metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N-Benzoyl-N′-phenyl­thio­urea-κS)chlorido(η4-1,5-cyclo­octa­diene)rhodium(I)

aDepartment of Chemistry, University of Free State, Bloemfontein 9300, South Africa
*Correspondence e-mail: ricky.kotze@gmail.com

(Received 24 June 2010; accepted 26 July 2010; online 31 July 2010)

The title compound, [RhCl(C8H12)(C14H12N2OS)], is a rhodium(I) derivative with a functionalized thio­urea ligand. Despite the presence of several heteroatoms, the thio­urea ligand coordinates only in a monodentate fashion via the S atom. The geometry of the coordination sphere is approximately square planar about the RhI atom, with two bonds to the π-electrons of the 1,5-cyclo­octa­diene ligand, one bond to the Cl ligand and one bond to the S atom of the thio­urea ligand. The mol­ecular structure is stabilized by intra­molecular N—H⋯O and N—H⋯Cl hydrogen bonding. Inter­molecular N—H⋯O hydrogen-bonding inter­actions lead to the formation of layers extending parallel to (011).

Related literature

For related Rh(I) complexes containing thio­urea ligands, see: Cauzzi et al. (1995[Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115-125.]); Kemp et al. (1996[Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1996). Rhodium Express, 16, 17-22.], 1997[Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481-4483.]); Roodt et al. (1994[Roodt, A., Leipoldt, J. G., Koch, K. R. & Matoetoe, M. (1994). Rhodium Express, 7-8, 39-42.]). For related Rh(I) complexes containing other or similar β-diketones and π-bonding ligands, see: Bahl et al. (2000[Bahl, M., Hakansson, M., Mahmoudkhani, A. H. & Ohrstrom, L. (2000). Organometallics, 19, 5589-5596.]); Brink et al. (2007a[Brink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m48-m50.],b[Brink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m2831-m2832.]); Leipoldt et al. (1977[Leipoldt, J. G., Bok, L. D. C., Basson, S. S., van Vollenhoven, J. S. & Gerber, T. I. A. (1977). Inorg. Chim. Acta, 25, L63-L64.], 1980[Leipoldt, J. G., Basson, S. S., Lamprecht, G. J., Bok, L. D. C. & Schlebusch, J. J. J. (1980). Inorg. Chim. Acta, 40, 43-46.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Steyl et al. (2004[Steyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473-m475.]). For structural data for the thio­urea ligand N-phenyl-N′-benzoyl­thio­urea, see: Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C8H12)(C14H12N2OS)]

  • Mr = 502.85

  • Triclinic, [P \overline 1]

  • a = 6.6703 (2) Å

  • b = 10.1665 (4) Å

  • c = 14.9616 (5) Å

  • α = 96.891 (2)°

  • β = 91.588 (2)°

  • γ = 90.616 (2)°

  • V = 1006.78 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 100 K

  • 0.18 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.917

  • 18721 measured reflections

  • 4980 independent reflections

  • 4476 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.103

  • S = 1.23

  • 4980 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Rh1—C15 2.105 (3)
Rh1—C22 2.121 (3)
Rh1—C19 2.144 (3)
Rh1—C18 2.170 (3)
Rh1—S1 2.3803 (7)
Rh1—Cl1 2.3850 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.88 1.99 2.657 (3) 132
N2—H2⋯O1i 0.88 2.32 3.053 (3) 141
N1—H1⋯Cl1 0.88 2.47 3.253 (3) 148
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Rhodium complexes containing σ-bonding bidentate ligands such as β-diketones and π-bonding ligands such as arenes, carbonyls etc. simultaneously, are a well known compounds. For a few examples, see: Bahl et al. (2000), Brink et al. (2007a,b), Cauzzi et al. (1995), Leipoldt et al. (1977, 1980), Roodt et al. (2003), Steyl et al. (2004).

The title compound, [Rh(C8H12)(C14H12N2OS)Cl], features a functionalized thiourea ligand, which has been shown by previous authors (Kemp et al., 1996, 1997; Roodt et al., 1994)) to have the ability to co-ordinate in a bidentate fashion as many other hetero-atom bidentate ligands do, including β-diketones and derivatives. However, in the title compound this ligand only co-ordinates in a monodentate fashion via the sulfur atom to the rhodium atom.

The rhodium(I) complex is found to have a slightly distorted square-planar coordination about the rhodium centre with a chlorine atom cis to the sulfur atom (Fig. 1). The packing of the complex is well established by the presence of intra- and intermolecular hydrogen bonding. Intramolecular hydrogen bonding occurs between O1 and N2 with a distance of 1.99 Å. The same observation was made with the free ligand (Yamin & Yusof, 2003). This interaction suggests the prefered orientation of the free ligand to have its oxygen trans to the sulfur atom and it clearly translates to the orientation found in the title compound. Hydrogen bonding was also observed between the nitrogen atom N1 and the chlorine atom Cl1, with a distance of 2.47 Å, which added onto the effect of stabilizing the orientation found in the title compound. Since two molecules are orientated about an inversion centre, the oxygen atom O1 as well as the nitrogen atom N2 were found in close approximation to the oxygen atom in the next molecule. As a result, intermolecular hydrogen bonding between the two oxygen atoms as well as between N2 and O1 were established with distances of 2.980 Å and 3.053 Å, respectively. The intermolecular hydrogen bonding leads to a layered assembly of the molecules, extending approximately parallel to (011).

In addition, a vast variety of short contacts via van der Waals interactions are found to be present amongst various atoms. These short contacts are suspected to be the cause of the distortion found in the cyclo-octadiene ring as six of its atoms are pulled in various directions.

Related literature top

For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995); Kemp et al. (1996, 1997); Roodt et al. (1994). For related Rh(I) complexes containing other or similar β-diketones and π-bonding ligands, see: Bahl et al. (2000); Brink et al. (2007a,b); Leipoldt et al. (1977, 1980); Roodt et al. (2003); Steyl et al. (2004). For structural data for the thiourea ligand N-phenyl-N'-benzoylthiourea, see: Yamin & Yusof (2003).

Experimental top

Dichloridodicyclo-octadienedirhodium(I) (20.0 mg, 0.0406 mmol) was allowed to react with N-phenyl-N'-benzoylthiourea (20.8 mg, 0.0406 mmol) in acetone (2 cm3). Upon evaporation yellow crystals were obtained.

Refinement top

The aliphatic as well as aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest residual electron density was located 0.79 Å from C15 and the deepest hole was 0.88 Å from Rh1.

Structure description top

Rhodium complexes containing σ-bonding bidentate ligands such as β-diketones and π-bonding ligands such as arenes, carbonyls etc. simultaneously, are a well known compounds. For a few examples, see: Bahl et al. (2000), Brink et al. (2007a,b), Cauzzi et al. (1995), Leipoldt et al. (1977, 1980), Roodt et al. (2003), Steyl et al. (2004).

The title compound, [Rh(C8H12)(C14H12N2OS)Cl], features a functionalized thiourea ligand, which has been shown by previous authors (Kemp et al., 1996, 1997; Roodt et al., 1994)) to have the ability to co-ordinate in a bidentate fashion as many other hetero-atom bidentate ligands do, including β-diketones and derivatives. However, in the title compound this ligand only co-ordinates in a monodentate fashion via the sulfur atom to the rhodium atom.

The rhodium(I) complex is found to have a slightly distorted square-planar coordination about the rhodium centre with a chlorine atom cis to the sulfur atom (Fig. 1). The packing of the complex is well established by the presence of intra- and intermolecular hydrogen bonding. Intramolecular hydrogen bonding occurs between O1 and N2 with a distance of 1.99 Å. The same observation was made with the free ligand (Yamin & Yusof, 2003). This interaction suggests the prefered orientation of the free ligand to have its oxygen trans to the sulfur atom and it clearly translates to the orientation found in the title compound. Hydrogen bonding was also observed between the nitrogen atom N1 and the chlorine atom Cl1, with a distance of 2.47 Å, which added onto the effect of stabilizing the orientation found in the title compound. Since two molecules are orientated about an inversion centre, the oxygen atom O1 as well as the nitrogen atom N2 were found in close approximation to the oxygen atom in the next molecule. As a result, intermolecular hydrogen bonding between the two oxygen atoms as well as between N2 and O1 were established with distances of 2.980 Å and 3.053 Å, respectively. The intermolecular hydrogen bonding leads to a layered assembly of the molecules, extending approximately parallel to (011).

In addition, a vast variety of short contacts via van der Waals interactions are found to be present amongst various atoms. These short contacts are suspected to be the cause of the distortion found in the cyclo-octadiene ring as six of its atoms are pulled in various directions.

For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995); Kemp et al. (1996, 1997); Roodt et al. (1994). For related Rh(I) complexes containing other or similar β-diketones and π-bonding ligands, see: Bahl et al. (2000); Brink et al. (2007a,b); Leipoldt et al. (1977, 1980); Roodt et al. (2003); Steyl et al. (2004). For structural data for the thiourea ligand N-phenyl-N'-benzoylthiourea, see: Yamin & Yusof (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : A representation of the title compound, displaying the numbering scheme and displacement ellipsoids at the 50% probability level.
(N-Benzoyl-N'-phenylthiourea-κS)chlorido(η4-1,5- cyclooctadiene)rhodium(I) top
Crystal data top
[RhCl(C8H12)(C14H12N2OS)]Z = 2
Mr = 502.85F(000) = 512
Triclinic, P1Dx = 1.659 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6703 (2) ÅCell parameters from 8458 reflections
b = 10.1665 (4) Åθ = 3.1–28.3°
c = 14.9616 (5) ŵ = 1.10 mm1
α = 96.891 (2)°T = 100 K
β = 91.588 (2)°Platelet, yellow
γ = 90.616 (2)°0.18 × 0.17 × 0.08 mm
V = 1006.78 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4980 independent reflections
Radiation source: fine-focus sealed tube4476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ– and ω–scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.827, Tmax = 0.917k = 1313
18721 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.7134P]
where P = (Fo2 + 2Fc2)/3
4980 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[RhCl(C8H12)(C14H12N2OS)]γ = 90.616 (2)°
Mr = 502.85V = 1006.78 (6) Å3
Triclinic, P1Z = 2
a = 6.6703 (2) ÅMo Kα radiation
b = 10.1665 (4) ŵ = 1.10 mm1
c = 14.9616 (5) ÅT = 100 K
α = 96.891 (2)°0.18 × 0.17 × 0.08 mm
β = 91.588 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4980 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4476 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.917Rint = 0.032
18721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.23Δρmax = 0.77 e Å3
4980 reflectionsΔρmin = 0.66 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.63173 (3)0.78913 (2)0.637367 (14)0.01158 (9)
Cl10.56345 (11)0.95960 (7)0.75606 (5)0.01837 (16)
S10.42173 (10)0.62944 (7)0.69410 (5)0.01483 (15)
O10.6682 (3)0.5834 (2)0.97351 (14)0.0187 (4)
N20.3860 (3)0.5223 (2)0.84601 (16)0.0155 (5)
H20.42370.51720.90230.019*
N10.6287 (3)0.6887 (2)0.84822 (16)0.0147 (5)
H10.66580.75980.82430.018*
C90.2314 (4)0.4322 (3)0.80693 (18)0.0135 (5)
C80.4760 (4)0.6125 (3)0.80349 (19)0.0134 (5)
C100.0498 (4)0.4796 (3)0.77768 (19)0.0148 (5)
H100.02890.57220.78020.018*
C61.0460 (4)0.6965 (3)1.0142 (2)0.0201 (6)
H61.00270.62601.04570.024*
C120.0712 (4)0.2545 (3)0.7407 (2)0.0195 (6)
H120.17540.19380.71860.023*
C10.9224 (4)0.7406 (3)0.94780 (19)0.0142 (5)
C70.7298 (4)0.6651 (3)0.92667 (19)0.0139 (5)
C31.1740 (5)0.9028 (3)0.9235 (2)0.0290 (8)
H31.21820.97370.89260.035*
C110.1017 (4)0.3899 (3)0.7445 (2)0.0173 (6)
H110.22650.42170.72440.021*
C20.9856 (5)0.8446 (3)0.9022 (2)0.0235 (7)
H2A0.90140.87560.85720.028*
C140.2642 (4)0.2972 (3)0.80220 (19)0.0171 (6)
H140.39000.26570.82140.021*
C130.1126 (4)0.2078 (3)0.7693 (2)0.0183 (6)
H130.13430.11520.76640.022*
C190.8922 (4)0.8992 (3)0.6073 (2)0.0167 (6)
H190.92990.97400.65470.020*
C160.5920 (5)0.7470 (3)0.4355 (2)0.0183 (6)
H16A0.45130.77290.42550.022*
H16B0.63410.69130.38060.022*
C51.2327 (5)0.7560 (3)1.0342 (2)0.0233 (7)
H51.31720.72591.07950.028*
C41.2967 (5)0.8581 (3)0.9890 (2)0.0251 (7)
H41.42510.89781.00290.030*
C201.0617 (4)0.8056 (3)0.5829 (2)0.0225 (7)
H20A1.13590.78930.63860.027*
H20B1.15590.84810.54480.027*
C210.9898 (4)0.6720 (3)0.5324 (2)0.0196 (6)
H21A0.98980.67740.46680.023*
H21B1.08470.60220.54560.023*
C220.7794 (4)0.6336 (3)0.5590 (2)0.0153 (6)
H220.77190.54650.58340.018*
C180.7382 (4)0.9284 (3)0.54959 (19)0.0147 (5)
H180.68441.01990.56280.018*
C150.6023 (4)0.6668 (3)0.51368 (19)0.0150 (6)
H150.49310.59830.51210.018*
C170.7254 (4)0.8724 (3)0.4506 (2)0.0180 (6)
H17A0.86170.85090.42940.022*
H17B0.66980.94020.41490.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01211 (12)0.01013 (13)0.01270 (13)0.00102 (8)0.00040 (8)0.00221 (9)
Cl10.0245 (3)0.0138 (3)0.0166 (3)0.0010 (3)0.0037 (3)0.0002 (3)
S10.0163 (3)0.0168 (3)0.0120 (3)0.0051 (3)0.0012 (2)0.0050 (3)
O10.0183 (10)0.0233 (11)0.0155 (10)0.0071 (8)0.0018 (8)0.0075 (9)
N20.0171 (11)0.0185 (12)0.0114 (11)0.0064 (9)0.0025 (9)0.0045 (10)
N10.0167 (11)0.0141 (12)0.0136 (12)0.0049 (9)0.0015 (9)0.0044 (9)
C90.0151 (12)0.0139 (13)0.0113 (13)0.0044 (10)0.0008 (10)0.0015 (10)
C80.0132 (12)0.0139 (13)0.0127 (13)0.0002 (10)0.0008 (10)0.0005 (10)
C100.0177 (13)0.0135 (13)0.0139 (14)0.0007 (10)0.0045 (10)0.0031 (11)
C60.0179 (13)0.0270 (16)0.0168 (15)0.0051 (12)0.0011 (11)0.0086 (12)
C120.0219 (14)0.0180 (15)0.0181 (15)0.0077 (11)0.0011 (11)0.0013 (12)
C10.0131 (12)0.0149 (14)0.0141 (13)0.0023 (10)0.0012 (10)0.0001 (11)
C70.0132 (12)0.0152 (14)0.0130 (13)0.0011 (10)0.0006 (10)0.0009 (11)
C30.0285 (17)0.0246 (17)0.035 (2)0.0126 (14)0.0060 (14)0.0125 (15)
C110.0144 (12)0.0212 (15)0.0167 (14)0.0019 (11)0.0028 (11)0.0041 (12)
C20.0230 (15)0.0233 (16)0.0249 (17)0.0072 (12)0.0068 (12)0.0085 (13)
C140.0191 (13)0.0188 (15)0.0135 (14)0.0010 (11)0.0029 (11)0.0034 (11)
C130.0236 (14)0.0141 (14)0.0172 (14)0.0024 (11)0.0044 (11)0.0036 (11)
C190.0140 (12)0.0126 (13)0.0238 (15)0.0043 (10)0.0036 (11)0.0023 (11)
C160.0250 (14)0.0167 (14)0.0132 (14)0.0025 (11)0.0014 (11)0.0024 (11)
C50.0186 (14)0.0278 (17)0.0243 (16)0.0010 (12)0.0049 (12)0.0080 (13)
C40.0171 (14)0.0284 (18)0.0291 (18)0.0070 (12)0.0017 (12)0.0023 (14)
C200.0120 (13)0.0177 (15)0.0373 (19)0.0008 (11)0.0024 (12)0.0008 (13)
C210.0142 (13)0.0163 (15)0.0281 (17)0.0030 (11)0.0040 (11)0.0014 (12)
C220.0178 (13)0.0090 (13)0.0186 (14)0.0003 (10)0.0037 (11)0.0005 (11)
C180.0178 (12)0.0088 (12)0.0180 (14)0.0039 (10)0.0025 (11)0.0041 (11)
C150.0185 (13)0.0116 (13)0.0144 (14)0.0039 (10)0.0010 (10)0.0006 (11)
C170.0212 (14)0.0145 (14)0.0196 (15)0.0020 (11)0.0041 (11)0.0061 (12)
Geometric parameters (Å, º) top
Rh1—C152.105 (3)C11—H110.9500
Rh1—C222.121 (3)C2—H2A0.9500
Rh1—C192.144 (3)C14—C131.391 (4)
Rh1—C182.170 (3)C14—H140.9500
Rh1—S12.3803 (7)C13—H130.9500
Rh1—Cl12.3850 (7)C19—C181.382 (4)
S1—C81.696 (3)C19—C201.510 (4)
O1—C71.224 (3)C19—H191.0000
N2—C81.325 (4)C16—C151.504 (4)
N2—C91.436 (3)C16—C171.538 (4)
N2—H20.8800C16—H16A0.9900
N1—C81.381 (3)C16—H16B0.9900
N1—C71.385 (4)C5—C41.375 (5)
N1—H10.8800C5—H50.9500
C9—C141.386 (4)C4—H40.9500
C9—C101.388 (4)C20—C211.537 (4)
C10—C111.393 (4)C20—H20A0.9900
C10—H100.9500C20—H20B0.9900
C6—C51.388 (4)C21—C221.528 (4)
C6—C11.392 (4)C21—H21A0.9900
C6—H60.9500C21—H21B0.9900
C12—C111.388 (4)C22—C151.410 (4)
C12—C131.394 (4)C22—H221.0000
C12—H120.9500C18—C171.521 (4)
C1—C21.393 (4)C18—H181.0000
C1—C71.496 (4)C15—H151.0000
C3—C41.382 (5)C17—H17A0.9900
C3—C21.395 (4)C17—H17B0.9900
C3—H30.9500
C15—Rh1—C2238.97 (11)C14—C13—H13120.1
C15—Rh1—C1997.74 (11)C12—C13—H13120.1
C22—Rh1—C1982.06 (11)C18—C19—C20125.5 (3)
C15—Rh1—C1881.32 (11)C18—C19—Rh172.36 (16)
C22—Rh1—C1889.91 (11)C20—C19—Rh1109.79 (19)
C19—Rh1—C1837.35 (11)C18—C19—H19113.8
C15—Rh1—S185.42 (8)C20—C19—H19113.8
C22—Rh1—S189.46 (8)Rh1—C19—H19113.8
C19—Rh1—S1161.71 (9)C15—C16—C17112.8 (2)
C18—Rh1—S1159.60 (8)C15—C16—H16A109.0
C15—Rh1—Cl1160.03 (8)C17—C16—H16A109.0
C22—Rh1—Cl1160.91 (8)C15—C16—H16B109.0
C19—Rh1—Cl189.02 (8)C17—C16—H16B109.0
C18—Rh1—Cl193.19 (8)H16A—C16—H16B107.8
S1—Rh1—Cl194.05 (2)C4—C5—C6120.6 (3)
C8—S1—Rh1112.67 (10)C4—C5—H5119.7
C8—N2—C9124.8 (2)C6—C5—H5119.7
C8—N2—H2117.6C5—C4—C3119.9 (3)
C9—N2—H2117.6C5—C4—H4120.0
C8—N1—C7126.9 (2)C3—C4—H4120.0
C8—N1—H1116.5C19—C20—C21113.1 (2)
C7—N1—H1116.5C19—C20—H20A109.0
C14—C9—C10120.7 (3)C21—C20—H20A109.0
C14—C9—N2118.8 (3)C19—C20—H20B109.0
C10—C9—N2120.5 (3)C21—C20—H20B109.0
N2—C8—N1118.5 (3)H20A—C20—H20B107.8
N2—C8—S1122.2 (2)C22—C21—C20112.1 (2)
N1—C8—S1119.1 (2)C22—C21—H21A109.2
C9—C10—C11119.3 (3)C20—C21—H21A109.2
C9—C10—H10120.3C22—C21—H21B109.2
C11—C10—H10120.3C20—C21—H21B109.2
C5—C6—C1119.6 (3)H21A—C21—H21B107.9
C5—C6—H6120.2C15—C22—C21123.7 (3)
C1—C6—H6120.2C15—C22—Rh169.93 (16)
C11—C12—C13119.9 (3)C21—C22—Rh1113.40 (19)
C11—C12—H12120.1C15—C22—H22114.0
C13—C12—H12120.1C21—C22—H22114.0
C6—C1—C2120.0 (3)Rh1—C22—H22114.0
C6—C1—C7115.9 (3)C19—C18—C17122.9 (3)
C2—C1—C7123.9 (3)C19—C18—Rh170.29 (16)
O1—C7—N1121.6 (2)C17—C18—Rh1112.65 (18)
O1—C7—C1122.5 (3)C19—C18—H18114.4
N1—C7—C1115.9 (2)C17—C18—H18114.4
C4—C3—C2120.5 (3)Rh1—C18—H18114.4
C4—C3—H3119.7C22—C15—C16125.6 (2)
C2—C3—H3119.7C22—C15—Rh171.11 (16)
C12—C11—C10120.4 (3)C16—C15—Rh1111.48 (19)
C12—C11—H11119.8C22—C15—H15113.7
C10—C11—H11119.8C16—C15—H15113.7
C1—C2—C3119.2 (3)Rh1—C15—H15113.7
C1—C2—H2A120.4C18—C17—C16111.3 (2)
C3—C2—H2A120.4C18—C17—H17A109.4
C9—C14—C13119.8 (3)C16—C17—H17A109.4
C9—C14—H14120.1C18—C17—H17B109.4
C13—C14—H14120.1C16—C17—H17B109.4
C14—C13—C12119.9 (3)H17A—C17—H17B108.0
C15—Rh1—S1—C8147.13 (13)C18—C19—C20—C2147.9 (4)
C22—Rh1—S1—C8108.32 (13)Rh1—C19—C20—C2134.1 (3)
C19—Rh1—S1—C846.3 (3)C19—C20—C21—C2229.6 (4)
C18—Rh1—S1—C8163.4 (2)C20—C21—C22—C1591.3 (4)
Cl1—Rh1—S1—C852.90 (11)C20—C21—C22—Rh110.6 (3)
C8—N2—C9—C14120.1 (3)C19—Rh1—C22—C15112.87 (18)
C8—N2—C9—C1062.3 (4)C18—Rh1—C22—C1576.23 (17)
C9—N2—C8—N1177.1 (2)S1—Rh1—C22—C1583.38 (15)
C9—N2—C8—S11.8 (4)Cl1—Rh1—C22—C15175.75 (18)
C7—N1—C8—N214.4 (4)C15—Rh1—C22—C21119.1 (3)
C7—N1—C8—S1161.1 (2)C19—Rh1—C22—C216.2 (2)
Rh1—S1—C8—N2175.2 (2)C18—Rh1—C22—C2142.8 (2)
Rh1—S1—C8—N10.1 (2)S1—Rh1—C22—C21157.6 (2)
C14—C9—C10—C111.0 (4)Cl1—Rh1—C22—C2156.7 (4)
N2—C9—C10—C11176.5 (3)C20—C19—C18—C172.7 (4)
C5—C6—C1—C20.5 (5)Rh1—C19—C18—C17104.8 (2)
C5—C6—C1—C7176.2 (3)C20—C19—C18—Rh1102.1 (3)
C8—N1—C7—O112.9 (4)C15—Rh1—C18—C19115.12 (18)
C8—N1—C7—C1164.3 (3)C22—Rh1—C18—C1976.96 (18)
C6—C1—C7—O111.1 (4)S1—Rh1—C18—C19165.15 (18)
C2—C1—C7—O1172.3 (3)Cl1—Rh1—C18—C1984.20 (16)
C6—C1—C7—N1166.1 (3)C15—Rh1—C18—C173.3 (2)
C2—C1—C7—N110.5 (4)C22—Rh1—C18—C1741.4 (2)
C13—C12—C11—C100.7 (4)C19—Rh1—C18—C17118.4 (3)
C9—C10—C11—C120.1 (4)S1—Rh1—C18—C1746.8 (3)
C6—C1—C2—C30.5 (5)Cl1—Rh1—C18—C17157.41 (19)
C7—C1—C2—C3175.9 (3)C21—C22—C15—C162.0 (4)
C4—C3—C2—C10.1 (5)Rh1—C22—C15—C16103.4 (3)
C10—C9—C14—C131.1 (4)C21—C22—C15—Rh1105.3 (3)
N2—C9—C14—C13176.4 (3)C17—C16—C15—C2246.0 (4)
C9—C14—C13—C120.4 (4)C17—C16—C15—Rh135.6 (3)
C11—C12—C13—C140.5 (4)C19—Rh1—C15—C2267.06 (18)
C15—Rh1—C19—C1864.59 (18)C18—Rh1—C15—C22100.73 (17)
C22—Rh1—C19—C18100.38 (18)S1—Rh1—C15—C2294.81 (15)
S1—Rh1—C19—C18163.5 (2)Cl1—Rh1—C15—C22175.93 (17)
Cl1—Rh1—C19—C1896.55 (16)C22—Rh1—C15—C16121.7 (3)
C15—Rh1—C19—C2057.6 (2)C19—Rh1—C15—C1654.7 (2)
C22—Rh1—C19—C2021.8 (2)C18—Rh1—C15—C1621.0 (2)
C18—Rh1—C19—C20122.2 (3)S1—Rh1—C15—C16143.47 (19)
S1—Rh1—C19—C2041.2 (4)Cl1—Rh1—C15—C1654.2 (3)
Cl1—Rh1—C19—C20141.2 (2)C19—C18—C17—C1695.1 (3)
C1—C6—C5—C40.0 (5)Rh1—C18—C17—C1614.6 (3)
C6—C5—C4—C30.4 (5)C15—C16—C17—C1832.7 (3)
C2—C3—C4—C50.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.881.992.657 (3)132
N2—H2···O1i0.882.323.053 (3)141
N1—H1···Cl10.882.473.253 (3)148
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[RhCl(C8H12)(C14H12N2OS)]
Mr502.85
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6703 (2), 10.1665 (4), 14.9616 (5)
α, β, γ (°)96.891 (2), 91.588 (2), 90.616 (2)
V3)1006.78 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.18 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.827, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
18721, 4980, 4476
Rint0.032
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.103, 1.23
No. of reflections4980
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.66

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Rh1—C152.105 (3)Rh1—C182.170 (3)
Rh1—C222.121 (3)Rh1—S12.3803 (7)
Rh1—C192.144 (3)Rh1—Cl12.3850 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.881.992.657 (3)131.7
N2—H2···O1i0.882.323.053 (3)140.8
N1—H1···Cl10.882.473.253 (3)147.7
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Current address [OK?]: Sasol Technology Research & Development, PO Box 1, Sasolburg 1947 South Africa.

Acknowledgements

Gratitude is due to the University of Free State, NRF, as well as THRIP for their financial assistance. Part of this material is based on work supported by Sasol via bursary funds.

References

First citationBahl, M., Hakansson, M., Mahmoudkhani, A. H. & Ohrstrom, L. (2000). Organometallics, 19, 5589–5596.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m2831–m2832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1996). Rhodium Express, 16, 17–22.  CAS Google Scholar
First citationKemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481–4483.  Web of Science CSD CrossRef Google Scholar
First citationLeipoldt, J. G., Basson, S. S., Lamprecht, G. J., Bok, L. D. C. & Schlebusch, J. J. J. (1980). Inorg. Chim. Acta, 40, 43–46.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeipoldt, J. G., Bok, L. D. C., Basson, S. S., van Vollenhoven, J. S. & Gerber, T. I. A. (1977). Inorg. Chim. Acta, 25, L63–L64.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A., Leipoldt, J. G., Koch, K. R. & Matoetoe, M. (1994). Rhodium Express, 7–8, 39–42.  CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473–m475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds