metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diaceto­nitrile­(3-{2-[8-(2-bromo­eth­­oxy)-9,10-dioxoanthracen-1-yl­­oxy]eth­yl}-1-(2-pyridyl­meth­yl)imidazolium)silver(I) bis­­(hexa­fluorido­phosphate)

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 8 July 2010; accepted 26 July 2010; online 31 July 2010)

The title compound, [Ag(C27H23BrN3O4)(CH3CN)2](PF6)2, is a mononuclear salt species in which the silver(I) atom is coordinated by one ligand and two acetonitrile mol­ecules and exhibits a distorted T-shaped coordination. The asymmetric unit contains one independent cation and two independent hexa­fluorido­phosphate anions, one of which is disordered over two positions in a 0.756 (11):0.244 (11) ratio. Weak ππ inter­actions between the anthraquinone ring systems [centroid–centroid distance = 3.676 (3) Å], inter­molecular Ag–π inter­actions [Cg⋯Ag = 3.405 Å] and C—H⋯π inter­actions between pairs of adjacent mol­ecules are observed.

Related literature

For the synthesis of 1,8-bis­(2-bromo­eth­oxy)anthraquinone, see: Chen et al. (1992[Chen, Z. H., Schall, O. F., Alcalá, M., Li, Y., Gokel, G. W. & Echegoyen, L. (1992). J. Am. Chem. Soc. 114, 444-451.]) and of 2-[(1H-imidazol-1-yl)meth­yl]pyridine, see: Chiu et al. (2005[Chiu, P. L., Lai, C. L., Chang, C. F., Hu, C. H. & Lee, H. M. (2005). Organometallics, 24, 6169-6178.]). For related structures, see: Mahajan et al. (2001[Mahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2001). Thin Solid Films, 398, 82-86.], 2002[Mahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2002). Thin Solid Films, 420, 392-397.]). For Ag–π inter­actions, see: Mascal et al. (2000[Mascal, M., Kerdelhué, J. L., Blake, A. J., Cooke, P. A., Mortimer, R. J. & Teat, S. J. (2000). Eur. J. Inorg. Chem. pp. 485-490.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C27H23BrN3O4)(C2H3N)2](PF6)2

  • Mr = 1013.31

  • Triclinic, [P \overline 1]

  • a = 7.961 (3) Å

  • b = 12.826 (4) Å

  • c = 18.199 (6) Å

  • α = 89.034 (14)°

  • β = 88.278 (12)°

  • γ = 74.805 (7)°

  • V = 1792.3 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 116 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.706, Tmax = 0.754

  • 18740 measured reflections

  • 6327 independent reflections

  • 5355 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.132

  • S = 1.07

  • 6327 reflections

  • 554 parameters

  • 107 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N4 2.230 (4)
Ag1—N5 2.256 (4)
Ag1—N1 2.284 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 imidazole rings and C12–C16/C25 anthraquinone rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26BCg3i 0.97 2.98 3.845 (5) 148
C31—H31BCg1ii 0.96 3.38 3.781 (4) 108
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthraquinone derivatives have attracted much attention due to their optical and photosemiconducting properties (Mahajan et al., 2001, 2002).

The silver(I) atom is bridged by the pyridyl N-atom from one ligand and two acetonitrile molecules and exhibits distorted T shaped coordination (Table 1, Fig. 1). The imidazole rings make dihedral angles with the attached pyridine ring of 61.07 (15)° and anthraquinone ring of 44.80 (10)°. The carbonyl atoms O2 and O4 are almost coplane with the anthraquinone plane, the dihedral angle between the planes of the C23/C24/C25/O2 and C16/C17/C18/O4 fragments is 1.02 (27)°. (Fig. 1).

The crystal structure is stabilized by ππ interactions between the anthraquinone ring systems of the inversion related molecules, with a Cg3···Cg4i distance of 3.676 (3) Å, [symmetry code i: 1 - x, 2 - y, 2 - z] where Cg3 is the C12—C16/C25 ring centroid and Cg4 is the C16—C18/C23—C25 ring centroid (Fig. 2), and two adjacent molecules are bridged by Ag···π interactions involving the pyridyl rings: [Cg2···Ag1ii = 3.405 Å, (Fig. 2). Cg2 is the N1/C1—C5 ring centroid, symmetry code ii: 1 - x, 1 - y, 1 - z]. The present values are thus outside the range of Ag-centroid distances of 2.89–3.37 Å (Mascal et al., 2000). Besides, the structure is further stabilized by C—H···π intermolecular interactions involving the ethoxy carbon C26 and one of the anthraquinone rings [H26B···Cg3iii = 2.98 Å, C26—H26B··· Cg3iii = 148°, and a weaker contact between one of the acetonitrile donors and the imidazole ring is observed H31B···Cg1iv = 3.38 Å, C31—H31B···Cg1iv = 108°. Cg1 and Cg3 are the centroids of the N2/N3/C7—C9 imidazole rings and C12—C16/C25 anthraquinone rings]. Symmetry code for the two interactions, iii: 2 - x, 2 - y, 2 - z; iv: -x, 1 - y, 1 - z.

Related literature top

For the synthesis of 1,8-bis(2-bromoethoxy)anthraquinone, see: Chen et al. (1992) and of 2-[(1H-imidazol-1-yl)methyl]pyridine, see: Chiu et al. (2005). For related structures, see: Mahajan et al. (2001, 2002). For Ag–π interactions, see: Mascal et al. (2000).

Experimental top

1,8-Bis(2-bromoethoxy)anthraquinone (Chen et al., 1992) (1.92 g, 10 mmol) was added to a solution of 2-((1H-imidazol-1-yl)methyl)pyridine (Chiu et al., 2005) (2.48 g, 20 mmol) in 50 ml of THF. The mixture was refluxed for 48 h. The resulting precipitate was isolated and washed with THF(2 × 5 ml) and was then dissolved in methanol (20 ml). To the aqueous solution was added an excess of NH4PF6 resulting in a yellow precipitation. The yellow solid was collected and washed with water and Et2O and dried under vacuum. The title compound was synthesized from the reaction of a slurry of Ag2O (64 mg, 0.275 mmol) in 10 ml of acetonitrile was treated with the yellow soild (213 mg, 0.50 mmol). The mixture was stirred for 12 h with exclusion of light at 323 K until nearly all Ag2O was dissolved. The filtrate was concentrated to ca 2 ml. Addition of Et2O (20 ml) to the filtrate yielded a yellow solid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C), and Uiso(H) = 1.5Ueq(C) for the acetonitrile methyl group. In one of the hexafluorophosphate anions five F atoms were found to be disordered over two sites with occupancies 0.756 (11) and 0.244 (11). The disorder was completed with a combination of PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Structure description top

Anthraquinone derivatives have attracted much attention due to their optical and photosemiconducting properties (Mahajan et al., 2001, 2002).

The silver(I) atom is bridged by the pyridyl N-atom from one ligand and two acetonitrile molecules and exhibits distorted T shaped coordination (Table 1, Fig. 1). The imidazole rings make dihedral angles with the attached pyridine ring of 61.07 (15)° and anthraquinone ring of 44.80 (10)°. The carbonyl atoms O2 and O4 are almost coplane with the anthraquinone plane, the dihedral angle between the planes of the C23/C24/C25/O2 and C16/C17/C18/O4 fragments is 1.02 (27)°. (Fig. 1).

The crystal structure is stabilized by ππ interactions between the anthraquinone ring systems of the inversion related molecules, with a Cg3···Cg4i distance of 3.676 (3) Å, [symmetry code i: 1 - x, 2 - y, 2 - z] where Cg3 is the C12—C16/C25 ring centroid and Cg4 is the C16—C18/C23—C25 ring centroid (Fig. 2), and two adjacent molecules are bridged by Ag···π interactions involving the pyridyl rings: [Cg2···Ag1ii = 3.405 Å, (Fig. 2). Cg2 is the N1/C1—C5 ring centroid, symmetry code ii: 1 - x, 1 - y, 1 - z]. The present values are thus outside the range of Ag-centroid distances of 2.89–3.37 Å (Mascal et al., 2000). Besides, the structure is further stabilized by C—H···π intermolecular interactions involving the ethoxy carbon C26 and one of the anthraquinone rings [H26B···Cg3iii = 2.98 Å, C26—H26B··· Cg3iii = 148°, and a weaker contact between one of the acetonitrile donors and the imidazole ring is observed H31B···Cg1iv = 3.38 Å, C31—H31B···Cg1iv = 108°. Cg1 and Cg3 are the centroids of the N2/N3/C7—C9 imidazole rings and C12—C16/C25 anthraquinone rings]. Symmetry code for the two interactions, iii: 2 - x, 2 - y, 2 - z; iv: -x, 1 - y, 1 - z.

For the synthesis of 1,8-bis(2-bromoethoxy)anthraquinone, see: Chen et al. (1992) and of 2-[(1H-imidazol-1-yl)methyl]pyridine, see: Chiu et al. (2005). For related structures, see: Mahajan et al. (2001, 2002). For Ag–π interactions, see: Mascal et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms and the F7B—F12B disordered positions have been omitted.
[Figure 2] Fig. 2. A packing section of the title compound, viewed down the c axis, intermolecular Ag–π interactions shown with dashed lines.
Diacetonitrile(3-{2-[8-(2-bromoethoxy)-9,10-dioxoanthracen-1-yloxy]ethyl}- 1-(2-pyridylmethyl)imidazolium)silver(I) bis(hexafluoridophosphate) top
Crystal data top
[Ag(C27H23BrN3O4)(C2H3N)2](PF6)2Z = 2
Mr = 1013.31F(000) = 1004
Triclinic, P1Dx = 1.878 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.961 (3) ÅCell parameters from 6148 reflections
b = 12.826 (4) Åθ = 1.6–27.9°
c = 18.199 (6) ŵ = 1.88 mm1
α = 89.034 (14)°T = 116 K
β = 88.278 (12)°Prism, colorless
γ = 74.805 (7)°0.20 × 0.18 × 0.16 mm
V = 1792.3 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6327 independent reflections
Radiation source: fine-focus sealed tube5355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 1.1°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1515
Tmin = 0.706, Tmax = 0.754l = 2121
18740 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0714P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.005
6327 reflectionsΔρmax = 0.95 e Å3
554 parametersΔρmin = 1.24 e Å3
107 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0390 (15)
Crystal data top
[Ag(C27H23BrN3O4)(C2H3N)2](PF6)2γ = 74.805 (7)°
Mr = 1013.31V = 1792.3 (10) Å3
Triclinic, P1Z = 2
a = 7.961 (3) ÅMo Kα radiation
b = 12.826 (4) ŵ = 1.88 mm1
c = 18.199 (6) ÅT = 116 K
α = 89.034 (14)°0.20 × 0.18 × 0.16 mm
β = 88.278 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5355 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.754Rint = 0.062
18740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053107 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.95 e Å3
6327 reflectionsΔρmin = 1.24 e Å3
554 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.81202 (5)0.46133 (3)0.492136 (19)0.02593 (16)
Br11.00740 (8)0.58237 (5)0.87898 (3)0.0448 (2)
P10.80962 (15)0.90464 (9)0.40606 (6)0.0183 (3)
P20.60236 (17)0.47473 (9)0.77493 (7)0.0245 (3)
F10.6881 (4)0.8274 (2)0.38733 (15)0.0309 (6)
F20.9560 (3)0.8403 (2)0.34916 (13)0.0267 (6)
F30.7208 (4)0.9869 (2)0.34205 (13)0.0286 (6)
F40.9307 (4)0.9829 (2)0.42395 (14)0.0297 (6)
F50.6638 (3)0.9684 (2)0.46379 (13)0.0285 (6)
F60.8966 (3)0.8235 (2)0.47089 (13)0.0279 (6)
F80.5481 (5)0.5903 (2)0.81166 (17)0.0503 (9)
F7A0.6754 (11)0.3596 (5)0.7368 (4)0.058 (2)0.756 (11)
F9A0.4254 (8)0.4499 (6)0.7960 (4)0.0705 (19)0.756 (11)
F10A0.6775 (11)0.4261 (5)0.8501 (3)0.0568 (18)0.756 (11)
F11A0.7834 (6)0.5029 (5)0.7539 (4)0.0573 (17)0.756 (11)
F12A0.5296 (11)0.5322 (5)0.6986 (3)0.062 (2)0.756 (11)
F7B0.590 (3)0.3654 (15)0.7364 (12)0.046 (5)0.244 (11)
F9B0.3932 (18)0.5058 (17)0.7743 (11)0.058 (5)0.244 (11)
F10B0.586 (2)0.4211 (14)0.8544 (8)0.039 (4)0.244 (11)
F11B0.8056 (18)0.439 (2)0.7781 (11)0.077 (5)0.244 (11)
F12B0.621 (3)0.5124 (16)0.6922 (8)0.049 (5)0.244 (11)
O10.6449 (4)1.0682 (2)0.82082 (15)0.0216 (7)
O20.8220 (5)0.9164 (3)0.90418 (16)0.0362 (9)
O31.0398 (4)0.7780 (2)0.98270 (16)0.0257 (7)
O40.5994 (5)1.1618 (3)1.14206 (18)0.0418 (9)
N10.5981 (5)0.6198 (3)0.49115 (18)0.0183 (8)
N20.7119 (5)0.7748 (3)0.64378 (18)0.0175 (8)
N30.7046 (5)0.9302 (3)0.68965 (18)0.0183 (8)
N40.9818 (5)0.4191 (3)0.5892 (2)0.0250 (9)
N50.8324 (5)0.3673 (3)0.3871 (2)0.0269 (9)
C10.4750 (6)0.6286 (4)0.4402 (2)0.0221 (10)
H10.48910.57390.40580.027*
C20.3295 (6)0.7149 (4)0.4368 (2)0.0234 (10)
H20.24850.71930.40030.028*
C30.3068 (6)0.7957 (3)0.4897 (2)0.0232 (10)
H30.20860.85410.48980.028*
C40.4321 (6)0.7873 (3)0.5416 (2)0.0199 (9)
H40.41920.84010.57720.024*
C50.5769 (6)0.7000 (3)0.5405 (2)0.0176 (9)
C60.7295 (6)0.6862 (3)0.5915 (2)0.0202 (9)
H6A0.74290.61920.61890.024*
H6B0.83490.67990.56180.024*
C70.7110 (6)0.8763 (3)0.6279 (2)0.0210 (10)
H70.71430.90500.58080.025*
C80.7039 (7)0.8602 (4)0.7485 (2)0.0261 (11)
H80.70170.87670.79810.031*
C90.7073 (6)0.7634 (4)0.7195 (2)0.0240 (10)
H90.70650.70060.74560.029*
C100.7066 (7)1.0449 (3)0.6937 (2)0.0241 (10)
H10A0.67941.07840.64580.029*
H10B0.82321.04840.70510.029*
C110.5801 (6)1.1092 (3)0.7502 (2)0.0237 (10)
H11A0.57441.18550.74560.028*
H11B0.46441.09970.74390.028*
C120.5707 (6)1.1236 (3)0.8828 (2)0.0196 (9)
C130.4385 (6)1.2174 (3)0.8799 (3)0.0246 (10)
H130.39391.24400.83470.030*
C140.3706 (6)1.2731 (4)0.9440 (3)0.0286 (11)
H140.27961.33560.94150.034*
C150.4388 (6)1.2352 (4)1.0106 (3)0.0299 (11)
H150.39521.27291.05320.036*
C160.5722 (6)1.1412 (4)1.0147 (2)0.0230 (10)
C170.6479 (6)1.1053 (4)1.0879 (2)0.0277 (11)
C180.7802 (6)1.0009 (4)1.0945 (2)0.0245 (10)
C190.8386 (7)0.9673 (4)1.1646 (2)0.0303 (12)
H190.79451.00981.20520.036*
C200.9628 (7)0.8701 (4)1.1732 (2)0.0310 (12)
H201.00080.84751.22010.037*
C211.0319 (7)0.8060 (4)1.1136 (2)0.0279 (11)
H211.11570.74101.12040.033*
C220.9738 (6)0.8400 (4)1.0423 (2)0.0206 (10)
C230.8463 (6)0.9375 (3)1.0320 (2)0.0206 (10)
C240.7757 (6)0.9741 (3)0.9574 (2)0.0198 (10)
C250.6409 (6)1.0806 (3)0.9513 (2)0.0193 (9)
C261.1559 (6)0.6745 (4)0.9962 (2)0.0276 (11)
H26A1.09950.63131.02770.033*
H26B1.25900.68241.02030.033*
C271.2049 (7)0.6212 (4)0.9225 (3)0.0335 (12)
H27A1.29950.55660.92850.040*
H27B1.24560.67000.88950.040*
C281.0521 (6)0.3993 (3)0.6423 (3)0.0216 (10)
C291.1464 (7)0.3739 (4)0.7117 (3)0.0310 (11)
H29A1.26960.35380.70120.046*
H29B1.11380.31500.73630.046*
H29C1.11720.43620.74270.046*
C300.8236 (6)0.3136 (4)0.3397 (3)0.0266 (11)
C310.8093 (7)0.2415 (4)0.2798 (3)0.0383 (13)
H31A0.83020.16880.29830.057*
H31B0.89380.24470.24160.057*
H31C0.69450.26390.26030.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0270 (2)0.0223 (2)0.0255 (2)0.00068 (16)0.00450 (15)0.00217 (15)
Br10.0453 (4)0.0449 (4)0.0436 (4)0.0092 (3)0.0102 (3)0.0097 (3)
P10.0207 (6)0.0191 (6)0.0130 (6)0.0012 (5)0.0021 (4)0.0012 (5)
P20.0289 (7)0.0217 (6)0.0232 (6)0.0068 (5)0.0067 (5)0.0027 (5)
F10.0292 (16)0.0306 (15)0.0346 (15)0.0105 (13)0.0048 (12)0.0012 (12)
F20.0294 (15)0.0287 (14)0.0195 (13)0.0040 (12)0.0066 (11)0.0033 (11)
F30.0364 (16)0.0287 (15)0.0169 (13)0.0014 (12)0.0066 (11)0.0089 (11)
F40.0333 (16)0.0279 (14)0.0301 (15)0.0107 (13)0.0076 (12)0.0040 (12)
F50.0312 (16)0.0242 (14)0.0214 (13)0.0075 (12)0.0056 (11)0.0005 (11)
F60.0295 (15)0.0271 (14)0.0188 (13)0.0073 (12)0.0032 (11)0.0065 (11)
F80.075 (3)0.0322 (17)0.0439 (19)0.0153 (17)0.0184 (17)0.0086 (14)
F7A0.101 (5)0.025 (2)0.048 (3)0.019 (3)0.016 (4)0.014 (2)
F9A0.052 (3)0.069 (4)0.104 (4)0.041 (3)0.001 (3)0.003 (4)
F10A0.081 (5)0.047 (3)0.039 (3)0.008 (3)0.029 (3)0.017 (2)
F11A0.031 (3)0.039 (3)0.101 (4)0.010 (2)0.021 (2)0.008 (3)
F12A0.100 (5)0.045 (3)0.030 (3)0.003 (3)0.032 (3)0.003 (2)
F7B0.077 (9)0.025 (6)0.040 (7)0.020 (7)0.004 (8)0.006 (5)
F9B0.039 (7)0.064 (9)0.073 (8)0.015 (7)0.009 (6)0.010 (7)
F10B0.047 (7)0.043 (6)0.031 (6)0.017 (6)0.002 (6)0.007 (5)
F11B0.056 (7)0.086 (9)0.084 (8)0.009 (7)0.007 (6)0.002 (7)
F12B0.063 (9)0.042 (7)0.039 (7)0.014 (7)0.014 (7)0.019 (6)
O10.0293 (18)0.0182 (15)0.0139 (15)0.0003 (13)0.0081 (13)0.0001 (12)
O20.056 (2)0.0275 (18)0.0143 (17)0.0098 (17)0.0124 (16)0.0040 (14)
O30.034 (2)0.0247 (17)0.0147 (15)0.0007 (14)0.0071 (13)0.0042 (13)
O40.055 (3)0.049 (2)0.0219 (19)0.014 (2)0.0068 (17)0.0133 (17)
N10.023 (2)0.0153 (18)0.0153 (18)0.0027 (15)0.0030 (15)0.0011 (15)
N20.021 (2)0.0151 (18)0.0160 (18)0.0034 (15)0.0044 (15)0.0016 (15)
N30.026 (2)0.0179 (18)0.0122 (18)0.0070 (16)0.0040 (15)0.0020 (15)
N40.024 (2)0.0193 (19)0.029 (2)0.0021 (17)0.0014 (18)0.0023 (17)
N50.029 (2)0.029 (2)0.022 (2)0.0064 (18)0.0064 (17)0.0001 (18)
C10.026 (3)0.022 (2)0.020 (2)0.009 (2)0.0059 (19)0.0000 (19)
C20.022 (2)0.027 (2)0.023 (2)0.010 (2)0.0094 (19)0.004 (2)
C30.019 (2)0.019 (2)0.031 (3)0.0040 (19)0.0051 (19)0.0036 (19)
C40.023 (2)0.016 (2)0.021 (2)0.0057 (18)0.0014 (18)0.0008 (18)
C50.021 (2)0.016 (2)0.017 (2)0.0072 (18)0.0028 (17)0.0023 (17)
C60.024 (2)0.017 (2)0.018 (2)0.0010 (18)0.0066 (18)0.0029 (18)
C70.028 (3)0.023 (2)0.012 (2)0.006 (2)0.0053 (18)0.0029 (18)
C80.042 (3)0.025 (2)0.014 (2)0.013 (2)0.004 (2)0.0014 (19)
C90.038 (3)0.021 (2)0.014 (2)0.010 (2)0.0018 (19)0.0009 (18)
C100.043 (3)0.017 (2)0.015 (2)0.012 (2)0.004 (2)0.0027 (18)
C110.035 (3)0.017 (2)0.018 (2)0.005 (2)0.0090 (19)0.0026 (18)
C120.020 (2)0.022 (2)0.020 (2)0.0101 (19)0.0017 (18)0.0020 (18)
C130.025 (3)0.022 (2)0.027 (2)0.005 (2)0.003 (2)0.001 (2)
C140.026 (3)0.021 (2)0.038 (3)0.005 (2)0.002 (2)0.007 (2)
C150.031 (3)0.028 (3)0.031 (3)0.009 (2)0.012 (2)0.010 (2)
C160.027 (3)0.025 (2)0.022 (2)0.014 (2)0.0038 (19)0.0032 (19)
C170.033 (3)0.033 (3)0.021 (2)0.018 (2)0.006 (2)0.007 (2)
C180.031 (3)0.036 (3)0.014 (2)0.022 (2)0.0004 (19)0.002 (2)
C190.044 (3)0.043 (3)0.012 (2)0.028 (3)0.002 (2)0.004 (2)
C200.047 (3)0.045 (3)0.012 (2)0.032 (3)0.011 (2)0.009 (2)
C210.034 (3)0.034 (3)0.021 (2)0.017 (2)0.011 (2)0.008 (2)
C220.025 (3)0.029 (2)0.013 (2)0.016 (2)0.0044 (18)0.0019 (18)
C230.026 (2)0.025 (2)0.016 (2)0.015 (2)0.0014 (18)0.0019 (18)
C240.026 (3)0.023 (2)0.013 (2)0.011 (2)0.0039 (18)0.0018 (19)
C250.024 (2)0.019 (2)0.016 (2)0.0082 (19)0.0023 (18)0.0031 (18)
C260.030 (3)0.025 (2)0.027 (3)0.006 (2)0.007 (2)0.006 (2)
C270.029 (3)0.034 (3)0.035 (3)0.003 (2)0.002 (2)0.002 (2)
C280.020 (2)0.016 (2)0.027 (3)0.0017 (18)0.001 (2)0.0034 (19)
C290.034 (3)0.027 (3)0.030 (3)0.003 (2)0.011 (2)0.002 (2)
C300.025 (3)0.029 (3)0.026 (3)0.007 (2)0.004 (2)0.003 (2)
C310.048 (4)0.033 (3)0.032 (3)0.006 (3)0.006 (2)0.011 (2)
Geometric parameters (Å, º) top
Ag1—N42.230 (4)C6—H6A0.9700
Ag1—N52.256 (4)C6—H6B0.9700
Ag1—N12.284 (4)C7—H70.9300
Br1—C271.961 (5)C8—C91.351 (6)
P1—F21.601 (3)C8—H80.9300
P1—F11.602 (3)C9—H90.9300
P1—F51.606 (3)C10—C111.511 (6)
P1—F41.606 (3)C10—H10A0.9700
P1—F61.608 (2)C10—H10B0.9700
P1—F31.609 (3)C11—H11A0.9700
P2—F9A1.560 (5)C11—H11B0.9700
P2—F11B1.564 (14)C12—C131.376 (6)
P2—F10A1.563 (5)C12—C251.424 (6)
P2—F7A1.600 (6)C13—C141.397 (6)
P2—F81.585 (3)C13—H130.9300
P2—F11A1.609 (5)C14—C151.372 (7)
P2—F12A1.612 (5)C14—H140.9300
P2—F7B1.607 (15)C15—C161.385 (7)
P2—F9B1.608 (14)C15—H150.9300
P2—F10B1.608 (13)C16—C251.415 (6)
P2—F12B1.588 (14)C16—C171.494 (6)
O1—C121.376 (5)C17—C181.476 (7)
O1—C111.438 (5)C18—C191.394 (6)
O2—C241.217 (5)C18—C231.414 (6)
O3—C221.364 (5)C19—C201.382 (7)
O3—C261.427 (5)C19—H190.9300
O4—C171.225 (5)C20—C211.382 (7)
N1—C51.351 (5)C20—H200.9300
N1—C11.351 (5)C21—C221.415 (6)
N2—C71.326 (5)C21—H210.9300
N2—C91.384 (5)C22—C231.403 (6)
N2—C61.471 (5)C23—C241.506 (6)
N3—C71.321 (5)C24—C251.505 (6)
N3—C81.386 (5)C26—C271.510 (7)
N3—C101.479 (5)C26—H26A0.9700
N4—C281.122 (6)C26—H26B0.9700
N5—C301.129 (6)C27—H27A0.9700
C1—C21.379 (6)C27—H27B0.9700
C1—H10.9300C28—C291.476 (6)
C2—C31.398 (6)C29—H29A0.9600
C2—H20.9300C29—H29B0.9600
C3—C41.377 (6)C29—H29C0.9600
C3—H30.9300C30—C311.467 (7)
C4—C51.381 (6)C31—H31A0.9600
C4—H40.9300C31—H31B0.9600
C5—C61.522 (6)C31—H31C0.9600
N4—Ag1—N5127.22 (14)N2—C6—C5114.4 (3)
N4—Ag1—N1119.44 (13)N2—C6—H6A108.6
N5—Ag1—N1113.27 (13)C5—C6—H6A108.6
F2—P1—F190.22 (15)N2—C6—H6B108.6
F2—P1—F5179.42 (16)C5—C6—H6B108.6
F1—P1—F589.84 (15)H6A—C6—H6B107.6
F2—P1—F489.66 (15)N3—C7—N2109.3 (4)
F1—P1—F4179.30 (16)N3—C7—H7125.4
F5—P1—F490.28 (15)N2—C7—H7125.4
F2—P1—F690.03 (14)C9—C8—N3106.5 (4)
F1—P1—F690.27 (15)C9—C8—H8126.8
F5—P1—F689.39 (14)N3—C8—H8126.8
F4—P1—F690.42 (15)C8—C9—N2107.4 (4)
F2—P1—F390.77 (14)C8—C9—H9126.3
F1—P1—F389.85 (15)N2—C9—H9126.3
F5—P1—F389.81 (14)N3—C10—C11114.1 (4)
F4—P1—F389.46 (14)N3—C10—H10A108.7
F6—P1—F3179.18 (16)C11—C10—H10A108.7
F9A—P2—F11B148.0 (9)N3—C10—H10B108.7
F9A—P2—F10A90.0 (4)C11—C10—H10B108.7
F11B—P2—F10A64.6 (8)H10A—C10—H10B107.6
F9A—P2—F7A92.0 (3)O1—C11—C10106.2 (4)
F11B—P2—F7A70.3 (8)O1—C11—H11A110.5
F10A—P2—F7A90.5 (4)C10—C11—H11A110.5
F9A—P2—F893.4 (3)O1—C11—H11B110.5
F11B—P2—F8104.5 (9)C10—C11—H11B110.5
F10A—P2—F888.7 (3)H11A—C11—H11B108.7
F7A—P2—F8174.5 (4)C13—C12—O1122.7 (4)
F9A—P2—F11A178.8 (3)C13—C12—C25120.8 (4)
F10A—P2—F11A90.0 (3)O1—C12—C25116.5 (4)
F7A—P2—F11A89.2 (3)C12—C13—C14120.9 (4)
F8—P2—F11A85.4 (2)C12—C13—H13119.5
F9A—P2—F12A92.6 (4)C14—C13—H13119.5
F11B—P2—F12A114.0 (8)C15—C14—C13119.6 (5)
F10A—P2—F12A176.0 (3)C15—C14—H14120.2
F7A—P2—F12A92.5 (4)C13—C14—H14120.2
F8—P2—F12A88.1 (3)C14—C15—C16120.4 (4)
F11A—P2—F12A87.4 (3)C14—C15—H15119.8
F9A—P2—F7B69.7 (8)C16—C15—H15119.8
F11B—P2—F7B94.2 (10)C15—C16—C25121.7 (4)
F10A—P2—F7B98.9 (9)C15—C16—C17118.6 (4)
F8—P2—F7B161.3 (8)C25—C16—C17119.7 (4)
F11A—P2—F7B111.5 (8)O4—C17—C18120.4 (4)
F12A—P2—F7B84.8 (9)O4—C17—C16120.2 (5)
F11B—P2—F9B177.1 (10)C18—C17—C16119.5 (4)
F10A—P2—F9B113.1 (7)C19—C18—C23121.1 (5)
F7A—P2—F9B108.4 (7)C19—C18—C17117.5 (4)
F8—P2—F9B76.8 (7)C23—C18—C17121.4 (4)
F11A—P2—F9B150.1 (8)C20—C19—C18119.4 (4)
F12A—P2—F9B68.5 (7)C20—C19—H19120.3
F7B—P2—F9B84.4 (9)C18—C19—H19120.3
F9A—P2—F10B62.8 (6)C19—C20—C21121.5 (4)
F11B—P2—F10B90.8 (9)C19—C20—H20119.3
F7A—P2—F10B92.6 (7)C21—C20—H20119.3
F8—P2—F10B89.2 (6)C20—C21—C22119.4 (5)
F11A—P2—F10B117.2 (7)C20—C21—H21120.3
F12A—P2—F10B155.0 (7)C22—C21—H21120.3
F7B—P2—F10B90.0 (11)O3—C22—C23119.2 (4)
F9B—P2—F10B86.7 (9)O3—C22—C21120.5 (4)
F9A—P2—F12B115.1 (7)C23—C22—C21120.3 (4)
F11B—P2—F12B88.7 (10)C22—C23—C18118.3 (4)
F10A—P2—F12B153.3 (7)C22—C23—C24121.9 (4)
F7A—P2—F12B80.1 (8)C18—C23—C24119.8 (4)
F8—P2—F12B98.3 (7)O2—C24—C25121.3 (4)
F11A—P2—F12B65.1 (7)O2—C24—C23120.4 (4)
F7B—P2—F12B82.6 (11)C25—C24—C23118.3 (4)
F9B—P2—F12B93.7 (9)C16—C25—C12116.6 (4)
F10B—P2—F12B172.5 (10)C16—C25—C24121.0 (4)
C12—O1—C11118.6 (3)C12—C25—C24122.4 (4)
C22—O3—C26117.3 (3)O3—C26—C27107.0 (4)
C5—N1—C1118.0 (4)O3—C26—H26A110.3
C5—N1—Ag1125.6 (3)C27—C26—H26A110.3
C1—N1—Ag1116.1 (3)O3—C26—H26B110.3
C7—N2—C9108.1 (3)C27—C26—H26B110.3
C7—N2—C6126.9 (4)H26A—C26—H26B108.6
C9—N2—C6124.8 (3)C26—C27—Br1111.7 (3)
C7—N3—C8108.7 (4)C26—C27—H27A109.3
C7—N3—C10124.6 (3)Br1—C27—H27A109.3
C8—N3—C10126.6 (3)C26—C27—H27B109.3
C28—N4—Ag1173.0 (4)Br1—C27—H27B109.3
C30—N5—Ag1169.3 (4)H27A—C27—H27B107.9
N1—C1—C2123.0 (4)N4—C28—C29179.2 (5)
N1—C1—H1118.5C28—C29—H29A109.5
C2—C1—H1118.5C28—C29—H29B109.5
C1—C2—C3118.3 (4)H29A—C29—H29B109.5
C1—C2—H2120.8C28—C29—H29C109.5
C3—C2—H2120.8H29A—C29—H29C109.5
C4—C3—C2118.9 (4)H29B—C29—H29C109.5
C4—C3—H3120.5N5—C30—C31178.0 (5)
C2—C3—H3120.5C30—C31—H31A109.5
C3—C4—C5119.7 (4)C30—C31—H31B109.5
C3—C4—H4120.2H31A—C31—H31B109.5
C5—C4—H4120.2C30—C31—H31C109.5
N1—C5—C4122.1 (4)H31A—C31—H31C109.5
N1—C5—C6113.6 (4)H31B—C31—H31C109.5
C4—C5—C6124.3 (4)
N4—Ag1—N1—C59.4 (4)C15—C16—C17—O44.4 (7)
N5—Ag1—N1—C5167.7 (3)C25—C16—C17—O4173.9 (4)
N4—Ag1—N1—C1164.6 (3)C15—C16—C17—C18175.1 (4)
N5—Ag1—N1—C118.2 (3)C25—C16—C17—C186.6 (6)
N5—Ag1—N4—C28129 (3)O4—C17—C18—C193.7 (7)
N1—Ag1—N4—C2855 (3)C16—C17—C18—C19175.8 (4)
N4—Ag1—N5—C3096 (2)O4—C17—C18—C23175.9 (4)
N1—Ag1—N5—C3087 (2)C16—C17—C18—C234.6 (6)
C5—N1—C1—C20.4 (6)C23—C18—C19—C200.2 (7)
Ag1—N1—C1—C2174.1 (3)C17—C18—C19—C20179.8 (4)
N1—C1—C2—C31.5 (7)C18—C19—C20—C210.7 (7)
C1—C2—C3—C41.6 (6)C19—C20—C21—C220.3 (7)
C2—C3—C4—C50.1 (6)C26—O3—C22—C23173.8 (4)
C1—N1—C5—C42.2 (6)C26—O3—C22—C215.6 (6)
Ag1—N1—C5—C4171.7 (3)C20—C21—C22—O3179.9 (4)
C1—N1—C5—C6175.5 (4)C20—C21—C22—C230.5 (6)
Ag1—N1—C5—C610.5 (5)O3—C22—C23—C18179.7 (4)
C3—C4—C5—N12.1 (6)C21—C22—C23—C180.9 (6)
C3—C4—C5—C6175.4 (4)O3—C22—C23—C242.1 (6)
C7—N2—C6—C566.6 (6)C21—C22—C23—C24177.3 (4)
C9—N2—C6—C5118.8 (4)C19—C18—C23—C220.6 (6)
N1—C5—C6—N2177.8 (4)C17—C18—C23—C22179.0 (4)
C4—C5—C6—N20.1 (6)C19—C18—C23—C24177.7 (4)
C8—N3—C7—N20.9 (5)C17—C18—C23—C242.7 (6)
C10—N3—C7—N2178.2 (4)C22—C23—C24—O23.8 (7)
C9—N2—C7—N30.5 (5)C18—C23—C24—O2174.5 (4)
C6—N2—C7—N3175.8 (4)C22—C23—C24—C25179.1 (4)
C7—N3—C8—C91.0 (5)C18—C23—C24—C252.6 (6)
C10—N3—C8—C9178.2 (4)C15—C16—C25—C122.5 (6)
N3—C8—C9—N20.7 (5)C17—C16—C25—C12175.8 (4)
C7—N2—C9—C80.1 (5)C15—C16—C25—C24175.0 (4)
C6—N2—C9—C8175.3 (4)C17—C16—C25—C246.7 (6)
C7—N3—C10—C11137.8 (4)C13—C12—C25—C162.2 (6)
C8—N3—C10—C1145.3 (6)O1—C12—C25—C16176.1 (4)
C12—O1—C11—C10169.7 (3)C13—C12—C25—C24175.2 (4)
N3—C10—C11—O168.5 (5)O1—C12—C25—C246.5 (6)
C11—O1—C12—C130.9 (6)O2—C24—C25—C16172.3 (4)
C11—O1—C12—C25179.2 (4)C23—C24—C25—C164.8 (6)
O1—C12—C13—C14177.9 (4)O2—C24—C25—C125.0 (7)
C25—C12—C13—C140.4 (7)C23—C24—C25—C12177.9 (4)
C12—C13—C14—C151.4 (7)C22—O3—C26—C27178.1 (4)
C13—C14—C15—C161.1 (7)O3—C26—C27—Br169.2 (4)
C14—C15—C16—C250.8 (7)Ag1—N4—C28—C29146 (40)
C14—C15—C16—C17177.5 (4)Ag1—N5—C30—C3117 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 imidazole rings and C12–C16/C25 anthraquinone rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26B···Cg3i0.972.983.845 (5)148
C31—H31B···Cg1ii0.963.383.781 (4)108
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C27H23BrN3O4)(C2H3N)2](PF6)2
Mr1013.31
Crystal system, space groupTriclinic, P1
Temperature (K)116
a, b, c (Å)7.961 (3), 12.826 (4), 18.199 (6)
α, β, γ (°)89.034 (14), 88.278 (12), 74.805 (7)
V3)1792.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.706, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
18740, 6327, 5355
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.132, 1.07
No. of reflections6327
No. of parameters554
No. of restraints107
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 1.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ag1—N42.230 (4)Ag1—N12.284 (4)
Ag1—N52.256 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 imidazole rings and C12–C16/C25 anthraquinone rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26B···Cg3i0.972.983.845 (5)148
C31—H31B···Cg1ii0.963.383.781 (4)108
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Schall, O. F., Alcalá, M., Li, Y., Gokel, G. W. & Echegoyen, L. (1992). J. Am. Chem. Soc. 114, 444–451.  CrossRef CAS Web of Science Google Scholar
First citationChiu, P. L., Lai, C. L., Chang, C. F., Hu, C. H. & Lee, H. M. (2005). Organometallics, 24, 6169–6178.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2001). Thin Solid Films, 398, 82–86.  Web of Science CrossRef Google Scholar
First citationMahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2002). Thin Solid Films, 420, 392–397.  Web of Science CrossRef Google Scholar
First citationMascal, M., Kerdelhué, J. L., Blake, A. J., Cooke, P. A., Mortimer, R. J. & Teat, S. J. (2000). Eur. J. Inorg. Chem. pp. 485–490.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds