metal-organic compounds
Poly[dimethylammonium [aquadi-μ2-oxalato-dysprosate(III)] trihydrate]
aJinhua Professional Technical College, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: jh_ll@126.com
The title compound, {(C2H8N)[Dy(C2O4)2(H2O)]·3H2O}n, was obtained as an unexpected product under hydrothermal conditions. The DyIII atom is chelated by four oxalate anions, two of which are situated on two different centres of inversion. The distorted tricapped trigonal-prismatic coordination sphere of the DyIII atom is completed by a water molecule. The bridging mode of the anions results in the formation of a three-dimensional network with cavities where the ammonium cations and the uncoordinated water molecules reside. The structure is stabilized by numerous N—H⋯O and O—H⋯O hydrogen-bonding interactions.
Related literature
For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004); Zhong et al., (2008). For other DyIII oxalate compounds, see: Hansson (1973); Kahwa et al. (1984); Ollendorff et al. (1969). The structure of the isotypic EuIII compound was reported by Yang et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810026140/wm2367sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026140/wm2367Isup2.hkl
A mixture of 2-carboxymethylsulfanyl nicotinic acid (0.086 g, 0.40 mmol), Dy2O3 (0.093 g, 0.25 mmol) in DMF (5 ml)/H2O (15 ml) was placed in a 25 ml Teflon-lined stainless steel reactor and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Colourless crystals were obtained in approximate 30% yield.
The C-bound and ammonium H-atoms were positioned geometrically and included in the
using a riding model [C—H 0.96 Å and N—H 0.87, 0.89 Uiso(H) = 1.2Ueq(C)]. The water H atoms were located from difference maps, and their positions were refined with O—H distances fixed at 0.85 (5) Å with Uiso(H) = 1.2Ueq(O).Multidentate organic ligands are usually engaged in the construction of complexes, among which oxalate is one of the simplest imaginable connectors potentially able to bridge metal ions in a bidentate chelating manner. Some dysprosium(III) oxalate compounds, such as K8[Dy2(C2O4)7].14H2O (Kahwa et al., 1984) and [Dy2(C2O4)(H2O)6].4H2O (Ollendorff et al., 1969; Hansson 1973) have been reported. Oxalates usually represent one of the main end-products of the degradation of some organic ligands, under both oxidative and nonoxidative conditions (Ghosh et al., 2004). For example, decomposition of pyridine-2,4,6-tricarboxylic acid into oxalate has been observed in the presence of cadmium(II) compounds (Zhong et al., 2008). Herein, we report a new three-dimensional oxalate structure, (C2H8N)[Dy(C2O4)2(H2O)].3H2O.
A view on the molecular structure of the title compound, (I), which is isotypic with its Eu(III) analogue (Yang et al., 2005), is presented in Fig. 1. The central DyIII atom displays a distorted tricapped trigonal-prismatic coordination by four oxalate anions and one water molecule. Each DyIII atom is connected to four adjacent DyIII centres through the oxalate bridges resulting in a three-dimensional polymeric network as depicted in Fig. 2. The Dy—Dy separations are 6.2135 (2), 6.2742 (2) and 6.3164 (3) Å, respectively. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen-bonding with each other and with the network. This gives rise to a tightly held network structure.
For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004); Zhong et al., (2008). For other DyIII oxalate compounds, see: Hansson (1973); Kahwa et al. (1984); Ollendorff et al. (1969). The structure of the isotypic Eu(III) compound was reported by Yang et al. (2005).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (1) -x, y+0.5, -z-0.5; (2) -x, -y, -z. | |
Fig. 2. A view of the three-dimensional polymeric network of the title compound. |
(C2H8N)[Dy(C2O4)2(H2O)]·3H2O | F(000) = 884 |
Mr = 456.70 | Dx = 2.251 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9337 reflections |
a = 9.6239 (2) Å | θ = 2.4–27.6° |
b = 11.6030 (2) Å | µ = 5.61 mm−1 |
c = 14.3050 (2) Å | T = 296 K |
β = 122.463 (1)° | Block, colourless |
V = 1347.77 (4) Å3 | 0.19 × 0.15 × 0.04 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3108 independent reflections |
Radiation source: fine-focus sealed tube | 2810 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 27.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −12→12 |
Tmin = 0.374, Tmax = 0.790 | k = −15→14 |
20173 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0236P)2 + 1.0326P] where P = (Fo2 + 2Fc2)/3 |
3108 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.84 e Å−3 |
12 restraints | Δρmin = −0.91 e Å−3 |
(C2H8N)[Dy(C2O4)2(H2O)]·3H2O | V = 1347.77 (4) Å3 |
Mr = 456.70 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6239 (2) Å | µ = 5.61 mm−1 |
b = 11.6030 (2) Å | T = 296 K |
c = 14.3050 (2) Å | 0.19 × 0.15 × 0.04 mm |
β = 122.463 (1)° |
Bruker APEXII area-detector diffractometer | 3108 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 2810 reflections with I > 2σ(I) |
Tmin = 0.374, Tmax = 0.790 | Rint = 0.032 |
20173 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 12 restraints |
wR(F2) = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.84 e Å−3 |
3108 reflections | Δρmin = −0.91 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.117659 (15) | −0.013113 (10) | −0.167676 (10) | 0.01672 (5) | |
N1 | 0.4246 (4) | −0.1300 (3) | −0.3049 (3) | 0.0407 (7) | |
H1A | 0.393 (5) | −0.098 (3) | −0.263 (3) | 0.049* | |
H1B | 0.378 (5) | −0.095 (3) | −0.368 (3) | 0.049* | |
O1 | 0.2048 (2) | −0.21224 (15) | −0.15624 (17) | 0.0250 (4) | |
O1W | 0.1053 (3) | −0.02065 (19) | −0.34320 (18) | 0.0317 (5) | |
H1WA | 0.036 (4) | −0.061 (2) | −0.396 (2) | 0.038* | |
H1WB | 0.106 (4) | 0.0401 (18) | −0.375 (2) | 0.038* | |
O2 | −0.1030 (2) | −0.13712 (15) | −0.29291 (17) | 0.0232 (4) | |
O2W | 0.5505 (4) | −0.2809 (3) | −0.0349 (3) | 0.0669 (9) | |
H2WA | 0.489 (5) | −0.291 (5) | −0.009 (3) | 0.080* | |
H2WB | 0.624 (4) | −0.238 (4) | 0.016 (3) | 0.080* | |
O3 | −0.1939 (2) | −0.31830 (15) | −0.32907 (16) | 0.0219 (4) | |
O3W | −0.1188 (4) | −0.1547 (2) | −0.5332 (3) | 0.0576 (8) | |
H3WA | −0.090 (5) | −0.222 (2) | −0.529 (4) | 0.069* | |
H3WB | −0.209 (3) | −0.155 (3) | −0.543 (4) | 0.069* | |
O4 | 0.1169 (2) | −0.39375 (16) | −0.20338 (18) | 0.0278 (5) | |
O4W | 0.6648 (5) | −0.5050 (3) | −0.0068 (3) | 0.0701 (11) | |
H4WA | 0.694 (6) | −0.530 (4) | 0.056 (3) | 0.084* | |
H4WB | 0.596 (5) | −0.456 (4) | −0.020 (4) | 0.084* | |
O5 | 0.3400 (3) | −0.01122 (16) | 0.02214 (18) | 0.0263 (5) | |
O6 | 0.0192 (3) | −0.11779 (16) | −0.06741 (17) | 0.0276 (4) | |
O7 | 0.0381 (3) | 0.11134 (17) | −0.06433 (18) | 0.0300 (5) | |
O8 | 0.3894 (3) | −0.01101 (15) | −0.14319 (17) | 0.0226 (4) | |
C1 | 0.0965 (3) | −0.2872 (2) | −0.2069 (2) | 0.0197 (5) | |
C2 | −0.0829 (3) | −0.2435 (2) | −0.2832 (2) | 0.0180 (5) | |
C3 | 0.4856 (4) | −0.0001 (2) | 0.0483 (2) | 0.0198 (6) | |
C4 | −0.0055 (3) | −0.0664 (2) | −0.0010 (2) | 0.0220 (6) | |
C5 | 0.3567 (6) | −0.2468 (4) | −0.3333 (4) | 0.0761 (15) | |
H5A | 0.2387 | −0.2431 | −0.3721 | 0.091* | |
H5B | 0.3984 | −0.2910 | −0.2667 | 0.091* | |
H5C | 0.3882 | −0.2827 | −0.3796 | 0.091* | |
C6 | 0.6030 (5) | −0.1251 (5) | −0.2451 (4) | 0.0710 (14) | |
H6A | 0.6384 | −0.0464 | −0.2279 | 0.085* | |
H6B | 0.6396 | −0.1572 | −0.2901 | 0.085* | |
H6C | 0.6490 | −0.1686 | −0.1777 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.01578 (8) | 0.01427 (7) | 0.01843 (8) | −0.00014 (4) | 0.00807 (6) | −0.00013 (4) |
N1 | 0.0347 (18) | 0.0526 (18) | 0.0363 (17) | 0.0048 (14) | 0.0200 (15) | −0.0078 (14) |
O1 | 0.0179 (11) | 0.0192 (9) | 0.0295 (11) | −0.0011 (8) | 0.0073 (9) | −0.0039 (8) |
O1W | 0.0342 (14) | 0.0367 (12) | 0.0218 (11) | −0.0059 (10) | 0.0133 (11) | −0.0019 (9) |
O2 | 0.0213 (11) | 0.0158 (9) | 0.0259 (10) | 0.0016 (7) | 0.0082 (9) | 0.0007 (8) |
O2W | 0.053 (2) | 0.0513 (18) | 0.066 (2) | 0.0025 (14) | 0.0119 (17) | −0.0131 (15) |
O3 | 0.0172 (10) | 0.0179 (9) | 0.0272 (11) | −0.0014 (7) | 0.0096 (9) | −0.0029 (7) |
O3W | 0.066 (2) | 0.0331 (13) | 0.0650 (19) | 0.0039 (13) | 0.0292 (19) | 0.0093 (13) |
O4 | 0.0228 (11) | 0.0161 (9) | 0.0319 (11) | 0.0016 (8) | 0.0063 (9) | −0.0012 (8) |
O4W | 0.074 (3) | 0.068 (2) | 0.0376 (18) | 0.0164 (15) | 0.0098 (18) | −0.0028 (14) |
O5 | 0.0184 (11) | 0.0392 (11) | 0.0218 (11) | −0.0021 (8) | 0.0111 (9) | −0.0007 (8) |
O6 | 0.0340 (12) | 0.0239 (10) | 0.0308 (12) | −0.0039 (8) | 0.0213 (10) | −0.0040 (8) |
O7 | 0.0389 (13) | 0.0241 (10) | 0.0397 (13) | 0.0032 (9) | 0.0294 (11) | 0.0059 (9) |
O8 | 0.0177 (11) | 0.0297 (10) | 0.0187 (10) | −0.0005 (7) | 0.0085 (9) | −0.0015 (7) |
C1 | 0.0209 (15) | 0.0194 (12) | 0.0179 (13) | 0.0005 (10) | 0.0098 (12) | 0.0006 (10) |
C2 | 0.0197 (15) | 0.0195 (12) | 0.0165 (13) | −0.0014 (10) | 0.0108 (12) | −0.0012 (10) |
C3 | 0.0205 (15) | 0.0161 (11) | 0.0200 (14) | 0.0015 (10) | 0.0090 (12) | 0.0005 (9) |
C4 | 0.0157 (14) | 0.0231 (14) | 0.0252 (15) | −0.0009 (10) | 0.0098 (12) | 0.0000 (10) |
C5 | 0.096 (4) | 0.059 (3) | 0.082 (4) | −0.017 (3) | 0.054 (3) | −0.020 (2) |
C6 | 0.035 (2) | 0.121 (4) | 0.052 (3) | 0.007 (2) | 0.020 (2) | −0.019 (3) |
Dy1—O3i | 2.3846 (17) | O3W—H3WA | 0.83 (3) |
Dy1—O2 | 2.3883 (19) | O3W—H3WB | 0.80 (4) |
Dy1—O5 | 2.390 (2) | O4—C1 | 1.249 (3) |
Dy1—O6 | 2.427 (2) | O4—Dy1ii | 2.4386 (19) |
Dy1—O1 | 2.4335 (18) | O4W—H4WA | 0.84 (3) |
Dy1—O4i | 2.4386 (19) | O4W—H4WB | 0.82 (4) |
Dy1—O8 | 2.445 (2) | O5—C3 | 1.248 (4) |
Dy1—O1W | 2.451 (2) | O6—C4 | 1.248 (3) |
Dy1—O7 | 2.464 (2) | O7—C4iii | 1.248 (3) |
N1—C6 | 1.451 (5) | O8—C3iv | 1.246 (4) |
N1—C5 | 1.463 (6) | C1—C2 | 1.551 (4) |
N1—H1A | 0.89 (4) | C3—O8iv | 1.246 (4) |
N1—H1B | 0.87 (4) | C3—C3iv | 1.549 (6) |
O1—C1 | 1.248 (3) | C4—O7iii | 1.248 (3) |
O1W—H1WA | 0.84 (4) | C4—C4iii | 1.544 (5) |
O1W—H1WB | 0.84 (4) | C5—H5A | 0.9600 |
O2—C2 | 1.245 (3) | C5—H5B | 0.9600 |
O2W—H2WA | 0.86 (5) | C5—H5C | 0.9600 |
O2W—H2WB | 0.85 (4) | C6—H6A | 0.9600 |
O3—C2 | 1.254 (3) | C6—H6B | 0.9600 |
O3—Dy1ii | 2.3846 (17) | C6—H6C | 0.9600 |
O3i—Dy1—O2 | 135.67 (6) | C5—N1—H1B | 104 (3) |
O3i—Dy1—O5 | 85.20 (6) | H1A—N1—H1B | 110 (4) |
O2—Dy1—O5 | 138.66 (7) | C1—O1—Dy1 | 118.16 (17) |
O3i—Dy1—O6 | 135.05 (6) | Dy1—O1W—H1WA | 121 (2) |
O2—Dy1—O6 | 70.73 (7) | Dy1—O1W—H1WB | 121 (2) |
O5—Dy1—O6 | 74.25 (7) | H1WA—O1W—H1WB | 103 (2) |
O3i—Dy1—O1 | 143.39 (7) | C2—O2—Dy1 | 119.42 (17) |
O2—Dy1—O1 | 67.30 (6) | H2WA—O2W—H2WB | 99 (2) |
O5—Dy1—O1 | 82.32 (7) | C2—O3—Dy1ii | 118.80 (17) |
O6—Dy1—O1 | 73.44 (7) | H3WA—O3W—H3WB | 107 (3) |
O3i—Dy1—O4i | 67.45 (6) | C1—O4—Dy1ii | 118.02 (17) |
O2—Dy1—O4i | 71.67 (6) | H4WA—O4W—H4WB | 105 (3) |
O5—Dy1—O4i | 139.00 (7) | C3—O5—Dy1 | 121.19 (19) |
O6—Dy1—O4i | 103.57 (7) | C4—O6—Dy1 | 120.35 (17) |
O1—Dy1—O4i | 137.38 (6) | C4iii—O7—Dy1 | 119.20 (17) |
O3i—Dy1—O8 | 71.14 (6) | C3iv—O8—Dy1 | 119.36 (19) |
O2—Dy1—O8 | 124.42 (7) | O1—C1—O4 | 127.0 (3) |
O5—Dy1—O8 | 66.48 (7) | O1—C1—C2 | 116.6 (2) |
O6—Dy1—O8 | 130.33 (7) | O4—C1—C2 | 116.4 (2) |
O1—Dy1—O8 | 72.31 (6) | O2—C2—O3 | 126.2 (3) |
O4i—Dy1—O8 | 125.97 (7) | O2—C2—C1 | 116.7 (2) |
O3i—Dy1—O1W | 81.96 (7) | O3—C2—C1 | 117.1 (2) |
O2—Dy1—O1W | 71.05 (7) | O8iv—C3—O5 | 127.6 (3) |
O5—Dy1—O1W | 133.30 (8) | O8iv—C3—C3iv | 116.1 (3) |
O6—Dy1—O1W | 140.18 (7) | O5—C3—C3iv | 116.3 (3) |
O1—Dy1—O1W | 81.98 (7) | O7iii—C4—O6 | 126.7 (3) |
O4i—Dy1—O1W | 74.28 (8) | O7iii—C4—C4iii | 116.5 (3) |
O8—Dy1—O1W | 66.87 (7) | O6—C4—C4iii | 116.8 (3) |
O3i—Dy1—O7 | 69.77 (6) | N1—C5—H5A | 109.5 |
O2—Dy1—O7 | 111.44 (7) | N1—C5—H5B | 109.5 |
O5—Dy1—O7 | 71.94 (7) | H5A—C5—H5B | 109.5 |
O6—Dy1—O7 | 65.99 (7) | N1—C5—H5C | 109.5 |
O1—Dy1—O7 | 136.30 (7) | H5A—C5—H5C | 109.5 |
O4i—Dy1—O7 | 70.20 (7) | H5B—C5—H5C | 109.5 |
O8—Dy1—O7 | 124.13 (7) | N1—C6—H6A | 109.5 |
O1W—Dy1—O7 | 140.87 (7) | N1—C6—H6B | 109.5 |
C6—N1—C5 | 114.3 (4) | H6A—C6—H6B | 109.5 |
C6—N1—H1A | 108 (2) | N1—C6—H6C | 109.5 |
C5—N1—H1A | 108 (2) | H6A—C6—H6C | 109.5 |
C6—N1—H1B | 112 (3) | H6B—C6—H6C | 109.5 |
O3i—Dy1—O1—C1 | −146.82 (18) | O3i—Dy1—O7—C4iii | −163.0 (2) |
O2—Dy1—O1—C1 | −9.33 (19) | O2—Dy1—O7—C4iii | 64.6 (2) |
O5—Dy1—O1—C1 | 142.0 (2) | O5—Dy1—O7—C4iii | −71.4 (2) |
O6—Dy1—O1—C1 | 66.3 (2) | O6—Dy1—O7—C4iii | 8.9 (2) |
O4i—Dy1—O1—C1 | −25.9 (2) | O1—Dy1—O7—C4iii | −14.4 (3) |
O8—Dy1—O1—C1 | −150.3 (2) | O4i—Dy1—O7—C4iii | 124.6 (2) |
O1W—Dy1—O1—C1 | −82.1 (2) | O8—Dy1—O7—C4iii | −114.7 (2) |
O7—Dy1—O1—C1 | 88.5 (2) | O1W—Dy1—O7—C4iii | 150.63 (19) |
O3i—Dy1—O2—C2 | 156.75 (18) | O3i—Dy1—O8—C3iv | 86.85 (17) |
O5—Dy1—O2—C2 | −34.0 (2) | O2—Dy1—O8—C3iv | −140.12 (16) |
O6—Dy1—O2—C2 | −67.6 (2) | O5—Dy1—O8—C3iv | −6.14 (16) |
O1—Dy1—O2—C2 | 11.96 (19) | O6—Dy1—O8—C3iv | −46.9 (2) |
O4i—Dy1—O2—C2 | −179.8 (2) | O1—Dy1—O8—C3iv | −95.32 (18) |
O8—Dy1—O2—C2 | 58.7 (2) | O4i—Dy1—O8—C3iv | 128.38 (17) |
O1W—Dy1—O2—C2 | 101.0 (2) | O1W—Dy1—O8—C3iv | 176.00 (19) |
O7—Dy1—O2—C2 | −120.7 (2) | O7—Dy1—O8—C3iv | 39.15 (19) |
O3i—Dy1—O5—C3 | −65.25 (18) | Dy1—O1—C1—O4 | −173.8 (2) |
O2—Dy1—O5—C3 | 122.27 (18) | Dy1—O1—C1—C2 | 6.6 (3) |
O6—Dy1—O5—C3 | 155.14 (19) | Dy1ii—O4—C1—O1 | −171.9 (2) |
O1—Dy1—O5—C3 | 80.26 (19) | Dy1ii—O4—C1—C2 | 7.7 (3) |
O4i—Dy1—O5—C3 | −112.15 (19) | Dy1—O2—C2—O3 | 166.6 (2) |
O8—Dy1—O5—C3 | 6.26 (17) | Dy1—O2—C2—C1 | −13.2 (3) |
O1W—Dy1—O5—C3 | 9.0 (2) | Dy1ii—O3—C2—O2 | 165.2 (2) |
O7—Dy1—O5—C3 | −135.52 (19) | Dy1ii—O3—C2—C1 | −15.0 (3) |
O3i—Dy1—O6—C4 | 1.9 (3) | O1—C1—C2—O2 | 4.2 (4) |
O2—Dy1—O6—C4 | −134.4 (2) | O4—C1—C2—O2 | −175.4 (2) |
O5—Dy1—O6—C4 | 68.0 (2) | O1—C1—C2—O3 | −175.6 (2) |
O1—Dy1—O6—C4 | 154.5 (2) | O4—C1—C2—O3 | 4.7 (4) |
O4i—Dy1—O6—C4 | −69.7 (2) | Dy1—O5—C3—O8iv | 174.11 (19) |
O8—Dy1—O6—C4 | 106.4 (2) | Dy1—O5—C3—C3iv | −5.9 (3) |
O1W—Dy1—O6—C4 | −151.28 (19) | Dy1—O6—C4—O7iii | −171.5 (2) |
O7—Dy1—O6—C4 | −8.9 (2) | Dy1—O6—C4—C4iii | 8.4 (4) |
Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, y−1/2, −z−1/2; (iii) −x, −y, −z; (iv) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.89 (4) | 2.00 (4) | 2.866 (4) | 163 (4) |
N1—H1A···O1W | 0.89 (4) | 2.52 (4) | 3.090 (4) | 122 (3) |
O1W—H1WA···O3W | 0.84 (4) | 2.03 (2) | 2.857 (4) | 173 (3) |
O4W—H4WB···O2W | 0.82 (4) | 2.06 (3) | 2.767 (4) | 144 (5) |
N1—H1B···O4Wv | 0.87 (4) | 1.91 (4) | 2.759 (5) | 165 (4) |
O1W—H1WB···O3Wvi | 0.84 (4) | 1.92 (2) | 2.744 (3) | 167 (3) |
O2W—H2WB···O3vii | 0.85 (4) | 2.06 (2) | 2.876 (4) | 161 (5) |
O3W—H3WA···O7ii | 0.85 (4) | 2.24 (3) | 2.959 (3) | 145 (4) |
O3W—H3WA···O6viii | 0.83 (4) | 2.34 (2) | 3.110 (3) | 156 (4) |
O3W—H3WB···O4Wix | 0.80 (5) | 2.42 (3) | 2.959 (5) | 125 (4) |
O3W—H3WB···O2Wix | 0.80 (5) | 2.49 (2) | 3.256 (5) | 160 (4) |
O4W—H4WA···O4x | 0.84 (4) | 2.10 (3) | 2.837 (4) | 147 (5) |
Symmetry codes: (ii) −x, y−1/2, −z−1/2; (v) −x+1, y+1/2, −z−1/2; (vi) −x, −y, −z−1; (vii) x+1, −y−1/2, z+1/2; (viii) x, −y−1/2, z−1/2; (ix) x−1, −y−1/2, z−1/2; (x) −x+1, −y−1, −z. |
Experimental details
Crystal data | |
Chemical formula | (C2H8N)[Dy(C2O4)2(H2O)]·3H2O |
Mr | 456.70 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.6239 (2), 11.6030 (2), 14.3050 (2) |
β (°) | 122.463 (1) |
V (Å3) | 1347.77 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.61 |
Crystal size (mm) | 0.19 × 0.15 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.374, 0.790 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20173, 3108, 2810 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.047, 1.06 |
No. of reflections | 3108 |
No. of parameters | 211 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.84, −0.91 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008), SHELXTL (Sheldrick, 2008).
Dy1—O3i | 2.3846 (17) | Dy1—O4i | 2.4386 (19) |
Dy1—O2 | 2.3883 (19) | Dy1—O8 | 2.445 (2) |
Dy1—O5 | 2.390 (2) | Dy1—O1W | 2.451 (2) |
Dy1—O6 | 2.427 (2) | Dy1—O7 | 2.464 (2) |
Dy1—O1 | 2.4335 (18) |
Symmetry code: (i) −x, y+1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.89 (4) | 2.00 (4) | 2.866 (4) | 163 (4) |
N1—H1A···O1W | 0.89 (4) | 2.52 (4) | 3.090 (4) | 122 (3) |
O1W—H1WA···O3W | 0.84 (4) | 2.027 (19) | 2.857 (4) | 173 (3) |
O4W—H4WB···O2W | 0.82 (4) | 2.06 (3) | 2.767 (4) | 144 (5) |
N1—H1B···O4Wii | 0.87 (4) | 1.91 (4) | 2.759 (5) | 165 (4) |
O1W—H1WB···O3Wiii | 0.84 (4) | 1.92 (2) | 2.744 (3) | 167 (3) |
O2W—H2WB···O3iv | 0.85 (4) | 2.06 (2) | 2.876 (4) | 161 (5) |
O3W—H3WA···O7v | 0.85 (4) | 2.24 (3) | 2.959 (3) | 145 (4) |
O3W—H3WA···O6vi | 0.83 (4) | 2.34 (2) | 3.110 (3) | 156 (4) |
O3W—H3WB···O4Wvii | 0.80 (5) | 2.42 (3) | 2.959 (5) | 125 (4) |
O3W—H3WB···O2Wvii | 0.80 (5) | 2.49 (2) | 3.256 (5) | 160 (4) |
O4W—H4WA···O4viii | 0.84 (4) | 2.10 (3) | 2.837 (4) | 147 (5) |
Symmetry codes: (ii) −x+1, y+1/2, −z−1/2; (iii) −x, −y, −z−1; (iv) x+1, −y−1/2, z+1/2; (v) −x, y−1/2, −z−1/2; (vi) x, −y−1/2, z−1/2; (vii) x−1, −y−1/2, z−1/2; (viii) −x+1, −y−1, −z. |
References
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hansson, E. (1973). Acta Chem. Scand. 27, 823–834. CrossRef CAS Web of Science Google Scholar
Kahwa, I. A., Fronczek, F. R. & Selbin, J. (1984). Inorg. Chim. Acta, 92, 167–172. CSD CrossRef Web of Science Google Scholar
Ollendorff, W. & Weigel, F. (1969). Inorg. Nuclear Chem. Lett. 5, 263–269. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göettingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhong, R. Q., Zou, R. Q., Pandey, D. S., Kiyobayashi, T. & Xu, Q. (2008). Inorg. Chem. Commun. 11, 951–953. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidentate organic ligands are usually engaged in the construction of complexes, among which oxalate is one of the simplest imaginable connectors potentially able to bridge metal ions in a bidentate chelating manner. Some dysprosium(III) oxalate compounds, such as K8[Dy2(C2O4)7].14H2O (Kahwa et al., 1984) and [Dy2(C2O4)(H2O)6].4H2O (Ollendorff et al., 1969; Hansson 1973) have been reported. Oxalates usually represent one of the main end-products of the degradation of some organic ligands, under both oxidative and nonoxidative conditions (Ghosh et al., 2004). For example, decomposition of pyridine-2,4,6-tricarboxylic acid into oxalate has been observed in the presence of cadmium(II) compounds (Zhong et al., 2008). Herein, we report a new three-dimensional oxalate structure, (C2H8N)[Dy(C2O4)2(H2O)].3H2O.
A view on the molecular structure of the title compound, (I), which is isotypic with its Eu(III) analogue (Yang et al., 2005), is presented in Fig. 1. The central DyIII atom displays a distorted tricapped trigonal-prismatic coordination by four oxalate anions and one water molecule. Each DyIII atom is connected to four adjacent DyIII centres through the oxalate bridges resulting in a three-dimensional polymeric network as depicted in Fig. 2. The Dy—Dy separations are 6.2135 (2), 6.2742 (2) and 6.3164 (3) Å, respectively. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen-bonding with each other and with the network. This gives rise to a tightly held network structure.