organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzimidazol-2-yl)-4,6-di­chloro­phenol

aHunan Yongzhou Vocational College, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: yzzyhll@126.com

(Received 1 July 2010; accepted 13 July 2010; online 17 July 2010)

The title compound, C13H8Cl2N2O, was prepared by the reaction of 3,5-dichloro-2-hy­droxy­benzaldehyde with 1,2-diamino­benzene in methanol at ambient temperature. The title mol­ecule is essentially planar, the mean deviation from the plane of the non-H atoms being 0.037 (2) Å. There is an intra­molecular O—H⋯N hydrogen bond in the mol­ecule. In the crystal, symmetry-related mol­ecules are linked through N—H⋯O hydrogen bonds, forming polymeric chains propagating in [001]. The chains are linked by ππ inter­actions involving the dichloro­phenol ring and the benzoimidazole ring system [centroid–centroid distances = 3.535 (2) and 3.724 (2) Å].

Related literature

For the preparation and crystal structures of some Schiff bases bearing a C=N double bond, see: Jeseentharani et al. (2010[Jeseentharani, V., Selvakumar, J., Dayalan, A., Varghese, B. & Nagaraja, K. S. (2010). J. Mol. Struct. 966, 122-128.]); Hamaker et al. (2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]); Tanaka et al. (2010[Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449-452.]); Tunç et al. (2009[Tunç, T., Sarı, M., Sadıkoğlu, M. & Büyükgüngör, O. (2009). J. Chem. Crystallogr. 39, 672-676.]); Khalaji et al. (2010[Khalaji, A. D., Chermahini, A. N., Fejfarova, K. & Dusek, M. (2010). Struct. Chem. 21, 153-157.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2N2O

  • Mr = 279.11

  • Monoclinic, P 21 /c

  • a = 11.850 (3) Å

  • b = 7.446 (3) Å

  • c = 13.947 (2) Å

  • β = 104.261 (3)°

  • V = 1192.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 298 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.911

  • 6117 measured reflections

  • 2562 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.03

  • 2562 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.85 2.582 (2) 148
N1—H1A⋯O1i 0.90 (3) 2.39 (2) 3.145 (2) 143 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation reaction of aldehydes with primary amines readily leads to the formation of Schiff bases bearing a C=N double bond (Jeseentharani et al., 2010; Hamaker et al., 2010; Tanaka et al., 2010; Tunç et al., 2009; Khalaji et al., 2010). Herein, we report on the structure of the title compound, the unexpected result of the Schiff base condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde with 1,2-diaminobenzene.

The title molecule (Fig. 1) is essentially planar, with the mean deviation from the plane of all the non-H atoms being 0.037 (2) Å. There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule, as shown in Fig. 1. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal symmetry related molecules are linked through an intermolecular N—H···O hydrogen bond to form polymer chains propagating in [001] (Table 1 and Fig. 2). These chains are linked via ππ stacking interactions involving rings N1/N2/C7-C9 and C1-C6 [symmetry operation: 2-x, 2-y, 1-y], with a centroid-to-centroid distance of 3.535 (2) Å, and rings C1-C6 and C8-C13 [symmetry code: 2-x, 1-y, 1-z], with a centroid-to-centroid distance of 3.724 (2)Å.

Related literature top

For the preparation and crystal structures of some Schiff bases bearing a C N double bond, see: Jeseentharani et al. (2010); Hamaker et al. (2010); Tanaka et al. (2010); Tunç et al. (2009); Khalaji et al. (2010). For standard bond distances, see: Allen et al. (1987).

Experimental top

3,5-Dichloro-2-hydroxybenzaldehyde (1 mmol, 0.19 g) and 1,2-diaminobenzene (1 mmol, 0.11 g) were dissolved in methanol (30 ml). The mixture was stirred for 30 mins. at RT to give a yellow solution. Yellow single crystals were obtained by slow evaporation of the solution in air.

Refinement top

Atom H1A was located in a difference Fourier map and its positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å2. The remaining H-atoms were positioned geometrically and refined as riding: C—H = 0.93 Å, O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

The condensation reaction of aldehydes with primary amines readily leads to the formation of Schiff bases bearing a C=N double bond (Jeseentharani et al., 2010; Hamaker et al., 2010; Tanaka et al., 2010; Tunç et al., 2009; Khalaji et al., 2010). Herein, we report on the structure of the title compound, the unexpected result of the Schiff base condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde with 1,2-diaminobenzene.

The title molecule (Fig. 1) is essentially planar, with the mean deviation from the plane of all the non-H atoms being 0.037 (2) Å. There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule, as shown in Fig. 1. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal symmetry related molecules are linked through an intermolecular N—H···O hydrogen bond to form polymer chains propagating in [001] (Table 1 and Fig. 2). These chains are linked via ππ stacking interactions involving rings N1/N2/C7-C9 and C1-C6 [symmetry operation: 2-x, 2-y, 1-y], with a centroid-to-centroid distance of 3.535 (2) Å, and rings C1-C6 and C8-C13 [symmetry code: 2-x, 1-y, 1-z], with a centroid-to-centroid distance of 3.724 (2)Å.

For the preparation and crystal structures of some Schiff bases bearing a C N double bond, see: Jeseentharani et al. (2010); Hamaker et al. (2010); Tanaka et al. (2010); Tunç et al. (2009); Khalaji et al. (2010). For standard bond distances, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O-H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b-axis. The O-H···N and N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol top
Crystal data top
C13H8Cl2N2OF(000) = 568
Mr = 279.11Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1560 reflections
a = 11.850 (3) Åθ = 3.0–26.2°
b = 7.446 (3) ŵ = 0.53 mm1
c = 13.947 (2) ÅT = 298 K
β = 104.261 (3)°Block, yellow
V = 1192.7 (6) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2562 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1512
Tmin = 0.897, Tmax = 0.911k = 99
6117 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
2562 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C13H8Cl2N2OV = 1192.7 (6) Å3
Mr = 279.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.850 (3) ŵ = 0.53 mm1
b = 7.446 (3) ÅT = 298 K
c = 13.947 (2) Å0.21 × 0.20 × 0.18 mm
β = 104.261 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2562 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1810 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.911Rint = 0.035
6117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2562 reflectionsΔρmin = 0.23 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19596 (6)0.99614 (9)0.79805 (4)0.0505 (2)
Cl21.37522 (5)0.87011 (11)0.48582 (5)0.0602 (3)
N10.91704 (15)0.6598 (3)0.37972 (14)0.0350 (4)
N20.85158 (15)0.7146 (3)0.51409 (13)0.0361 (4)
O10.98220 (14)0.8474 (2)0.67436 (12)0.0469 (4)
H10.92400.80280.63780.070*
C11.05692 (18)0.7881 (3)0.52982 (15)0.0312 (5)
C21.06961 (18)0.8491 (3)0.62790 (16)0.0337 (5)
C31.1788 (2)0.9158 (3)0.67846 (15)0.0345 (5)
C41.27187 (19)0.9217 (3)0.63599 (16)0.0389 (5)
H41.34340.96630.67130.047*
C51.25768 (19)0.8605 (3)0.53975 (17)0.0376 (5)
C61.15119 (19)0.7967 (3)0.48692 (16)0.0360 (5)
H61.14230.75900.42190.043*
C70.94248 (18)0.7206 (3)0.47531 (15)0.0328 (5)
C80.79936 (19)0.6132 (3)0.35518 (16)0.0352 (5)
C90.75956 (18)0.6484 (3)0.44004 (17)0.0365 (5)
C100.6424 (2)0.6198 (4)0.43936 (19)0.0489 (7)
H100.61470.64400.49490.059*
C110.5702 (2)0.5549 (4)0.3542 (2)0.0584 (8)
H110.49220.53460.35200.070*
C120.6117 (2)0.5182 (4)0.2698 (2)0.0596 (8)
H120.56040.47300.21350.071*
C130.7263 (2)0.5474 (3)0.26834 (19)0.0485 (6)
H130.75320.52440.21230.058*
H1A0.968 (2)0.649 (4)0.342 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0599 (5)0.0604 (4)0.0299 (3)0.0096 (3)0.0084 (3)0.0027 (3)
Cl20.0373 (4)0.0907 (6)0.0589 (4)0.0105 (3)0.0236 (3)0.0014 (4)
N10.0306 (10)0.0409 (11)0.0340 (10)0.0020 (8)0.0090 (8)0.0018 (8)
N20.0306 (10)0.0451 (12)0.0341 (10)0.0002 (9)0.0106 (8)0.0037 (8)
O10.0365 (9)0.0717 (13)0.0367 (9)0.0072 (8)0.0171 (7)0.0077 (8)
C10.0297 (11)0.0315 (12)0.0326 (11)0.0013 (9)0.0085 (9)0.0032 (9)
C20.0327 (12)0.0374 (13)0.0326 (11)0.0040 (9)0.0112 (9)0.0065 (9)
C30.0384 (13)0.0367 (13)0.0283 (11)0.0003 (10)0.0077 (9)0.0038 (9)
C40.0318 (13)0.0438 (14)0.0384 (12)0.0037 (10)0.0034 (10)0.0046 (10)
C50.0303 (12)0.0433 (14)0.0409 (13)0.0004 (10)0.0118 (10)0.0048 (10)
C60.0349 (12)0.0411 (14)0.0338 (11)0.0007 (10)0.0123 (10)0.0020 (10)
C70.0331 (12)0.0339 (12)0.0320 (11)0.0028 (10)0.0088 (9)0.0043 (9)
C80.0299 (12)0.0370 (13)0.0382 (12)0.0004 (9)0.0073 (9)0.0048 (10)
C90.0281 (12)0.0399 (13)0.0402 (12)0.0007 (10)0.0058 (10)0.0074 (10)
C100.0343 (13)0.0657 (18)0.0486 (15)0.0014 (12)0.0138 (11)0.0071 (12)
C110.0297 (13)0.082 (2)0.0626 (18)0.0054 (14)0.0087 (13)0.0066 (15)
C120.0426 (16)0.075 (2)0.0530 (16)0.0102 (14)0.0035 (13)0.0045 (14)
C130.0425 (15)0.0583 (17)0.0435 (14)0.0053 (13)0.0082 (11)0.0039 (12)
Geometric parameters (Å, º) top
Cl1—C31.736 (2)C4—C51.388 (3)
Cl2—C51.740 (2)C4—H40.9300
N1—C71.370 (3)C5—C61.379 (3)
N1—C81.395 (3)C6—H60.9300
N1—H1A0.90 (3)C8—C131.393 (3)
N2—C71.320 (3)C8—C91.403 (3)
N2—C91.394 (3)C9—C101.402 (3)
O1—C21.350 (2)C10—C111.369 (4)
O1—H10.8200C10—H100.9300
C1—C61.393 (3)C11—C121.409 (4)
C1—C21.414 (3)C11—H110.9300
C1—C71.470 (3)C12—C131.380 (4)
C2—C31.403 (3)C12—H120.9300
C3—C41.375 (3)C13—H130.9300
C7—N1—C8106.74 (18)C1—C6—H6119.6
C7—N1—H1A125 (2)N2—C7—N1112.43 (19)
C8—N1—H1A128 (2)N2—C7—C1122.80 (19)
C7—N2—C9106.08 (18)N1—C7—C1124.77 (19)
C2—O1—H1109.5C13—C8—N1132.1 (2)
C6—C1—C2119.70 (19)C13—C8—C9122.2 (2)
C6—C1—C7121.93 (19)N1—C8—C9105.67 (19)
C2—C1—C7118.35 (19)N2—C9—C10130.6 (2)
O1—C2—C3118.9 (2)N2—C9—C8109.08 (19)
O1—C2—C1123.35 (19)C10—C9—C8120.3 (2)
C3—C2—C1117.71 (19)C11—C10—C9117.7 (2)
C4—C3—C2122.2 (2)C11—C10—H10121.1
C4—C3—Cl1119.11 (17)C9—C10—H10121.1
C2—C3—Cl1118.67 (17)C10—C11—C12121.4 (2)
C3—C4—C5119.1 (2)C10—C11—H11119.3
C3—C4—H4120.4C12—C11—H11119.3
C5—C4—H4120.4C13—C12—C11121.9 (2)
C6—C5—C4120.4 (2)C13—C12—H12119.0
C6—C5—Cl2120.51 (18)C11—C12—H12119.0
C4—C5—Cl2119.04 (17)C12—C13—C8116.5 (2)
C5—C6—C1120.8 (2)C12—C13—H13121.8
C5—C6—H6119.6C8—C13—H13121.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.852.582 (2)148
N1—H1A···O1i0.90 (3)2.39 (2)3.145 (2)143 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H8Cl2N2O
Mr279.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.850 (3), 7.446 (3), 13.947 (2)
β (°) 104.261 (3)
V3)1192.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.897, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
6117, 2562, 1810
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.03
No. of reflections2562
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.852.582 (2)148
N1—H1A···O1i0.90 (3)2.39 (2)3.145 (2)143 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The author acknowledges Hunan Yongzhou Vocational College for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeseentharani, V., Selvakumar, J., Dayalan, A., Varghese, B. & Nagaraja, K. S. (2010). J. Mol. Struct. 966, 122–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Chermahini, A. N., Fejfarova, K. & Dusek, M. (2010). Struct. Chem. 21, 153–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationTunç, T., Sarı, M., Sadıkoğlu, M. & Büyükgüngör, O. (2009). J. Chem. Crystallogr. 39, 672–676.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds