organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-bromo­phen­yl)-6-r-phenyl-2-oxo­cyclo­hex-3-ene-1-t-carboxyl­ate

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 24 June 2010; accepted 28 June 2010; online 3 July 2010)

In the title compound, C21H19BrO3, the cyclo­hexene ring adopts an envelope conformation, with all substituents equatorial. The plane through its five coplanar atoms makes dihedral angles of 28.88 (10) and 71.94 (10)° with the bromo­benzene and phenyl rings, respectively. The dihedral angle between the latter two rings is 51.49 (15)°. Inter­molecular C—H⋯O hydrogen bonds are found in the crystal structure; a C—H⋯π inter­action is also present.

Related literature

For the synthesis of cyclo­hexenone derivatives, see: Chong et al. (1997[Chong, B.-D., Ji, Y.-I., Oh, S.-S., Yang, J.-D., Baik, W. & Koo, S. (1997). J. Org. Chem. 62, 9323-9325.]); Inokuchi et al. (2001[Inokuchi, T., Okano, M. & Miyamoto, T. (2001). J. Org. Chem. 66, 8059-8063.]). For their applications and for related structures, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19BrO3

  • Mr = 399.26

  • Monoclinic, P 21 /c

  • a = 11.0138 (2) Å

  • b = 13.8197 (4) Å

  • c = 12.1477 (3) Å

  • β = 95.180 (2)°

  • V = 1841.42 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.17 mm−1

  • T = 295 K

  • 0.44 × 0.36 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.444, Tmax = 1.000

  • 8385 measured reflections

  • 3851 independent reflections

  • 3210 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.150

  • S = 1.08

  • 3851 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42⋯O2i 0.93 2.58 3.276 (3) 132
C45—H45⋯O11ii 0.93 2.54 3.288 (4) 138
C1—H1⋯Cgiii 0.98 2.77 3.648 (2) 150
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chong et al. (1997) have reported highly efficient synthesis of methyl-substituted conjugate cyclohexenones. Inokuchi et al. (2001) have reported selective synthesis of cis 4,5-dimethyl-2-cyclohexenone derivatives. Anuradha et al. (2009) have reported a crystal structure of ethyl 6- r-(2-chlorophenyl)-2-oxo-4-phenylcyclohex-3-ene-1- t-carboxylate. Fun et al. (2010) have reported a crystal structure of methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate. In the above two structures the cyclohexene rings adopt envelope conformations.

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a ethoxycarbonyl group at position 1, a bromophenyl group at position 4 and a phenyl group at position 6 of the cyclohexenone ring.

In the title compound, C21H19BrO3, (Fig. 1), the cyclohexene ring adopts an envelope conformation with all substituents equatorial. The plane through the five coplanar atoms C1/C2/C3/C4/C5 makes dihedral angles of 28.88 (10) and 71.94 (10)° with the bromophenyl and benzene rings, respectively. The dihedral angle between the benzene and bromophenyl rings is 51.49 (15)°. C42—H42···O2(-x,-y,-z) and C45—H45···O11(-x, 1/2 + y, 1/2 - z) intermolecular hydrogen bonds are found in the crystal structure. Further, a C1—H1···π(x, 1/2 - y, 1/2 + z) interaction involving the benzene (C41—C46) ring is also found (Fig. 2, Table 1).

Related literature top

For the synthesis of cyclohexenone derivatives, see: Chong et al. (1997); Inokuchi et al. (2001). For their applications and for related structures, see: Anuradha et al. (2009); Fun et al. (2010).

Experimental top

A mixture of benzylidene p-bromoacetophenone (3.03 g, 0.0125 mol), ethyl acetoacetate (2 ml, 0.0125 mol) and sodium ethoxide (1 g, 0.0125 mol) in absolute alcohol (50 ml) was refluxed for 14 h. After cooling, the reaction mixture was neutralized with 0.1 N HCl. It was then extracted with diethyl ether (3x20 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvents removed by rotary vacuum evaporation. A solid mass was obtained which was recrystallized from ethanol. Yield 2 g (55%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp2—H = 0.93, C(methyl)—H = 0.96, C(methylene)—H = 0.97 and C(methine)—H = 0.98 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Chong et al. (1997) have reported highly efficient synthesis of methyl-substituted conjugate cyclohexenones. Inokuchi et al. (2001) have reported selective synthesis of cis 4,5-dimethyl-2-cyclohexenone derivatives. Anuradha et al. (2009) have reported a crystal structure of ethyl 6- r-(2-chlorophenyl)-2-oxo-4-phenylcyclohex-3-ene-1- t-carboxylate. Fun et al. (2010) have reported a crystal structure of methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate. In the above two structures the cyclohexene rings adopt envelope conformations.

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a ethoxycarbonyl group at position 1, a bromophenyl group at position 4 and a phenyl group at position 6 of the cyclohexenone ring.

In the title compound, C21H19BrO3, (Fig. 1), the cyclohexene ring adopts an envelope conformation with all substituents equatorial. The plane through the five coplanar atoms C1/C2/C3/C4/C5 makes dihedral angles of 28.88 (10) and 71.94 (10)° with the bromophenyl and benzene rings, respectively. The dihedral angle between the benzene and bromophenyl rings is 51.49 (15)°. C42—H42···O2(-x,-y,-z) and C45—H45···O11(-x, 1/2 + y, 1/2 - z) intermolecular hydrogen bonds are found in the crystal structure. Further, a C1—H1···π(x, 1/2 - y, 1/2 + z) interaction involving the benzene (C41—C46) ring is also found (Fig. 2, Table 1).

For the synthesis of cyclohexenone derivatives, see: Chong et al. (1997); Inokuchi et al. (2001). For their applications and for related structures, see: Anuradha et al. (2009); Fun et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
Ethyl 4-(4-bromophenyl)-6-r-phenyl-2-oxocyclohex-3-ene-1-t- carboxylate top
Crystal data top
C21H19BrO3F(000) = 816
Mr = 399.26Dx = 1.440 Mg m3
Monoclinic, P21/cMelting point: 359 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 11.0138 (2) ÅCell parameters from 4868 reflections
b = 13.8197 (4) Åθ = 4.9–77.3°
c = 12.1477 (3) ŵ = 3.17 mm1
β = 95.180 (2)°T = 295 K
V = 1841.42 (8) Å3Prism, colourless
Z = 40.44 × 0.36 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3851 independent reflections
Radiation source: Enhance (Cu) X-ray Source3210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 77.5°, θmin = 4.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1712
Tmin = 0.444, Tmax = 1.000l = 1415
8385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.401P]
where P = (Fo2 + 2Fc2)/3
3851 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C21H19BrO3V = 1841.42 (8) Å3
Mr = 399.26Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.0138 (2) ŵ = 3.17 mm1
b = 13.8197 (4) ÅT = 295 K
c = 12.1477 (3) Å0.44 × 0.36 × 0.12 mm
β = 95.180 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3851 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3210 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 1.000Rint = 0.021
8385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
3851 reflectionsΔρmin = 0.61 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br40.27481 (3)0.39721 (4)0.28199 (3)0.1008 (2)
O20.0731 (2)0.01378 (13)0.24548 (16)0.0754 (7)
O110.2865 (2)0.06999 (16)0.46249 (16)0.0814 (7)
O120.3423 (2)0.03049 (16)0.29591 (17)0.0801 (8)
C10.1736 (2)0.13392 (17)0.30076 (18)0.0551 (7)
C20.0916 (3)0.07028 (17)0.22341 (19)0.0585 (7)
C30.0292 (2)0.11697 (16)0.12766 (19)0.0557 (7)
C40.0424 (2)0.21111 (16)0.10325 (16)0.0493 (6)
C50.1310 (2)0.27481 (16)0.17181 (18)0.0547 (7)
C60.2304 (2)0.21756 (17)0.23886 (19)0.0555 (7)
C110.2729 (3)0.07369 (18)0.3645 (2)0.0625 (8)
C120.4481 (3)0.0246 (3)0.3446 (3)0.0906 (14)
C130.4140 (4)0.1191 (3)0.3858 (4)0.1036 (16)
C410.0332 (2)0.25631 (16)0.01031 (17)0.0507 (6)
C420.0759 (2)0.20198 (18)0.08178 (19)0.0563 (7)
C430.1466 (2)0.2436 (2)0.1692 (2)0.0652 (8)
C440.1767 (2)0.3402 (2)0.1636 (2)0.0660 (8)
C450.1361 (3)0.3956 (2)0.0745 (2)0.0679 (9)
C460.0639 (3)0.35454 (18)0.0122 (2)0.0606 (8)
C610.3109 (2)0.27847 (18)0.3204 (2)0.0591 (7)
C620.2639 (3)0.3446 (2)0.3907 (2)0.0695 (9)
C630.3395 (4)0.3930 (2)0.4700 (3)0.0869 (13)
C640.4603 (4)0.3765 (3)0.4805 (3)0.1013 (14)
C650.5093 (4)0.3114 (3)0.4118 (4)0.1105 (18)
C660.4355 (3)0.2627 (3)0.3320 (3)0.0862 (11)
H10.123040.162470.354700.0661*
H30.023000.079760.080380.0668*
H5A0.086630.312990.221860.0657*
H5B0.168860.319180.123310.0657*
H60.282960.188860.186670.0666*
H12A0.505290.033570.289250.1087*
H12B0.488870.012320.405020.1087*
H13A0.362520.110510.444760.1555*
H13B0.486180.153750.412850.1555*
H13C0.371000.155070.327020.1555*
H420.056540.136580.084550.0676*
H430.173420.206880.230800.0782*
H450.157060.460750.072200.0815*
H460.035400.392520.072250.0727*
H620.180460.356720.384710.0834*
H630.306350.437420.516380.1042*
H640.510270.408990.534070.1213*
H650.592790.299930.419000.1324*
H660.469980.218970.285680.1035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br40.0719 (3)0.1319 (4)0.0941 (3)0.0257 (2)0.0167 (2)0.0314 (2)
O20.1103 (15)0.0451 (9)0.0678 (11)0.0123 (9)0.0079 (10)0.0056 (8)
O110.1096 (16)0.0750 (12)0.0560 (10)0.0024 (11)0.0120 (10)0.0079 (9)
O120.0890 (14)0.0775 (13)0.0723 (12)0.0158 (10)0.0011 (10)0.0013 (10)
C10.0685 (14)0.0503 (12)0.0456 (10)0.0019 (10)0.0009 (9)0.0000 (9)
C20.0775 (15)0.0471 (12)0.0503 (11)0.0053 (10)0.0027 (10)0.0011 (9)
C30.0682 (14)0.0496 (12)0.0475 (11)0.0090 (9)0.0043 (9)0.0053 (9)
C40.0591 (12)0.0482 (11)0.0402 (9)0.0027 (9)0.0030 (8)0.0034 (8)
C50.0703 (14)0.0475 (11)0.0451 (10)0.0086 (10)0.0021 (9)0.0012 (8)
C60.0626 (13)0.0533 (12)0.0498 (11)0.0047 (10)0.0007 (9)0.0007 (9)
C110.0781 (16)0.0532 (12)0.0545 (13)0.0045 (11)0.0037 (11)0.0041 (10)
C120.078 (2)0.084 (2)0.106 (3)0.0031 (16)0.0120 (17)0.0005 (18)
C130.095 (3)0.083 (2)0.129 (3)0.0085 (19)0.010 (2)0.007 (2)
C410.0544 (11)0.0529 (11)0.0445 (10)0.0013 (9)0.0026 (8)0.0026 (8)
C420.0595 (12)0.0544 (12)0.0531 (11)0.0012 (9)0.0052 (9)0.0029 (9)
C430.0588 (13)0.0758 (16)0.0582 (13)0.0011 (11)0.0094 (10)0.0044 (11)
C440.0493 (12)0.0841 (18)0.0631 (13)0.0084 (11)0.0031 (10)0.0144 (12)
C450.0711 (16)0.0611 (14)0.0717 (16)0.0136 (11)0.0071 (13)0.0066 (12)
C460.0731 (15)0.0542 (12)0.0539 (12)0.0043 (11)0.0021 (10)0.0038 (10)
C610.0628 (13)0.0575 (13)0.0550 (12)0.0112 (10)0.0059 (10)0.0093 (10)
C620.0751 (16)0.0719 (16)0.0597 (13)0.0180 (13)0.0038 (12)0.0048 (12)
C630.124 (3)0.0730 (19)0.0598 (15)0.0308 (17)0.0129 (16)0.0008 (13)
C640.111 (3)0.086 (2)0.096 (2)0.036 (2)0.051 (2)0.0200 (19)
C650.076 (2)0.104 (3)0.143 (4)0.020 (2)0.036 (2)0.022 (3)
C660.0666 (17)0.084 (2)0.105 (2)0.0064 (14)0.0087 (16)0.0123 (18)
Geometric parameters (Å, º) top
Br4—C441.891 (2)C62—C631.387 (5)
O2—C21.214 (3)C63—C641.345 (6)
O11—C111.187 (3)C64—C651.371 (6)
O12—C111.323 (4)C65—C661.382 (6)
O12—C121.471 (4)C1—H10.9800
C1—C21.523 (3)C3—H30.9300
C1—C61.542 (3)C5—H5A0.9700
C1—C111.528 (4)C5—H5B0.9700
C2—C31.448 (3)C6—H60.9800
C3—C41.345 (3)C12—H12A0.9700
C4—C51.508 (3)C12—H12B0.9700
C4—C411.479 (3)C13—H13A0.9600
C5—C61.525 (3)C13—H13B0.9600
C6—C611.522 (3)C13—H13C0.9600
C12—C131.460 (6)C42—H420.9300
C41—C421.393 (3)C43—H430.9300
C41—C461.400 (3)C45—H450.9300
C42—C431.384 (3)C46—H460.9300
C43—C441.379 (4)C62—H620.9300
C44—C451.368 (4)C63—H630.9300
C45—C461.383 (4)C64—H640.9300
C61—C621.383 (4)C65—H650.9300
C61—C661.384 (4)C66—H660.9300
Br4···C63i3.720 (3)C62···H12.9700
Br4···C3ii3.622 (2)C63···H6vii2.9800
Br4···H64iii3.1100C64···H64ix2.9900
Br4···H12Aiv3.2500C65···H13Bx3.0400
O2···O123.035 (3)H1···C622.9700
O2···C42v3.276 (3)H1···C41vii2.9000
O11···C613.382 (3)H1···C42vii3.0300
O11···C133.147 (5)H1···C46vii2.9400
O11···C45vi3.288 (4)H3···C422.6200
O12···C663.386 (5)H3···H422.1500
O12···O23.035 (3)H5A···C462.9700
O2···H46vi2.6300H5A···C622.7400
O2···H43v2.9000H5A···H462.4200
O2···H42v2.5800H5A···H622.2300
O11···H13A2.6500H5A···C43vii3.0900
O11···H12B2.5200H5B···C462.8300
O11···H5Bvii2.8800H5B···H462.4900
O11···H45vi2.5400H5B···O11ii2.8800
O12···H62.6100H6···O122.6100
C2···C44vii3.589 (4)H6···C32.9900
C3···Br4vii3.622 (2)H6···H662.3300
C11···C663.212 (5)H6···C63ii2.9800
C13···O113.147 (5)H12A···Br4xi3.2500
C42···O2v3.276 (3)H12B···O112.5200
C44···C2ii3.589 (4)H12B···C12x3.0600
C45···O11viii3.288 (4)H12B···C13x3.0500
C61···O113.382 (3)H12B···H12Bx2.3200
C63···Br4i3.720 (3)H13A···O112.6500
C64···C64ix3.545 (6)H13A···C112.8700
C66···C113.212 (5)H13A···C45vi3.0700
C66···O123.386 (5)H13B···C65x3.0400
C3···H62.9900H13C···H43v2.4800
C3···H422.6800H42···C32.6800
C5···H622.8300H42···H32.1500
C5···H462.6600H42···O2v2.5800
C11···H13A2.8700H43···O2v2.9000
C12···H12Bx3.0600H43···H13Cv2.4800
C13···H12Bx3.0500H45···O11viii2.5400
C41···H1ii2.9000H46···C52.6600
C42···H62ii3.0000H46···H5A2.4200
C42···H1ii3.0300H46···H5B2.4900
C42···H32.6200H46···O2viii2.6300
C43···H5Aii3.0900H62···C52.8300
C45···H13Aviii3.0700H62···H5A2.2300
C46···H1ii2.9400H62···C42vii3.0000
C46···H5A2.9700H64···Br4xii3.1100
C46···H5B2.8300H64···C64ix2.9900
C62···H5A2.7400H66···H62.3300
C11—O12—C12117.5 (2)C2—C3—H3118.00
C2—C1—C6112.10 (18)C4—C3—H3118.00
C2—C1—C11110.8 (2)C4—C5—H5A109.00
C6—C1—C11110.61 (19)C4—C5—H5B109.00
O2—C2—C1121.2 (2)C6—C5—H5A109.00
O2—C2—C3121.8 (2)C6—C5—H5B109.00
C1—C2—C3116.8 (2)H5A—C5—H5B108.00
C2—C3—C4123.7 (2)C1—C6—H6108.00
C3—C4—C5121.35 (19)C5—C6—H6108.00
C3—C4—C41120.8 (2)C61—C6—H6108.00
C5—C4—C41117.81 (19)O12—C12—H12A109.00
C4—C5—C6112.93 (18)O12—C12—H12B109.00
C1—C6—C5110.24 (18)C13—C12—H12A109.00
C1—C6—C61109.59 (19)C13—C12—H12B109.00
C5—C6—C61114.11 (19)H12A—C12—H12B108.00
O11—C11—O12125.8 (3)C12—C13—H13A109.00
O11—C11—C1123.4 (3)C12—C13—H13B109.00
O12—C11—C1110.8 (2)C12—C13—H13C109.00
O12—C12—C13112.5 (3)H13A—C13—H13B109.00
C4—C41—C42120.7 (2)H13A—C13—H13C110.00
C4—C41—C46121.1 (2)H13B—C13—H13C110.00
C42—C41—C46118.1 (2)C41—C42—H42119.00
C41—C42—C43121.2 (2)C43—C42—H42119.00
C42—C43—C44119.1 (2)C42—C43—H43120.00
Br4—C44—C43119.30 (18)C44—C43—H43121.00
Br4—C44—C45119.5 (2)C44—C45—H45120.00
C43—C44—C45121.2 (2)C46—C45—H45120.00
C44—C45—C46119.8 (3)C41—C46—H46120.00
C41—C46—C45120.6 (2)C45—C46—H46120.00
C6—C61—C62122.6 (2)C61—C62—H62120.00
C6—C61—C66119.5 (2)C63—C62—H62120.00
C62—C61—C66117.7 (3)C62—C63—H63120.00
C61—C62—C63120.9 (3)C64—C63—H63120.00
C62—C63—C64120.7 (3)C63—C64—H64120.00
C63—C64—C65119.6 (4)C65—C64—H64120.00
C64—C65—C66120.5 (4)C64—C65—H65120.00
C61—C66—C65120.6 (3)C66—C65—H65120.00
C2—C1—H1108.00C61—C66—H66120.00
C6—C1—H1108.00C65—C66—H66120.00
C11—C1—H1108.00
C12—O12—C11—O112.1 (4)C4—C5—C6—C148.4 (2)
C12—O12—C11—C1175.5 (2)C4—C5—C6—C61172.20 (18)
C11—O12—C12—C1378.0 (4)C1—C6—C61—C6277.1 (3)
C6—C1—C2—O2154.3 (3)C1—C6—C61—C6697.7 (3)
C6—C1—C2—C330.8 (3)C5—C6—C61—C6247.1 (3)
C11—C1—C2—O230.2 (4)C5—C6—C61—C66138.2 (3)
C11—C1—C2—C3154.9 (2)C4—C41—C42—C43180.0 (2)
C2—C1—C6—C553.5 (3)C46—C41—C42—C430.1 (3)
C2—C1—C6—C61179.9 (2)C4—C41—C46—C45179.1 (3)
C11—C1—C6—C5177.74 (18)C42—C41—C46—C450.9 (4)
C11—C1—C6—C6155.9 (2)C41—C42—C43—C441.1 (3)
C2—C1—C11—O11121.9 (3)C42—C43—C44—Br4179.29 (17)
C2—C1—C11—O1260.5 (3)C42—C43—C44—C451.3 (4)
C6—C1—C11—O11113.2 (3)Br4—C44—C45—C46179.7 (2)
C6—C1—C11—O1264.5 (3)C43—C44—C45—C460.3 (4)
O2—C2—C3—C4176.6 (3)C44—C45—C46—C410.8 (4)
C1—C2—C3—C41.6 (4)C6—C61—C62—C63174.7 (3)
C2—C3—C4—C53.8 (4)C66—C61—C62—C630.1 (4)
C2—C3—C4—C41173.9 (2)C6—C61—C66—C65174.6 (3)
C3—C4—C5—C620.8 (3)C62—C61—C66—C650.4 (5)
C41—C4—C5—C6161.42 (19)C61—C62—C63—C640.2 (5)
C3—C4—C41—C4229.7 (3)C62—C63—C64—C650.3 (6)
C3—C4—C41—C46150.3 (2)C63—C64—C65—C660.0 (6)
C5—C4—C41—C42152.5 (2)C64—C65—C66—C610.3 (6)
C5—C4—C41—C4627.5 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x1, y, z1; (iv) x1, y+1/2, z1/2; (v) x, y, z; (vi) x, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x+1, y, z+1; (xi) x+1, y+1/2, z+1/2; (xii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C42—H42···O2v0.932.583.276 (3)132
C45—H45···O11viii0.932.543.288 (4)138
C1—H1···Cgvii0.982.773.648 (2)150
Symmetry codes: (v) x, y, z; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H19BrO3
Mr399.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.0138 (2), 13.8197 (4), 12.1477 (3)
β (°) 95.180 (2)
V3)1841.42 (8)
Z4
Radiation typeCu Kα
µ (mm1)3.17
Crystal size (mm)0.44 × 0.36 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.444, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8385, 3851, 3210
Rint0.021
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.08
No. of reflections3851
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C42—H42···O2i0.932.583.276 (3)132
C45—H45···O11ii0.932.543.288 (4)138
C1—H1···Cgiii0.982.773.648 (2)150
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChong, B.-D., Ji, Y.-I., Oh, S.-S., Yang, J.-D., Baik, W. & Koo, S. (1997). J. Org. Chem. 62, 9323–9325.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInokuchi, T., Okano, M. & Miyamoto, T. (2001). J. Org. Chem. 66, 8059–8063.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds