organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(6-{2-[6-(2,2-Di­methyl­propanamido)-2-pyrid­yl]eth­yl}-2-pyrid­yl)-2,2-di­methyl­propanamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2010; accepted 15 June 2010; online 10 July 2010)

The title compound, C22H30N4O2, lies about a crystallographic inversion center. The whole mol­ecule is disordered over two positions with a refined occupancy ratio of 0.636 (10):0.364 (10). The pyridine rings are approximately planar, with maximum deviations of 0.033 (10) and 0.063 (17) Å for the major and minor components, respectively. The mean planes of the pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups attached to them. In the crystal packing, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the ab plane.

Related literature

For the importance of dicarb­oxy­lic acids and their derivatives, see: Garcia-Tellado et al. (1990[Garcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc. 112, 7393-7394.]); Geib et al. (1993[Geib, S. J., Vicent, C., Fan, E. & Hamilton, A. D. (1993). Angew. Chem. Int. Ed. Engl. 32, 119-121.]); Karle et al. (1997[Karle, I. L., Ranganathan, D. & Haridas, V. (1997). J. Am. Chem. Soc. 119, 2777-278.]); Goswami, Dey, Fun et al. (2005[Goswami, S., Dey, S., Fun, H.-K., Anjum, S. & Rahman, A.-U. (2005). Tetrahedron Lett. 46, 7187-7191.]); Goswami et al. (2006[Goswami, S., Jana, S., Dey, S., Razak, I. A. & Fun, H.-K. (2006). Supramol. Chem. 18, 571-574.], 2008[Goswami, S., Jana, S. & Fun, H.-K. (2008). CrystEngComm, 10, 507-517.]). For a related structure, see: Goswami, Dey, Chantra­promma et al. (2005[Goswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61, o105-o107.]). For the preparation, see: Yamada & Momose (1981[Yamada, Y. & Momose, D. (1981). Chem. Lett. pp. 1277-1278.]); Goswami et al. (1989[Goswami, S., Hamilton, A. D. & Van Engen, D. (1989). J. Am. Chem. Soc. 111, 3425-3426.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30N4O2

  • Mr = 382.50

  • Orthorhombic, P b c a

  • a = 11.7933 (3) Å

  • b = 10.3648 (2) Å

  • c = 17.8667 (4) Å

  • V = 2183.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.992

  • 36712 measured reflections

  • 3221 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.161

  • S = 1.03

  • 3221 reflections

  • 256 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10A—H10C⋯O1Ai 0.96 2.46 3.409 (12) 171
N2A—H2AB⋯O1Ai 0.86 2.26 3.100 (16) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The recognition of biologically important substrates like dicarboxylic acids by bis-pyridine amide is one of the most important areas of research in supramolecular chemistry as well as in the design of materials through new crystal engineering (Garcia-Tellado et al., 1990; Geib et al., 1993; Karle et al., 1997; Goswami, Dey, Fun et al., 2005; Goswami et al., 2006, 2008). The title compound can be used as receptor for dicarboxylic acids with the ethylene group acting as a spacer.

The title compound, (Fig. 1), lies about a crystallographic inversion center (symmetry code = -x, -y + 1, -z + 1). The molecule has a whole-molecule disorder over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the molecule, the pyridine rings (C1–C5/N1) are approximately planar with the maximum deviations of 0.033 (10) Å at N1A and 0.063 (17) Å at C1B for the major and minor components, respectively. The mean planes of these pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups (N2/C6/O1) attached to them. This crystal structure is closely related to that of N-[6-(hydroxymethyl)pyridin-2-yl]-2,2-dimethylpropanamide (Goswami, Dey, Chantrapromma et al., 2005).

In the crystal packing (Fig. 2 & Fig. 3), intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the ab plane.

Related literature top

For the importance of dicarboxylic acids and their derivatives, see: Garcia-Tellado et al. (1990); Geib et al. (1993); Karle et al. (1997); Goswami, Dey, Fun et al. (2005); Goswami et al. (2006, 2008). For a related structure, see: Goswami, Dey, Chantrapromma et al. (2005). For the preparation, see: Yamada & Momose (1981); Goswami et al. (1989).

Experimental top

The title compound is synthesized by a known reaction procedure (Yamada & Momose, 1981; Goswami et al., 1989) as follows. In a round-bottomed flask, N-(6-bromomethyl-pyridine-2-yl)-2,2-dimethyl propionamide (500 mg, 1.84 mmol) and Co(PPh3)3Cl (1.76 g, 2 mmol) was kept under nitrogen atmosphere. Dry, degassed benzene (50 ml) was added dropwise to the flask maintaining at 0–15 °C temperature around the flask. The reaction was continued for half an hour. The deep green colour turns blue, an indication of the completion of the reaction. Then benzene was evaporated and the product extracted with CHCl3. The solvent was then evaporated and purified by silica gel (100–200 mesh) column chromatography using ethyl acetate and petroleum ether (1:4) as eluent. Single crystals were grown by slow evaporation of a chloroform-methanol (8:2) solution of 1,2-bis(2-pivaloylamino-6-pyridyl)ethane (m.p. = 489–491 K, 194 mg, yield = 55%).

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93 to 0.97 Å; N–H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C). Rigid bond restraint (SAME) was applied to the pyridine ring. The whole molecule is disordered over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the final difference Fourier map, the highest peak and the deepest hole are 0.66 and 0.37 Å from H11D and H11A, respectively.

Structure description top

The recognition of biologically important substrates like dicarboxylic acids by bis-pyridine amide is one of the most important areas of research in supramolecular chemistry as well as in the design of materials through new crystal engineering (Garcia-Tellado et al., 1990; Geib et al., 1993; Karle et al., 1997; Goswami, Dey, Fun et al., 2005; Goswami et al., 2006, 2008). The title compound can be used as receptor for dicarboxylic acids with the ethylene group acting as a spacer.

The title compound, (Fig. 1), lies about a crystallographic inversion center (symmetry code = -x, -y + 1, -z + 1). The molecule has a whole-molecule disorder over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the molecule, the pyridine rings (C1–C5/N1) are approximately planar with the maximum deviations of 0.033 (10) Å at N1A and 0.063 (17) Å at C1B for the major and minor components, respectively. The mean planes of these pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups (N2/C6/O1) attached to them. This crystal structure is closely related to that of N-[6-(hydroxymethyl)pyridin-2-yl]-2,2-dimethylpropanamide (Goswami, Dey, Chantrapromma et al., 2005).

In the crystal packing (Fig. 2 & Fig. 3), intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the ab plane.

For the importance of dicarboxylic acids and their derivatives, see: Garcia-Tellado et al. (1990); Geib et al. (1993); Karle et al. (1997); Goswami, Dey, Fun et al. (2005); Goswami et al. (2006, 2008). For a related structure, see: Goswami, Dey, Chantrapromma et al. (2005). For the preparation, see: Yamada & Momose (1981); Goswami et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atom-numbering scheme. Both major and minor components are shown. Atoms with suffix $ are generated by the symmetry code -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. The two-dimensional networks formed by intermolecular N—H···O and C—H···O hydrogen bonds (dashed lines) parallel to the ab plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional networks. H atoms not involved in intermolecular interactions have been omitted for clarity. Only the major disorder component is shown.
N-(6-{2-[6-(2,2-Dimethylpropanamido)-2-pyridyl]ethyl}-2-pyridyl)-2,2- dimethylpropanamide top
Crystal data top
C22H30N4O2F(000) = 824
Mr = 382.50Dx = 1.163 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2706 reflections
a = 11.7933 (3) Åθ = 2.9–20.5°
b = 10.3648 (2) ŵ = 0.08 mm1
c = 17.8667 (4) ÅT = 296 K
V = 2183.94 (9) Å3Block, colourless
Z = 40.36 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3221 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1316
Tmin = 0.973, Tmax = 0.992k = 1414
36712 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3829P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3221 reflectionsΔρmax = 0.17 e Å3
256 parametersΔρmin = 0.16 e Å3
12 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (10)
Crystal data top
C22H30N4O2V = 2183.94 (9) Å3
Mr = 382.50Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.7933 (3) ŵ = 0.08 mm1
b = 10.3648 (2) ÅT = 296 K
c = 17.8667 (4) Å0.36 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1678 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.992Rint = 0.076
36712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06212 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3221 reflectionsΔρmin = 0.16 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.2767 (12)0.0598 (8)0.3040 (6)0.079 (3)0.636 (10)
N2A0.2446 (11)0.2679 (14)0.3392 (8)0.0476 (18)0.636 (10)
H2AB0.24850.34730.32550.057*0.636 (10)
N1A0.1312 (9)0.3395 (8)0.4318 (5)0.067 (3)0.636 (10)
C1A0.0598 (10)0.3242 (10)0.4903 (5)0.073 (3)0.636 (10)
C2A0.0520 (10)0.2138 (8)0.5303 (5)0.073 (4)0.636 (10)
H2AA0.00770.21090.57340.087*0.636 (10)
C3A0.1097 (10)0.1060 (9)0.5071 (4)0.0587 (19)0.636 (10)
H3AA0.10190.02770.53200.070*0.636 (10)
C4A0.1794 (11)0.1177 (8)0.4459 (6)0.055 (3)0.636 (10)
H4AA0.22260.04800.42970.066*0.636 (10)
C5A0.1845 (7)0.2338 (8)0.4088 (4)0.041 (2)0.636 (10)
C6A0.2935 (10)0.1758 (9)0.2969 (5)0.049 (3)0.636 (10)
C7A0.3538 (9)0.2266 (9)0.2207 (8)0.052 (3)0.636 (10)
C8A0.2636 (6)0.2620 (9)0.1715 (3)0.127 (4)0.636 (10)
H8AA0.21960.18690.15940.191*0.636 (10)
H8AB0.29450.29820.12640.191*0.636 (10)
H8AC0.21600.32470.19550.191*0.636 (10)
C9A0.4357 (6)0.1286 (6)0.1954 (5)0.113 (3)0.636 (10)
H9AA0.39600.05110.18200.169*0.636 (10)
H9AB0.48810.11010.23510.169*0.636 (10)
H9AC0.47640.16050.15280.169*0.636 (10)
C10A0.4251 (6)0.3487 (4)0.2434 (4)0.0838 (18)0.636 (10)
H10A0.46340.38200.20010.126*0.636 (10)
H10B0.48000.32510.28060.126*0.636 (10)
H10C0.37540.41360.26320.126*0.636 (10)
C11A0.0048 (12)0.4445 (9)0.5168 (6)0.146 (4)0.636 (10)
H11A0.08470.42250.51640.175*0.636 (10)
H11B0.01590.45830.56870.175*0.636 (10)
O1B0.304 (2)0.0619 (16)0.3078 (10)0.089 (5)0.364 (10)
N2B0.257 (2)0.254 (2)0.3499 (15)0.050 (4)0.364 (10)
H2BB0.28790.32880.34760.060*0.364 (10)
N1B0.1365 (16)0.3484 (15)0.4367 (9)0.066 (5)0.364 (10)
C1B0.0801 (16)0.3399 (14)0.5017 (7)0.049 (3)0.364 (10)
C2B0.0611 (19)0.2206 (16)0.5319 (7)0.086 (8)0.364 (10)
H2BA0.00900.20850.57040.103*0.364 (10)
C3B0.122 (2)0.1198 (19)0.5029 (11)0.094 (7)0.364 (10)
H3BA0.11990.04150.52830.113*0.364 (10)
C4B0.1855 (19)0.1273 (16)0.4388 (12)0.066 (6)0.364 (10)
H4BA0.22320.05670.41840.079*0.364 (10)
C5B0.1887 (18)0.2479 (16)0.4074 (11)0.064 (5)0.364 (10)
C6B0.2962 (18)0.1758 (18)0.2901 (10)0.062 (6)0.364 (10)
C7B0.3565 (14)0.2338 (18)0.2344 (14)0.053 (4)0.364 (10)
C8B0.4674 (12)0.272 (3)0.2505 (7)0.187 (10)0.364 (10)
H8BA0.46640.33720.28840.281*0.364 (10)
H8BB0.50220.30510.20600.281*0.364 (10)
H8BC0.50970.19860.26810.281*0.364 (10)
C9B0.2959 (17)0.340 (2)0.1898 (11)0.210 (12)0.364 (10)
H9BA0.28710.41520.22070.314*0.364 (10)
H9BB0.22270.30980.17430.314*0.364 (10)
H9BC0.34020.36170.14650.314*0.364 (10)
C10B0.3652 (19)0.1244 (13)0.1673 (7)0.145 (7)0.364 (10)
H10D0.40150.16160.12430.218*0.364 (10)
H10E0.29040.09610.15400.218*0.364 (10)
H10F0.40880.05220.18470.218*0.364 (10)
C11B0.0373 (8)0.4652 (12)0.5286 (4)0.060 (3)0.364 (10)
H11C0.10120.52000.54120.072*0.364 (10)
H11D0.00620.45140.57400.072*0.364 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.128 (6)0.036 (3)0.072 (3)0.004 (3)0.017 (3)0.009 (2)
N2A0.055 (3)0.041 (4)0.047 (3)0.007 (2)0.015 (3)0.003 (3)
N1A0.081 (5)0.049 (4)0.070 (5)0.001 (3)0.044 (4)0.002 (3)
C1A0.076 (5)0.076 (4)0.065 (5)0.005 (3)0.020 (4)0.016 (3)
C2A0.077 (5)0.071 (6)0.070 (6)0.011 (4)0.025 (4)0.001 (4)
C3A0.073 (4)0.060 (3)0.042 (3)0.007 (3)0.001 (3)0.008 (2)
C4A0.074 (5)0.043 (4)0.048 (4)0.007 (3)0.006 (3)0.016 (3)
C5A0.042 (3)0.040 (4)0.041 (3)0.008 (3)0.004 (3)0.006 (3)
C6A0.060 (5)0.043 (5)0.044 (3)0.003 (3)0.001 (3)0.014 (3)
C7A0.069 (4)0.046 (3)0.043 (5)0.007 (2)0.013 (3)0.004 (3)
C8A0.085 (3)0.235 (10)0.062 (2)0.026 (5)0.013 (3)0.065 (4)
C9A0.106 (4)0.073 (3)0.159 (6)0.004 (3)0.073 (4)0.025 (3)
C10A0.094 (4)0.071 (3)0.086 (3)0.021 (2)0.025 (3)0.000 (2)
C11A0.181 (9)0.091 (4)0.165 (8)0.045 (7)0.105 (6)0.014 (6)
O1B0.129 (11)0.062 (7)0.074 (6)0.041 (6)0.040 (6)0.027 (5)
N2B0.069 (7)0.025 (3)0.056 (7)0.001 (4)0.002 (4)0.010 (4)
N1B0.085 (9)0.054 (7)0.060 (7)0.018 (5)0.008 (6)0.015 (5)
C1B0.061 (5)0.059 (5)0.027 (3)0.004 (4)0.006 (3)0.005 (3)
C2B0.098 (13)0.129 (18)0.030 (6)0.019 (10)0.008 (6)0.015 (7)
C3B0.118 (14)0.079 (9)0.086 (10)0.020 (8)0.007 (8)0.038 (7)
C4B0.062 (8)0.084 (13)0.051 (7)0.021 (8)0.014 (5)0.013 (8)
C5B0.071 (9)0.055 (7)0.068 (9)0.035 (6)0.004 (7)0.013 (6)
C6B0.059 (9)0.059 (10)0.068 (8)0.028 (7)0.002 (6)0.039 (6)
C7B0.044 (5)0.083 (8)0.032 (6)0.021 (5)0.003 (3)0.019 (4)
C8B0.096 (10)0.37 (3)0.095 (7)0.108 (14)0.009 (7)0.006 (14)
C9B0.203 (19)0.23 (2)0.196 (17)0.135 (15)0.127 (15)0.154 (15)
C10B0.218 (17)0.124 (8)0.094 (7)0.057 (11)0.095 (10)0.047 (6)
C11B0.063 (4)0.098 (9)0.019 (2)0.020 (4)0.000 (3)0.010 (3)
Geometric parameters (Å, º) top
O1A—C6A1.225 (11)O1B—C6B1.23 (2)
N2A—C6A1.348 (17)N2B—C5B1.31 (3)
N2A—C5A1.473 (14)N2B—C6B1.42 (3)
N2A—H2AB0.8600N2B—H2BB0.8600
N1A—C5A1.328 (7)N1B—C5B1.318 (13)
N1A—C1A1.352 (7)N1B—C1B1.341 (12)
C1A—C2A1.353 (8)C1B—C2B1.368 (13)
C1A—C11A1.536 (13)C1B—C11B1.47 (2)
C2A—C3A1.372 (7)C2B—C3B1.368 (13)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.374 (8)C3B—C4B1.372 (13)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.375 (7)C4B—C5B1.372 (13)
C4A—H4AA0.9300C4B—H4BA0.9300
C6A—C7A1.624 (14)C6B—C7B1.36 (3)
C7A—C8A1.429 (14)C7B—C8B1.39 (2)
C7A—C9A1.473 (12)C7B—C9B1.54 (2)
C7A—C10A1.572 (12)C7B—C10B1.65 (2)
C8A—H8AA0.9600C8B—H8BA0.9600
C8A—H8AB0.9600C8B—H8BB0.9600
C8A—H8AC0.9600C8B—H8BC0.9600
C9A—H9AA0.9600C9B—H9BA0.9600
C9A—H9AB0.9600C9B—H9BB0.9600
C9A—H9AC0.9600C9B—H9BC0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—C11Ai1.302 (17)C11B—C11Bi1.530 (19)
C11A—H11A0.9700C11B—H11C0.9700
C11A—H11B0.9700C11B—H11D0.9700
C6A—N2A—C5A120.6 (11)C5B—N2B—C6B140 (2)
C6A—N2A—H2AB119.7C5B—N2B—H2BB109.9
C5A—N2A—H2AB119.7C6B—N2B—H2BB109.9
C5A—N1A—C1A116.0 (7)C5B—N1B—C1B121.6 (13)
N1A—C1A—C2A123.4 (8)N1B—C1B—C2B118.8 (13)
N1A—C1A—C11A116.9 (8)N1B—C1B—C11B113.3 (11)
C2A—C1A—C11A119.4 (8)C2B—C1B—C11B127.7 (12)
C1A—C2A—C3A119.7 (8)C1B—C2B—C3B117.1 (14)
C1A—C2A—H2AA120.2C1B—C2B—H2BA121.5
C3A—C2A—H2AA120.2C3B—C2B—H2BA121.5
C2A—C3A—C4A117.8 (8)C2B—C3B—C4B124.0 (14)
C2A—C3A—H3AA121.1C2B—C3B—H3BA118.0
C4A—C3A—H3AA121.1C4B—C3B—H3BA118.0
C3A—C4A—C5A119.1 (7)C5B—C4B—C3B114.1 (13)
C3A—C4A—H4AA120.4C5B—C4B—H4BA123.0
C5A—C4A—H4AA120.4C3B—C4B—H4BA123.0
N1A—C5A—C4A123.5 (6)N2B—C5B—N1B124.3 (18)
N1A—C5A—N2A106.9 (8)N2B—C5B—C4B112.4 (17)
C4A—C5A—N2A129.6 (8)N1B—C5B—C4B123.0 (14)
O1A—C6A—N2A124.5 (10)O1B—C6B—C7B125.0 (17)
O1A—C6A—C7A118.5 (10)O1B—C6B—N2B112 (2)
N2A—C6A—C7A115.3 (9)C7B—C6B—N2B118 (2)
C8A—C7A—C9A118.5 (10)C6B—C7B—C8B118 (2)
C8A—C7A—C10A110.5 (7)C6B—C7B—C9B116.9 (15)
C9A—C7A—C10A106.5 (7)C8B—C7B—C9B109.9 (16)
C8A—C7A—C6A105.8 (8)C6B—C7B—C10B105.0 (15)
C9A—C7A—C6A108.6 (7)C8B—C7B—C10B106.5 (14)
C10A—C7A—C6A106.3 (9)C9B—C7B—C10B98.3 (16)
C7A—C8A—H8AA109.5C7B—C8B—H8BA109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AC109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
C7A—C9A—H9AA109.5C7B—C9B—H9BA109.5
C7A—C9A—H9AB109.5C7B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AC109.5C7B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C7A—C10A—H10A109.5C7B—C10B—H10D109.5
C7A—C10A—H10B109.5C7B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C7A—C10A—H10C109.5C7B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C11Ai—C11A—C1A122.2 (9)C1B—C11B—C11Bi113.2 (10)
C11Ai—C11A—H11A106.8C1B—C11B—H11C108.9
C1A—C11A—H11A106.8C11Bi—C11B—H11C108.9
C11Ai—C11A—H11B106.8C1B—C11B—H11D108.9
C1A—C11A—H11B106.8C11Bi—C11B—H11D108.9
H11A—C11A—H11B106.6H11C—C11B—H11D107.8
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10A—H10C···O1Aii0.962.463.409 (12)171
N2A—H2AB···O1Aii0.862.263.100 (16)168
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H30N4O2
Mr382.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.7933 (3), 10.3648 (2), 17.8667 (4)
V3)2183.94 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
36712, 3221, 1678
Rint0.076
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.161, 1.03
No. of reflections3221
No. of parameters256
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10A—H10C···O1Ai0.962.463.409 (12)170.6
N2A—H2AB···O1Ai0.862.263.100 (16)167.5
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). NKD, DS and SG thank the DST [SR/S1/OC-13/2005] and CSIR [01 (1913)/04/EMR-II], Government of India, for financial support. WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. NKD also thanks the UGC, Government of India, for a Research Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc. 112, 7393–7394.  CSD CrossRef CAS Web of Science Google Scholar
First citationGeib, S. J., Vicent, C., Fan, E. & Hamilton, A. D. (1993). Angew. Chem. Int. Ed. Engl. 32, 119–121.  CSD CrossRef Web of Science Google Scholar
First citationGoswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Dey, S., Fun, H.-K., Anjum, S. & Rahman, A.-U. (2005). Tetrahedron Lett. 46, 7187–7191.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoswami, S., Hamilton, A. D. & Van Engen, D. (1989). J. Am. Chem. Soc. 111, 3425–3426.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Jana, S., Dey, S., Razak, I. A. & Fun, H.-K. (2006). Supramol. Chem. 18, 571–574.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoswami, S., Jana, S. & Fun, H.-K. (2008). CrystEngComm, 10, 507–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarle, I. L., Ranganathan, D. & Haridas, V. (1997). J. Am. Chem. Soc. 119, 2777–278.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, Y. & Momose, D. (1981). Chem. Lett. pp. 1277–1278.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds