metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­methyl­ammonium [aquadi-μ2-oxalato-dysprosate(III)] trihydrate]

aJinhua Professional Technical College, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 23 June 2010; accepted 2 July 2010; online 7 July 2010)

The title compound, {(C2H8N)[Dy(C2O4)2(H2O)]·3H2O}n, was obtained as an unexpected product under hydro­thermal conditions. The DyIII atom is chelated by four oxalate anions, two of which are situated on two different centres of inversion. The distorted tricapped trigonal-prismatic coordination sphere of the DyIII atom is completed by a water mol­ecule. The bridging mode of the anions results in the formation of a three-dimensional network with cavities where the ammonium cations and the uncoordinated water mol­ecules reside. The structure is stabilized by numerous N—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004[Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495-5497.]); Zhong et al., (2008[Zhong, R. Q., Zou, R. Q., Pandey, D. S., Kiyobayashi, T. & Xu, Q. (2008). Inorg. Chem. Commun. 11, 951-953.]). For other DyIII oxalate compounds, see: Hansson (1973[Hansson, E. (1973). Acta Chem. Scand. 27, 823-834.]); Kahwa et al. (1984[Kahwa, I. A., Fronczek, F. R. & Selbin, J. (1984). Inorg. Chim. Acta, 92, 167-172.]); Ollendorff et al. (1969[Ollendorff, W. & Weigel, F. (1969). Inorg. Nuclear Chem. Lett. 5, 263-269.]). The structure of the isotypic EuIII compound was reported by Yang et al. (2005[Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912-m1914.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Dy(C2O4)2(H2O)]·3H2O

  • Mr = 456.70

  • Monoclinic, P 21 /c

  • a = 9.6239 (2) Å

  • b = 11.6030 (2) Å

  • c = 14.3050 (2) Å

  • β = 122.463 (1)°

  • V = 1347.77 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 296 K

  • 0.19 × 0.15 × 0.04 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göettingen, Germany.]) Tmin = 0.374, Tmax = 0.790

  • 20173 measured reflections

  • 3108 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.047

  • S = 1.06

  • 3108 reflections

  • 211 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O3i 2.3846 (17)
Dy1—O2 2.3883 (19)
Dy1—O5 2.390 (2)
Dy1—O6 2.427 (2)
Dy1—O1 2.4335 (18)
Dy1—O4i 2.4386 (19)
Dy1—O8 2.445 (2)
Dy1—O1W 2.451 (2)
Dy1—O7 2.464 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.89 (4) 2.00 (4) 2.866 (4) 163 (4)
N1—H1A⋯O1W 0.89 (4) 2.52 (4) 3.090 (4) 122 (3)
O1W—H1WA⋯O3W 0.84 (4) 2.03 (2) 2.857 (4) 173 (3)
O4W—H4WB⋯O2W 0.82 (4) 2.06 (3) 2.767 (4) 144 (5)
N1—H1B⋯O4Wii 0.87 (4) 1.91 (4) 2.759 (5) 165 (4)
O1W—H1WB⋯O3Wiii 0.84 (4) 1.92 (2) 2.744 (3) 167 (3)
O2W—H2WB⋯O3iv 0.85 (4) 2.06 (2) 2.876 (4) 161 (5)
O3W—H3WA⋯O7v 0.85 (4) 2.24 (3) 2.959 (3) 145 (4)
O3W—H3WA⋯O6vi 0.83 (4) 2.34 (2) 3.110 (3) 156 (4)
O3W—H3WB⋯O4Wvii 0.80 (5) 2.42 (3) 2.959 (5) 125 (4)
O3W—H3WB⋯O2Wvii 0.80 (5) 2.49 (2) 3.256 (5) 160 (4)
O4W—H4WA⋯O4viii 0.84 (4) 2.10 (3) 2.837 (4) 147 (5)
Symmetry codes: (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y, -z-1; (iv) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) -x+1, -y-1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Crystal Impact, 2008[Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate organic ligands are usually engaged in the construction of complexes, among which oxalate is one of the simplest imaginable connectors potentially able to bridge metal ions in a bidentate chelating manner. Some dysprosium(III) oxalate compounds, such as K8[Dy2(C2O4)7].14H2O (Kahwa et al., 1984) and [Dy2(C2O4)(H2O)6].4H2O (Ollendorff et al., 1969; Hansson 1973) have been reported. Oxalates usually represent one of the main end-products of the degradation of some organic ligands, under both oxidative and nonoxidative conditions (Ghosh et al., 2004). For example, decomposition of pyridine-2,4,6-tricarboxylic acid into oxalate has been observed in the presence of cadmium(II) compounds (Zhong et al., 2008). Herein, we report a new three-dimensional oxalate structure, (C2H8N)[Dy(C2O4)2(H2O)].3H2O.

A view on the molecular structure of the title compound, (I), which is isotypic with its Eu(III) analogue (Yang et al., 2005), is presented in Fig. 1. The central DyIII atom displays a distorted tricapped trigonal-prismatic coordination by four oxalate anions and one water molecule. Each DyIII atom is connected to four adjacent DyIII centres through the oxalate bridges resulting in a three-dimensional polymeric network as depicted in Fig. 2. The Dy—Dy separations are 6.2135 (2), 6.2742 (2) and 6.3164 (3) Å, respectively. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen-bonding with each other and with the network. This gives rise to a tightly held network structure.

Related literature top

For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004); Zhong et al., (2008). For other DyIII oxalate compounds, see: Hansson (1973); Kahwa et al. (1984); Ollendorff et al. (1969). The structure of the isotypic Eu(III) compound was reported by Yang et al. (2005).

Experimental top

A mixture of 2-carboxymethylsulfanyl nicotinic acid (0.086 g, 0.40 mmol), Dy2O3 (0.093 g, 0.25 mmol) in DMF (5 ml)/H2O (15 ml) was placed in a 25 ml Teflon-lined stainless steel reactor and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Colourless crystals were obtained in approximate 30% yield.

Refinement top

The C-bound and ammonium H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.96 Å and N—H 0.87, 0.89 Uiso(H) = 1.2Ueq(C)]. The water H atoms were located from difference maps, and their positions were refined with O—H distances fixed at 0.85 (5) Å with Uiso(H) = 1.2Ueq(O).

Structure description top

Multidentate organic ligands are usually engaged in the construction of complexes, among which oxalate is one of the simplest imaginable connectors potentially able to bridge metal ions in a bidentate chelating manner. Some dysprosium(III) oxalate compounds, such as K8[Dy2(C2O4)7].14H2O (Kahwa et al., 1984) and [Dy2(C2O4)(H2O)6].4H2O (Ollendorff et al., 1969; Hansson 1973) have been reported. Oxalates usually represent one of the main end-products of the degradation of some organic ligands, under both oxidative and nonoxidative conditions (Ghosh et al., 2004). For example, decomposition of pyridine-2,4,6-tricarboxylic acid into oxalate has been observed in the presence of cadmium(II) compounds (Zhong et al., 2008). Herein, we report a new three-dimensional oxalate structure, (C2H8N)[Dy(C2O4)2(H2O)].3H2O.

A view on the molecular structure of the title compound, (I), which is isotypic with its Eu(III) analogue (Yang et al., 2005), is presented in Fig. 1. The central DyIII atom displays a distorted tricapped trigonal-prismatic coordination by four oxalate anions and one water molecule. Each DyIII atom is connected to four adjacent DyIII centres through the oxalate bridges resulting in a three-dimensional polymeric network as depicted in Fig. 2. The Dy—Dy separations are 6.2135 (2), 6.2742 (2) and 6.3164 (3) Å, respectively. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen-bonding with each other and with the network. This gives rise to a tightly held network structure.

For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004); Zhong et al., (2008). For other DyIII oxalate compounds, see: Hansson (1973); Kahwa et al. (1984); Ollendorff et al. (1969). The structure of the isotypic Eu(III) compound was reported by Yang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (1) -x, y+0.5, -z-0.5; (2) -x, -y, -z.
[Figure 2] Fig. 2. A view of the three-dimensional polymeric network of the title compound.
Poly[dimethylammonium [aquadi-µ2-oxalato-dysprosate(III)] trihydrate] top
Crystal data top
(C2H8N)[Dy(C2O4)2(H2O)]·3H2OF(000) = 884
Mr = 456.70Dx = 2.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9337 reflections
a = 9.6239 (2) Åθ = 2.4–27.6°
b = 11.6030 (2) ŵ = 5.61 mm1
c = 14.3050 (2) ÅT = 296 K
β = 122.463 (1)°Block, colourless
V = 1347.77 (4) Å30.19 × 0.15 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3108 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.374, Tmax = 0.790k = 1514
20173 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.0326P]
where P = (Fo2 + 2Fc2)/3
3108 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.84 e Å3
12 restraintsΔρmin = 0.91 e Å3
Crystal data top
(C2H8N)[Dy(C2O4)2(H2O)]·3H2OV = 1347.77 (4) Å3
Mr = 456.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6239 (2) ŵ = 5.61 mm1
b = 11.6030 (2) ÅT = 296 K
c = 14.3050 (2) Å0.19 × 0.15 × 0.04 mm
β = 122.463 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3108 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2810 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.790Rint = 0.032
20173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01912 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.84 e Å3
3108 reflectionsΔρmin = 0.91 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.117659 (15)0.013113 (10)0.167676 (10)0.01672 (5)
N10.4246 (4)0.1300 (3)0.3049 (3)0.0407 (7)
H1A0.393 (5)0.098 (3)0.263 (3)0.049*
H1B0.378 (5)0.095 (3)0.368 (3)0.049*
O10.2048 (2)0.21224 (15)0.15624 (17)0.0250 (4)
O1W0.1053 (3)0.02065 (19)0.34320 (18)0.0317 (5)
H1WA0.036 (4)0.061 (2)0.396 (2)0.038*
H1WB0.106 (4)0.0401 (18)0.375 (2)0.038*
O20.1030 (2)0.13712 (15)0.29291 (17)0.0232 (4)
O2W0.5505 (4)0.2809 (3)0.0349 (3)0.0669 (9)
H2WA0.489 (5)0.291 (5)0.009 (3)0.080*
H2WB0.624 (4)0.238 (4)0.016 (3)0.080*
O30.1939 (2)0.31830 (15)0.32907 (16)0.0219 (4)
O3W0.1188 (4)0.1547 (2)0.5332 (3)0.0576 (8)
H3WA0.090 (5)0.222 (2)0.529 (4)0.069*
H3WB0.209 (3)0.155 (3)0.543 (4)0.069*
O40.1169 (2)0.39375 (16)0.20338 (18)0.0278 (5)
O4W0.6648 (5)0.5050 (3)0.0068 (3)0.0701 (11)
H4WA0.694 (6)0.530 (4)0.056 (3)0.084*
H4WB0.596 (5)0.456 (4)0.020 (4)0.084*
O50.3400 (3)0.01122 (16)0.02214 (18)0.0263 (5)
O60.0192 (3)0.11779 (16)0.06741 (17)0.0276 (4)
O70.0381 (3)0.11134 (17)0.06433 (18)0.0300 (5)
O80.3894 (3)0.01101 (15)0.14319 (17)0.0226 (4)
C10.0965 (3)0.2872 (2)0.2069 (2)0.0197 (5)
C20.0829 (3)0.2435 (2)0.2832 (2)0.0180 (5)
C30.4856 (4)0.0001 (2)0.0483 (2)0.0198 (6)
C40.0055 (3)0.0664 (2)0.0010 (2)0.0220 (6)
C50.3567 (6)0.2468 (4)0.3333 (4)0.0761 (15)
H5A0.23870.24310.37210.091*
H5B0.39840.29100.26670.091*
H5C0.38820.28270.37960.091*
C60.6030 (5)0.1251 (5)0.2451 (4)0.0710 (14)
H6A0.63840.04640.22790.085*
H6B0.63960.15720.29010.085*
H6C0.64900.16860.17770.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01578 (8)0.01427 (7)0.01843 (8)0.00014 (4)0.00807 (6)0.00013 (4)
N10.0347 (18)0.0526 (18)0.0363 (17)0.0048 (14)0.0200 (15)0.0078 (14)
O10.0179 (11)0.0192 (9)0.0295 (11)0.0011 (8)0.0073 (9)0.0039 (8)
O1W0.0342 (14)0.0367 (12)0.0218 (11)0.0059 (10)0.0133 (11)0.0019 (9)
O20.0213 (11)0.0158 (9)0.0259 (10)0.0016 (7)0.0082 (9)0.0007 (8)
O2W0.053 (2)0.0513 (18)0.066 (2)0.0025 (14)0.0119 (17)0.0131 (15)
O30.0172 (10)0.0179 (9)0.0272 (11)0.0014 (7)0.0096 (9)0.0029 (7)
O3W0.066 (2)0.0331 (13)0.0650 (19)0.0039 (13)0.0292 (19)0.0093 (13)
O40.0228 (11)0.0161 (9)0.0319 (11)0.0016 (8)0.0063 (9)0.0012 (8)
O4W0.074 (3)0.068 (2)0.0376 (18)0.0164 (15)0.0098 (18)0.0028 (14)
O50.0184 (11)0.0392 (11)0.0218 (11)0.0021 (8)0.0111 (9)0.0007 (8)
O60.0340 (12)0.0239 (10)0.0308 (12)0.0039 (8)0.0213 (10)0.0040 (8)
O70.0389 (13)0.0241 (10)0.0397 (13)0.0032 (9)0.0294 (11)0.0059 (9)
O80.0177 (11)0.0297 (10)0.0187 (10)0.0005 (7)0.0085 (9)0.0015 (7)
C10.0209 (15)0.0194 (12)0.0179 (13)0.0005 (10)0.0098 (12)0.0006 (10)
C20.0197 (15)0.0195 (12)0.0165 (13)0.0014 (10)0.0108 (12)0.0012 (10)
C30.0205 (15)0.0161 (11)0.0200 (14)0.0015 (10)0.0090 (12)0.0005 (9)
C40.0157 (14)0.0231 (14)0.0252 (15)0.0009 (10)0.0098 (12)0.0000 (10)
C50.096 (4)0.059 (3)0.082 (4)0.017 (3)0.054 (3)0.020 (2)
C60.035 (2)0.121 (4)0.052 (3)0.007 (2)0.020 (2)0.019 (3)
Geometric parameters (Å, º) top
Dy1—O3i2.3846 (17)O3W—H3WA0.83 (3)
Dy1—O22.3883 (19)O3W—H3WB0.80 (4)
Dy1—O52.390 (2)O4—C11.249 (3)
Dy1—O62.427 (2)O4—Dy1ii2.4386 (19)
Dy1—O12.4335 (18)O4W—H4WA0.84 (3)
Dy1—O4i2.4386 (19)O4W—H4WB0.82 (4)
Dy1—O82.445 (2)O5—C31.248 (4)
Dy1—O1W2.451 (2)O6—C41.248 (3)
Dy1—O72.464 (2)O7—C4iii1.248 (3)
N1—C61.451 (5)O8—C3iv1.246 (4)
N1—C51.463 (6)C1—C21.551 (4)
N1—H1A0.89 (4)C3—O8iv1.246 (4)
N1—H1B0.87 (4)C3—C3iv1.549 (6)
O1—C11.248 (3)C4—O7iii1.248 (3)
O1W—H1WA0.84 (4)C4—C4iii1.544 (5)
O1W—H1WB0.84 (4)C5—H5A0.9600
O2—C21.245 (3)C5—H5B0.9600
O2W—H2WA0.86 (5)C5—H5C0.9600
O2W—H2WB0.85 (4)C6—H6A0.9600
O3—C21.254 (3)C6—H6B0.9600
O3—Dy1ii2.3846 (17)C6—H6C0.9600
O3i—Dy1—O2135.67 (6)C5—N1—H1B104 (3)
O3i—Dy1—O585.20 (6)H1A—N1—H1B110 (4)
O2—Dy1—O5138.66 (7)C1—O1—Dy1118.16 (17)
O3i—Dy1—O6135.05 (6)Dy1—O1W—H1WA121 (2)
O2—Dy1—O670.73 (7)Dy1—O1W—H1WB121 (2)
O5—Dy1—O674.25 (7)H1WA—O1W—H1WB103 (2)
O3i—Dy1—O1143.39 (7)C2—O2—Dy1119.42 (17)
O2—Dy1—O167.30 (6)H2WA—O2W—H2WB99 (2)
O5—Dy1—O182.32 (7)C2—O3—Dy1ii118.80 (17)
O6—Dy1—O173.44 (7)H3WA—O3W—H3WB107 (3)
O3i—Dy1—O4i67.45 (6)C1—O4—Dy1ii118.02 (17)
O2—Dy1—O4i71.67 (6)H4WA—O4W—H4WB105 (3)
O5—Dy1—O4i139.00 (7)C3—O5—Dy1121.19 (19)
O6—Dy1—O4i103.57 (7)C4—O6—Dy1120.35 (17)
O1—Dy1—O4i137.38 (6)C4iii—O7—Dy1119.20 (17)
O3i—Dy1—O871.14 (6)C3iv—O8—Dy1119.36 (19)
O2—Dy1—O8124.42 (7)O1—C1—O4127.0 (3)
O5—Dy1—O866.48 (7)O1—C1—C2116.6 (2)
O6—Dy1—O8130.33 (7)O4—C1—C2116.4 (2)
O1—Dy1—O872.31 (6)O2—C2—O3126.2 (3)
O4i—Dy1—O8125.97 (7)O2—C2—C1116.7 (2)
O3i—Dy1—O1W81.96 (7)O3—C2—C1117.1 (2)
O2—Dy1—O1W71.05 (7)O8iv—C3—O5127.6 (3)
O5—Dy1—O1W133.30 (8)O8iv—C3—C3iv116.1 (3)
O6—Dy1—O1W140.18 (7)O5—C3—C3iv116.3 (3)
O1—Dy1—O1W81.98 (7)O7iii—C4—O6126.7 (3)
O4i—Dy1—O1W74.28 (8)O7iii—C4—C4iii116.5 (3)
O8—Dy1—O1W66.87 (7)O6—C4—C4iii116.8 (3)
O3i—Dy1—O769.77 (6)N1—C5—H5A109.5
O2—Dy1—O7111.44 (7)N1—C5—H5B109.5
O5—Dy1—O771.94 (7)H5A—C5—H5B109.5
O6—Dy1—O765.99 (7)N1—C5—H5C109.5
O1—Dy1—O7136.30 (7)H5A—C5—H5C109.5
O4i—Dy1—O770.20 (7)H5B—C5—H5C109.5
O8—Dy1—O7124.13 (7)N1—C6—H6A109.5
O1W—Dy1—O7140.87 (7)N1—C6—H6B109.5
C6—N1—C5114.3 (4)H6A—C6—H6B109.5
C6—N1—H1A108 (2)N1—C6—H6C109.5
C5—N1—H1A108 (2)H6A—C6—H6C109.5
C6—N1—H1B112 (3)H6B—C6—H6C109.5
O3i—Dy1—O1—C1146.82 (18)O3i—Dy1—O7—C4iii163.0 (2)
O2—Dy1—O1—C19.33 (19)O2—Dy1—O7—C4iii64.6 (2)
O5—Dy1—O1—C1142.0 (2)O5—Dy1—O7—C4iii71.4 (2)
O6—Dy1—O1—C166.3 (2)O6—Dy1—O7—C4iii8.9 (2)
O4i—Dy1—O1—C125.9 (2)O1—Dy1—O7—C4iii14.4 (3)
O8—Dy1—O1—C1150.3 (2)O4i—Dy1—O7—C4iii124.6 (2)
O1W—Dy1—O1—C182.1 (2)O8—Dy1—O7—C4iii114.7 (2)
O7—Dy1—O1—C188.5 (2)O1W—Dy1—O7—C4iii150.63 (19)
O3i—Dy1—O2—C2156.75 (18)O3i—Dy1—O8—C3iv86.85 (17)
O5—Dy1—O2—C234.0 (2)O2—Dy1—O8—C3iv140.12 (16)
O6—Dy1—O2—C267.6 (2)O5—Dy1—O8—C3iv6.14 (16)
O1—Dy1—O2—C211.96 (19)O6—Dy1—O8—C3iv46.9 (2)
O4i—Dy1—O2—C2179.8 (2)O1—Dy1—O8—C3iv95.32 (18)
O8—Dy1—O2—C258.7 (2)O4i—Dy1—O8—C3iv128.38 (17)
O1W—Dy1—O2—C2101.0 (2)O1W—Dy1—O8—C3iv176.00 (19)
O7—Dy1—O2—C2120.7 (2)O7—Dy1—O8—C3iv39.15 (19)
O3i—Dy1—O5—C365.25 (18)Dy1—O1—C1—O4173.8 (2)
O2—Dy1—O5—C3122.27 (18)Dy1—O1—C1—C26.6 (3)
O6—Dy1—O5—C3155.14 (19)Dy1ii—O4—C1—O1171.9 (2)
O1—Dy1—O5—C380.26 (19)Dy1ii—O4—C1—C27.7 (3)
O4i—Dy1—O5—C3112.15 (19)Dy1—O2—C2—O3166.6 (2)
O8—Dy1—O5—C36.26 (17)Dy1—O2—C2—C113.2 (3)
O1W—Dy1—O5—C39.0 (2)Dy1ii—O3—C2—O2165.2 (2)
O7—Dy1—O5—C3135.52 (19)Dy1ii—O3—C2—C115.0 (3)
O3i—Dy1—O6—C41.9 (3)O1—C1—C2—O24.2 (4)
O2—Dy1—O6—C4134.4 (2)O4—C1—C2—O2175.4 (2)
O5—Dy1—O6—C468.0 (2)O1—C1—C2—O3175.6 (2)
O1—Dy1—O6—C4154.5 (2)O4—C1—C2—O34.7 (4)
O4i—Dy1—O6—C469.7 (2)Dy1—O5—C3—O8iv174.11 (19)
O8—Dy1—O6—C4106.4 (2)Dy1—O5—C3—C3iv5.9 (3)
O1W—Dy1—O6—C4151.28 (19)Dy1—O6—C4—O7iii171.5 (2)
O7—Dy1—O6—C48.9 (2)Dy1—O6—C4—C4iii8.4 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.89 (4)2.00 (4)2.866 (4)163 (4)
N1—H1A···O1W0.89 (4)2.52 (4)3.090 (4)122 (3)
O1W—H1WA···O3W0.84 (4)2.03 (2)2.857 (4)173 (3)
O4W—H4WB···O2W0.82 (4)2.06 (3)2.767 (4)144 (5)
N1—H1B···O4Wv0.87 (4)1.91 (4)2.759 (5)165 (4)
O1W—H1WB···O3Wvi0.84 (4)1.92 (2)2.744 (3)167 (3)
O2W—H2WB···O3vii0.85 (4)2.06 (2)2.876 (4)161 (5)
O3W—H3WA···O7ii0.85 (4)2.24 (3)2.959 (3)145 (4)
O3W—H3WA···O6viii0.83 (4)2.34 (2)3.110 (3)156 (4)
O3W—H3WB···O4Wix0.80 (5)2.42 (3)2.959 (5)125 (4)
O3W—H3WB···O2Wix0.80 (5)2.49 (2)3.256 (5)160 (4)
O4W—H4WA···O4x0.84 (4)2.10 (3)2.837 (4)147 (5)
Symmetry codes: (ii) x, y1/2, z1/2; (v) x+1, y+1/2, z1/2; (vi) x, y, z1; (vii) x+1, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x1, y1/2, z1/2; (x) x+1, y1, z.

Experimental details

Crystal data
Chemical formula(C2H8N)[Dy(C2O4)2(H2O)]·3H2O
Mr456.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6239 (2), 11.6030 (2), 14.3050 (2)
β (°) 122.463 (1)
V3)1347.77 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.61
Crystal size (mm)0.19 × 0.15 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.374, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
20173, 3108, 2810
Rint0.032
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.06
No. of reflections3108
No. of parameters211
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.91

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Crystal Impact, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Dy1—O3i2.3846 (17)Dy1—O4i2.4386 (19)
Dy1—O22.3883 (19)Dy1—O82.445 (2)
Dy1—O52.390 (2)Dy1—O1W2.451 (2)
Dy1—O62.427 (2)Dy1—O72.464 (2)
Dy1—O12.4335 (18)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.89 (4)2.00 (4)2.866 (4)163 (4)
N1—H1A···O1W0.89 (4)2.52 (4)3.090 (4)122 (3)
O1W—H1WA···O3W0.84 (4)2.027 (19)2.857 (4)173 (3)
O4W—H4WB···O2W0.82 (4)2.06 (3)2.767 (4)144 (5)
N1—H1B···O4Wii0.87 (4)1.91 (4)2.759 (5)165 (4)
O1W—H1WB···O3Wiii0.84 (4)1.92 (2)2.744 (3)167 (3)
O2W—H2WB···O3iv0.85 (4)2.06 (2)2.876 (4)161 (5)
O3W—H3WA···O7v0.85 (4)2.24 (3)2.959 (3)145 (4)
O3W—H3WA···O6vi0.83 (4)2.34 (2)3.110 (3)156 (4)
O3W—H3WB···O4Wvii0.80 (5)2.42 (3)2.959 (5)125 (4)
O3W—H3WB···O2Wvii0.80 (5)2.49 (2)3.256 (5)160 (4)
O4W—H4WA···O4viii0.84 (4)2.10 (3)2.837 (4)147 (5)
Symmetry codes: (ii) x+1, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z1/2; (vi) x, y1/2, z1/2; (vii) x1, y1/2, z1/2; (viii) x+1, y1, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGhosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHansson, E. (1973). Acta Chem. Scand. 27, 823–834.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Fronczek, F. R. & Selbin, J. (1984). Inorg. Chim. Acta, 92, 167–172.  CSD CrossRef Web of Science Google Scholar
First citationOllendorff, W. & Weigel, F. (1969). Inorg. Nuclear Chem. Lett. 5, 263–269.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göettingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, R. Q., Zou, R. Q., Pandey, D. S., Kiyobayashi, T. & Xu, Q. (2008). Inorg. Chem. Commun. 11, 951–953.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds