.10830.038*
H14C0.38020.28910.10420.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01404 (5)0.01342 (4)0.02179 (5)0.00069 (9)0.00741 (3)0.00111 (10)
Cl10.0207 (4)0.0148 (4)0.0376 (5)0.0004 (3)0.0109 (4)0.0046 (3)
O10.0137 (11)0.0211 (12)0.0250 (13)0.0020 (9)0.0117 (10)0.0003 (10)
O20.0230 (14)0.0235 (14)0.0441 (18)0.0042 (11)0.0182 (13)0.0018 (12)
O30.0175 (13)0.0306 (15)0.0307 (15)0.0056 (11)0.0127 (12)0.0014 (12)
N10.0124 (12)0.0148 (12)0.0164 (12)0.0001 (10)0.0070 (11)0.0015 (10)
N20.0123 (12)0.0168 (13)0.0144 (13)0.0011 (10)0.0048 (10)0.0009 (10)
N30.0111 (12)0.0162 (13)0.0133 (12)0.0012 (10)0.0040 (10)0.0011 (10)
N40.0134 (13)0.0239 (15)0.0179 (14)0.0031 (11)0.0074 (11)0.0009 (11)
C10.0115 (14)0.0188 (15)0.0127 (14)0.0012 (11)0.0048 (11)0.0004 (12)
C20.0161 (15)0.0196 (16)0.0132 (14)0.0017 (12)0.0067 (12)0.0004 (12)
C30.0151 (15)0.0282 (19)0.0209 (17)0.0013 (13)0.0088 (13)0.0001 (14)
C40.0261 (19)0.0242 (18)0.0256 (18)0.0077 (15)0.0134 (16)0.0024 (15)
C50.0248 (19)0.0191 (17)0.0308 (19)0.0043 (14)0.0123 (16)0.0012 (15)
C60.0188 (16)0.0169 (15)0.0203 (16)0.0005 (12)0.0100 (13)0.0003 (12)
C70.0103 (13)0.0176 (15)0.0103 (13)0.0016 (11)0.0037 (11)0.0007 (11)
C80.0168 (15)0.0148 (14)0.0180 (15)0.0013 (12)0.0067 (12)0.0005 (12)
C90.0163 (15)0.0197 (16)0.0157 (15)0.0036 (12)0.0065 (12)0.0010 (12)
C100.0138 (15)0.0221 (16)0.0135 (14)0.0028 (12)0.0070 (13)0.0010 (12)
C110.0129 (14)0.0161 (15)0.0181 (15)0.0012 (12)0.0055 (12)0.0014 (12)
C120.0142 (15)0.0144 (14)0.0180 (15)0.0023 (11)0.0053 (12)0.0004 (12)
C130.0144 (15)0.0272 (18)0.0211 (16)0.0060 (14)0.0069 (13)0.0027 (15)
C140.0222 (18)0.0262 (19)0.0289 (19)0.0072 (15)0.0107 (16)0.0008 (15)
Geometric parameters (Å, º) top
Hg1—N12.070 (3)C5—C61.392 (5)
Hg1—Cl12.2699 (9)C5—H50.9500
Hg1—O12.662 (2)C6—H60.9500
Hg1—N32.711 (3)C7—C81.394 (4)
O1—C21.370 (4)C7—C121.401 (5)
O1—C131.453 (4)C8—C91.382 (5)
O2—N41.218 (4)C8—H80.9500
O3—N41.233 (4)C9—C101.385 (5)
N1—N21.320 (4)C9—H90.9500
N1—C11.399 (4)C10—C111.387 (5)
N2—N31.286 (4)C11—C121.385 (5)
N3—C71.406 (4)C11—H110.9500
N4—C101.467 (4)C12—H120.9500
C1—C61.392 (4)C13—C141.505 (6)
C1—C21.419 (4)C13—H13A0.9900
C2—C31.382 (5)C13—H13B0.9900
C3—C41.390 (6)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.389 (6)C14—H14C0.9800
C4—H40.9500
N1—Hg1—Cl1175.95 (8)C1—C6—C5120.0 (3)
N1—Hg1—O167.07 (9)C1—C6—H6120.0
Cl1—Hg1—O1114.37 (6)C5—C6—H6120.0
N1—Hg1—N351.23 (10)C8—C7—C12119.8 (3)
Cl1—Hg1—N3127.80 (6)C8—C7—N3115.2 (3)
O1—Hg1—N3117.69 (8)C12—C7—N3124.9 (3)
C2—O1—C13117.8 (3)C9—C8—C7120.9 (3)
C2—O1—Hg1108.66 (19)C9—C8—H8119.5
C13—O1—Hg1132.3 (2)C7—C8—H8119.5
N2—N1—C1118.5 (3)C8—C9—C10118.3 (3)
N2—N1—Hg1114.0 (2)C8—C9—H9120.9
C1—N1—Hg1126.3 (2)C10—C9—H9120.9
N3—N2—N1110.9 (3)C9—C10—C11122.2 (3)
N2—N3—C7114.2 (3)C9—C10—N4119.1 (3)
N2—N3—Hg183.78 (18)C11—C10—N4118.7 (3)
C7—N3—Hg1161.0 (2)C12—C11—C10119.1 (3)
O2—N4—O3123.4 (3)C12—C11—H11120.4
O2—N4—C10119.0 (3)C10—C11—H11120.4
O3—N4—C10117.6 (3)C11—C12—C7119.7 (3)
C6—C1—N1122.4 (3)C11—C12—H12120.2
C6—C1—C2119.5 (3)C7—C12—H12120.2
N1—C1—C2118.1 (3)O1—C13—C14107.4 (3)
O1—C2—C3124.9 (3)O1—C13—H13A110.2
O1—C2—C1115.2 (3)C14—C13—H13A110.2
C3—C2—C1119.8 (3)O1—C13—H13B110.2
C2—C3—C4120.0 (3)C14—C13—H13B110.2
C2—C3—H3120.0H13A—C13—H13B108.5
C4—C3—H3120.0C13—C14—H14A109.5
C5—C4—C3120.7 (3)C13—C14—H14B109.5
C5—C4—H4119.7H14A—C14—H14B109.5
C3—C4—H4119.7C13—C14—H14C109.5
C4—C5—C6119.9 (4)H14A—C14—H14C109.5
C4—C5—H5120.0H14B—C14—H14C109.5
C6—C5—H5120.0
N1—Hg1—O1—C216.5 (2)N1—C1—C2—O10.9 (4)
Cl1—Hg1—O1—C2159.32 (18)C6—C1—C2—C33.1 (5)
N3—Hg1—O1—C224.7 (2)N1—C1—C2—C3179.3 (3)
N1—Hg1—O1—C13176.7 (3)O1—C2—C3—C4178.8 (3)
Cl1—Hg1—O1—C137.4 (3)C1—C2—C3—C41.0 (5)
N3—Hg1—O1—C13168.5 (3)C2—C3—C4—C51.2 (5)
O1—Hg1—N1—N2173.2 (2)C3—C4—C5—C61.2 (6)
N3—Hg1—N1—N22.54 (18)N1—C1—C6—C5179.4 (3)
O1—Hg1—N1—C119.7 (2)C2—C1—C6—C53.1 (5)
N3—Hg1—N1—C1169.6 (3)C4—C5—C6—C10.9 (6)
C1—N1—N2—N3172.7 (3)N2—N3—C7—C8173.8 (3)
Hg1—N1—N2—N34.5 (3)N2—N3—C7—C1210.7 (4)
N1—N2—N3—C7176.7 (3)C12—C7—C8—C90.7 (5)
N1—N2—N3—Hg13.1 (2)N3—C7—C8—C9176.5 (3)
N1—Hg1—N3—N22.39 (17)C7—C8—C9—C100.1 (5)
Cl1—Hg1—N3—N2172.60 (15)C8—C9—C10—C110.0 (5)
O1—Hg1—N3—N212.1 (2)C8—C9—C10—N4178.9 (3)
N1—Hg1—N3—C7164.2 (7)O2—N4—C10—C9175.2 (3)
Cl1—Hg1—N3—C710.8 (7)O3—N4—C10—C93.7 (5)
O1—Hg1—N3—C7173.8 (6)O2—N4—C10—C113.6 (5)
N2—N1—C1—C610.1 (5)O3—N4—C10—C11177.4 (3)
Hg1—N1—C1—C6156.5 (3)C9—C10—C11—C120.5 (5)
N2—N1—C1—C2172.4 (3)N4—C10—C11—C12179.3 (3)
Hg1—N1—C1—C221.0 (4)C10—C11—C12—C71.0 (5)
C13—O1—C2—C31.7 (5)C8—C7—C12—C111.1 (5)
Hg1—O1—C2—C3167.2 (3)N3—C7—C12—C11176.5 (3)
C13—O1—C2—C1178.5 (3)C2—O1—C13—C14179.4 (3)
Hg1—O1—C2—C112.6 (3)Hg1—O1—C13—C1413.6 (4)
C6—C1—C2—O1176.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.543.489 (5)174
C5—H5···O2ii0.952.553.390 (5)147
C9—H9···Cl1iii0.952.803.738 (4)169
C13—H13A···O3iv0.992.473.431 (5)162
C13—H13B···Cg2v0.992.813.570 (4)134
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Hg(C14H13N4O3)Cl]
Mr521.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)13.4829 (5), 15.5746 (6), 7.7545 (3)
β (°) 107.6355 (6)
V3)1551.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)10.11
Crystal size (mm)0.44 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.142, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
11603, 5612, 5130
Rint0.031
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.047, 0.76
No. of reflections5612
No. of parameters209
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.73
Absolute structureFlack (1983), 2739 Friedel pairs
Absolute structure parameter0.003 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.543.489 (5)174
C5—H5···O2ii0.952.553.390 (5)147
C9—H9···Cl1iii0.952.803.738 (4)169
C13—H13A···O3iv0.992.473.431 (5)162
C13—H13B···Cg2v0.992.813.570 (4)134
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1, z1/2.
 

References

First citationBruker (2001). SAINT-Plus. and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem. 691, 655–658.  Web of Science CSD CrossRef Google Scholar
First citationMelardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67–x68.  CAS Google Scholar
First citationMelardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoore, D. S. & Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1–68.  CrossRef CAS Web of Science Google Scholar
First citationRofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777–3784.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189–244. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds