organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ep­­oxy­cytochalasin H methanol solvate

aScientific Research Center, Chengdu Medical College, Chengdu 610083, People's Republic of China, and bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*Correspondence e-mail: qiangzou99@gmail.com

(Received 8 June 2010; accepted 26 July 2010; online 31 July 2010)

In the title solvate, C30H39NO5·CH4O {systematic name: 21-acet­oxy-18,21-dihy­droxy-5,6,16,18-tetra­methyl-10-phenyl-6,7-ep­oxy-[11]cytochalasa-13,19-dien-1-one methanol solvate}, the organic mol­ecule exhibits the tetra­cyclic terpenoid skeleton of cytochalasin, consisting of fused five-, six-, three- and 11-membered rings. The five-membered ring adopts an envelope conformation, while the six-membered ring is in a boat conformation. The ep­oxy O atom on the six-membered ring is pointing away from the five-membered ring. An inter­stitial methanol solvent mol­ecule is hydrogen bonded to the cytochalasin mol­ecules and inter­molecular O—H⋯O and N—H⋯O hydrogen bonds connect the mol­ecules into infinite chains along the ([\overline{1}]10) direction.

Related literature

For the isolation and structure elucidation of the title compound, see: Cole et al. (1982[Cole, R. J., Wilson, D. M., Harper, J. L., Cox, R. H., Cochran, T. W., Cutler, H. G. & Bell, D. K. (1982). J. Agric. Food Chem. 30, 301-304.]). For related structures, see: Buchi et al. (1973[Buchi, G., Kitaura, Y., Yuan, S., Wright, H. E., Clardy, J., Demain, A. L., Glinsukon, T., Hunt, N. & Wogan, G. N. (1973). J. Am. Chem. Soc. 95, 5423-5425.]); Beno et al. (1977[Beno, M. A., Cox, R. H., Wells, J. M., Cole, R. J., Kirksey, J. W. & Christoph, G. G. (1977). J. Am. Chem. Soc. 99, 4123-4130.]); Capasso et al. (1988[Capasso, R., Evidente, A. & Ritieni, A. (1988). J. Nat. Prod. 51, 567-571.]); Edwards & Maitland et al. (1989[Edwards, R. L. & Maitland, D. J. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 57-65.]); Chen et al. (1993[Chen, T. S., Doss, G. A., Hsu, A., Lingham, R. B., White, R. F. & Monaghan, R. L. (1993). J. Nat. Prod. 56, 755-761.]); Feng et al. (2002[Feng, Y., Blunt, J. W., Cole, A. L. J. & Munro, M. H. G. (2002). J. Nat. Prod. 65, 1274-1277.]); Evidente et al. (2002[Evidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2002). Phytochemistry, 60, 45-53.], 2003[Evidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2003). J. Nat. Prod. 66, 1540-1544.]); Rochfort et al. (2008[Rochfort, S., Ford, J., Ovenden, S., Wan, S. S., George, S., Wildman, H., Tait, R. M., Zhang, Y., Tian, R., Liu, S., Chen, X., Liu, X. & Che, Y. (2008). Bioorg. Med. Chem. 16, 2627-2634.]); Herath et al. (2005[Herath, K. B., Jayasuriya, H., Ondeyka, J. G., Polishook, J. D., Bills, G. F., Dombrowski, A. W., Cabelo, A., Vicario, P. P., Zweerink, H., Guan, Z. & Singh, S. B. (2005). J. Antibiot. 58, 689-694.]); Ding et al. (2006[Ding, G., Song, Y. C., Chen, J. R., Xu, C., Ge, H. M., Wang, X. T. & Tan, R. X. (2006). J. Nat. Prod. 69, 302-304.]). For total syntheses of related compounds, see: Haidle & Myers et al. (2004[Haidle, A. M. & Myers, A. G. (2004). Proc. Natl. Acad. Sci. USA, 101, 12048-12053.]). For the biological activity of related compounds, see: Hirose et al. (1990[Hirose, T., Izawa, Y., Koyama, K., Natori, S., Iida, K., Yahara, I., Shimaoka, S. & Maruyama, K. (1990). Chem. Pharm. Bull. 38, 971-974.]); Lingham et al. (1992[Lingham, R. B., Hsu, A., Silverman, K. C., Bills, G. F., Dombrowski, A., Goldman, M. E., Darke, P. L., Huang, L., Koch, G., Ondeyka, J. G. & Goetz, M. A. (1992). J. Antibiot. 45, 686-691.]); Burres et al. (1992[Burres, N. S., Premachandran, U., Humphrey, P. E., Jackson, M. & Chen, R. H. (1992). J. Antibiot. 45, 1367-1369.]); Meurer-Grimes et al. (2005[Meurer-Grimes, B., Cox, S., Coates, J. & Rhodes, D. (2005). J. Antibiot. 58, 279-283.])

[Scheme 1]

Experimental

Crystal data
  • C30H39NO5·CH4O

  • Mr = 525.66

  • Triclinic, P 1

  • a = 8.367 (2) Å

  • b = 8.5937 (18) Å

  • c = 10.917 (3) Å

  • α = 75.312 (9)°

  • β = 87.779 (10)°

  • γ = 68.150 (8)°

  • V = 703.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.50 × 0.50 × 0.28 mm

Data collection
  • Rigaku SPIDER diffractometer

  • 7075 measured reflections

  • 3175 independent reflections

  • 3015 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.00

  • 3175 reflections

  • 361 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O6 0.83 (3) 1.94 (3) 2.722 (2) 157 (3)
N2—H2N⋯O3i 0.90 (3) 1.97 (3) 2.867 (2) 175 (2)
O6—H6O⋯O2ii 0.84 (3) 1.90 (3) 2.736 (2) 176 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) x+1, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fungus Phomopsis sp.108 is a plant pathogen. Cytochalasins from this fungus inhibit a variety of cellular movements, including cell division and motility, and cause changes in cell shape. In our study on the chemical constituents of the secondary metabolites from this fungus, the title compound was isolated. Its structure was elucidated by spectroscopic analysis and was confirmed by single-crystal X-ray diffraction analysis. The asymmetric unit (Fig. 1) of the title compound contains a cytochalasin-structure and a methanol molecule. The cytochalasin-structure has a tetracyclic terpenoid skeleton, consisting of fused five-, six-, three- and eleven-membered rings (A: C1/N2/C3—C4/C9, B: C4—C9, C: C6—C7/O1, D: C9—C8/C13—C21). Cis junctions are present between ring A and ring B and also ring B and ring C, while there is a trans junction is between ring B and ring D. Ring A adopts an envelope conformation while ring B is in a chair conformation. The epoxy atom in ring R is pointing away from ring A. Intermolecular O—H···O and N—H···O hydrogen bonds are present in the crystal structure, and an eight-membered ring is formed by the hydrogen bonding interaction between two cytochalasin molecules and one methanol molecule (Fig. 2).

Related literature top

For the isolation and structure elucidation of the title compound, see: Cole et al. (1982). For related structures, see: Buchi et al. (1973); Beno et al. (1977); Capasso et al. (1988); Edwards & Maitland et al. (1989); Chen et al. (1993); Feng et al. (2002); Evidente et al. (2002, 2003); Rochfort et al. (2008); Herath et al. (2005); Ding et al. (2006). For total syntheses of related compounds, see: Haidle & Myers et al. (2004). For the biological activity of related compounds, see: Hirose et al. (1990); Lingham et al. (1992); Burres et al. (1992); Meurer-Grimes et al. (2005)

Experimental top

A solid-state fermented rice culture (4 kg) of Phomopsis sp.108 was extracted with ethyl acetate. The solvent was evaporated in vacuo to afford a residue (60.0 g). This residue was separated over a silica gel column (Silica gel: 800 g) eluted with petroleum ether/acetone (3:1, 4000 ml) to afford fractions A (18.0 g), B (6.5 g), C (4.8 g), D (5.5 g), E (7.6 g). The title compound (0.5 g) was deposited repeatedly from fraction C in the solvent system of petroleum ether/acetone (2:1) (The Rf value of the title compound in this solvent system was 0.35). It was then crystallized in methanol by slow evaporation in a shady place to afford suitable crystals for single-crystal X-ray diffraction analysis.

13C NMR (150 MHz, CDCl3, δ, p.p.m.): 175.0(C1), 170.0(C29), 138.0(C14), 137.2(C31), 136.0(C20), 130.2(C24, 28), 128.7(C25, 27), 127.6(C19), 127.1(C13), 125.5(C26), 76.0(C21), 74.1(C18), 62.9(C7), 57.0(C6), 53.8(C3), 53.7(C17), 53.5(C9), 51.1(C4), 45.7(C15), 45.0(C8), 43.1(C10), 36.6(C5), 30.1(C16), 28.6(C23), 26.4(C22), 20.6(C30), 19.5(C12), 13.0(C11). The 13C NMR values are in accordance with those reported by Cole (Cole et al. (1982)).

Refinement top

All hydrogen atoms were located geometrically with C—H distances of 0.95–1.00 Å. The H of O-3, O-6 and N-2 were located in difference Fourier maps and were refined with O—H distances of 0.83 (3)–0.84 (3) Å. H atoms on carbon atoms were placed geometrically with C—H distances of 0.95–1.00 Å (Uiso(H) = 1.2Ueq(C)). The absolute configuration could not be determined from the X-ray analysis, owing to the absence of significant anomalous scatterers, and Friedel pairs were merged. However, when the title compound was orginally isolated by Cole (Cole et al. (1982)), its absolute configuration was confirmed by comparison with a similar compound (Cytochalasin H) of which the absolute configuration was previously reported by Beno (Beno et al. (1977)). Thus the absolute configuration of the title compound was assigned by a comparison between the measured optical rotatory power ([α]25D=-91° (c=0.1, CHCl3)) and the value ([α]30D=-84.68° (c=0.33, CHCl3)) reported by Cole (Cole et al. (1982)).

Structure description top

The fungus Phomopsis sp.108 is a plant pathogen. Cytochalasins from this fungus inhibit a variety of cellular movements, including cell division and motility, and cause changes in cell shape. In our study on the chemical constituents of the secondary metabolites from this fungus, the title compound was isolated. Its structure was elucidated by spectroscopic analysis and was confirmed by single-crystal X-ray diffraction analysis. The asymmetric unit (Fig. 1) of the title compound contains a cytochalasin-structure and a methanol molecule. The cytochalasin-structure has a tetracyclic terpenoid skeleton, consisting of fused five-, six-, three- and eleven-membered rings (A: C1/N2/C3—C4/C9, B: C4—C9, C: C6—C7/O1, D: C9—C8/C13—C21). Cis junctions are present between ring A and ring B and also ring B and ring C, while there is a trans junction is between ring B and ring D. Ring A adopts an envelope conformation while ring B is in a chair conformation. The epoxy atom in ring R is pointing away from ring A. Intermolecular O—H···O and N—H···O hydrogen bonds are present in the crystal structure, and an eight-membered ring is formed by the hydrogen bonding interaction between two cytochalasin molecules and one methanol molecule (Fig. 2).

For the isolation and structure elucidation of the title compound, see: Cole et al. (1982). For related structures, see: Buchi et al. (1973); Beno et al. (1977); Capasso et al. (1988); Edwards & Maitland et al. (1989); Chen et al. (1993); Feng et al. (2002); Evidente et al. (2002, 2003); Rochfort et al. (2008); Herath et al. (2005); Ding et al. (2006). For total syntheses of related compounds, see: Haidle & Myers et al. (2004). For the biological activity of related compounds, see: Hirose et al. (1990); Lingham et al. (1992); Burres et al. (1992); Meurer-Grimes et al. (2005)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title molecule, viewed down the a axis. Most of the H-atoms were omitted for clarity. The intermolecular O—H···O and N—H···O hydrogen bonds are marked as dashed lines.
21-acetoxy-18,21-dihydroxy-5,6,16,18-tetramethyl-10-phenyl-6,7- epoxy-[11]cytochalasa-13,19-dien-1-one methanol solvate top
Crystal data top
C30H39NO5·CH4OF(000) = 284
Mr = 525.66Dx = 1.241 Mg m3
Triclinic, P1Melting point: 398 K
a = 8.367 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5937 (18) ÅCell parameters from 2524 reflections
c = 10.917 (3) Åθ = 3.2–27.5°
α = 75.312 (9)°µ = 0.09 mm1
β = 87.779 (10)°T = 93 K
γ = 68.150 (8)°Block, colorless
V = 703.4 (3) Å30.50 × 0.50 × 0.28 mm
Z = 1
Data collection top
Rigaku SPIDER
diffractometer
3015 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 1010
7075 measured reflectionsk = 1110
3175 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.116P]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.23 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C30H39NO5·CH4Oγ = 68.150 (8)°
Mr = 525.66V = 703.4 (3) Å3
Triclinic, P1Z = 1
a = 8.367 (2) ÅMo Kα radiation
b = 8.5937 (18) ŵ = 0.09 mm1
c = 10.917 (3) ÅT = 93 K
α = 75.312 (9)°0.50 × 0.50 × 0.28 mm
β = 87.779 (10)°
Data collection top
Rigaku SPIDER
diffractometer
3015 reflections with I > 2σ(I)
7075 measured reflectionsRint = 0.022
3175 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3175 reflectionsΔρmin = 0.16 e Å3
361 parameters
Special details top

Experimental. 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 175.0(C1), 170.0(C29), 138.0(C14), 137.2(C31), 136.0(C20), 130.2(C24,28), 128.7(C25, 27), 127.6(C19), 127.1(C13), 125.5(C26), 76.0(C21), 74.1(C18), 62.9(C7), 57.0(C6), 53.8(C3), 53.7(C17), 53.5(C9), 51.1(C4), 45.7(C15), 45.0(C8), 43.1(C10), 36.6(C5), 30.1(C16), 28.6(C23), 26.4(C22), 20.6(C30), 19.5(C12), 13.0(C11). And they are in accordance with those reported by Cole (Cole et al. (1982)).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26599 (18)0.47464 (18)0.27188 (13)0.0196 (3)
O20.05816 (17)0.57776 (17)0.56786 (12)0.0187 (3)
O30.80244 (17)0.04100 (17)0.57468 (13)0.0173 (3)
O40.34749 (16)0.40110 (17)0.24838 (12)0.0161 (3)
O50.40913 (18)0.60342 (19)0.09849 (13)0.0233 (3)
N20.0535 (2)0.8235 (2)0.40622 (15)0.0155 (3)
C10.0353 (2)0.6548 (2)0.45346 (17)0.0145 (4)
C30.0527 (2)0.8866 (2)0.26910 (17)0.0141 (4)
H30.17310.96140.23360.017*
C40.0084 (2)0.7177 (2)0.22278 (16)0.0134 (3)
H40.09760.72270.15980.016*
C50.1383 (2)0.6900 (2)0.15966 (17)0.0151 (4)
H50.08120.58460.12730.018*
C60.2551 (2)0.6432 (2)0.26100 (17)0.0158 (4)
C70.1616 (2)0.4928 (2)0.36551 (17)0.0165 (4)
H70.20820.49260.45130.020*
C80.0336 (2)0.4143 (2)0.36131 (17)0.0148 (4)
H80.05860.37240.28250.018*
C90.0983 (2)0.5674 (2)0.34475 (17)0.0134 (3)
C100.0622 (2)0.9935 (2)0.23827 (17)0.0171 (4)
H10A0.03251.07560.29250.021*
H10B0.18370.91390.26110.021*
C110.2324 (3)0.8372 (3)0.04402 (18)0.0205 (4)
H11A0.31760.80740.00580.025*
H11B0.14880.85400.01830.025*
H11C0.29100.94440.07040.025*
C120.4211 (2)0.7803 (3)0.28126 (19)0.0204 (4)
H12A0.50060.82010.20630.024*
H12B0.39780.87850.29500.024*
H12C0.47320.73180.35570.024*
C130.1132 (2)0.2589 (2)0.47220 (18)0.0168 (4)
H130.07270.26580.55390.020*
C140.2369 (2)0.1131 (2)0.46122 (18)0.0172 (4)
H140.27740.11100.37890.021*
C150.3193 (2)0.0482 (2)0.56493 (18)0.0186 (4)
H15A0.31110.14770.53930.022*
H15B0.25470.03680.64210.022*
C160.5108 (2)0.0869 (2)0.59701 (18)0.0183 (4)
H160.56850.07150.51530.022*
C170.5316 (2)0.0393 (3)0.66833 (18)0.0177 (4)
H17A0.41500.11890.68130.021*
H17B0.58830.02910.75320.021*
C180.6351 (2)0.1496 (2)0.60366 (17)0.0151 (4)
C190.5449 (2)0.2644 (2)0.47624 (17)0.0152 (4)
H190.59530.23450.40180.018*
C200.4017 (2)0.4024 (3)0.46214 (17)0.0169 (4)
H200.36000.43940.53620.020*
C210.2980 (2)0.5068 (2)0.33880 (17)0.0143 (4)
H210.32810.61160.30580.017*
C220.5994 (3)0.2758 (3)0.6732 (2)0.0287 (5)
H22A0.54330.29510.75300.034*
H22B0.72130.30010.69150.034*
H22C0.59030.35310.62380.034*
C230.6591 (3)0.2519 (3)0.69262 (18)0.0193 (4)
H23A0.72330.17100.77100.023*
H23B0.54590.32670.71270.023*
H23C0.72350.32350.65120.023*
C240.1621 (3)1.0297 (3)0.0148 (2)0.0231 (4)
H240.24950.91700.04030.028*
C250.1483 (3)1.1291 (3)0.1103 (2)0.0333 (5)
H250.22641.08320.16930.040*
C260.0226 (4)1.2931 (3)0.1488 (2)0.0346 (6)
H260.01441.36020.23380.042*
C270.0913 (4)1.3590 (3)0.0630 (2)0.0331 (5)
H270.17831.47190.08900.040*
C280.0791 (3)1.2605 (3)0.06136 (19)0.0235 (4)
H280.15861.30660.11960.028*
C290.4050 (2)0.4611 (3)0.13584 (17)0.0180 (4)
C300.4606 (3)0.3225 (3)0.0651 (2)0.0293 (5)
H30A0.50330.36520.01630.035*
H30B0.36200.29280.05000.035*
H30C0.55260.21910.11550.035*
C310.0484 (2)1.0952 (2)0.10157 (18)0.0165 (4)
O61.0050 (2)0.2459 (2)0.75153 (14)0.0272 (3)
C321.1481 (3)0.3222 (3)0.8413 (2)0.0270 (5)
H32A1.15230.23590.88370.032*
H32B1.25460.36290.79790.032*
H32C1.13630.42050.90440.032*
H6O1.023 (4)0.304 (4)0.698 (3)0.036 (8)*
H3O0.856 (4)0.027 (4)0.641 (3)0.043 (8)*
H2N0.098 (3)0.897 (3)0.455 (2)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (7)0.0198 (7)0.0219 (7)0.0094 (6)0.0008 (5)0.0053 (6)
O20.0231 (7)0.0167 (7)0.0131 (6)0.0052 (6)0.0016 (5)0.0020 (5)
O30.0116 (6)0.0165 (7)0.0176 (7)0.0010 (5)0.0018 (5)0.0032 (6)
O40.0153 (6)0.0157 (7)0.0150 (6)0.0027 (5)0.0010 (5)0.0050 (5)
O50.0200 (7)0.0246 (8)0.0202 (7)0.0062 (6)0.0026 (5)0.0004 (6)
N20.0172 (8)0.0126 (8)0.0142 (8)0.0023 (6)0.0018 (6)0.0041 (6)
C10.0118 (8)0.0153 (9)0.0161 (9)0.0048 (7)0.0012 (6)0.0042 (7)
C30.0139 (8)0.0129 (9)0.0129 (8)0.0027 (7)0.0003 (6)0.0024 (7)
C40.0123 (8)0.0134 (9)0.0118 (8)0.0025 (7)0.0003 (6)0.0023 (7)
C50.0143 (9)0.0154 (9)0.0139 (8)0.0038 (7)0.0006 (6)0.0035 (7)
C60.0137 (9)0.0170 (10)0.0179 (9)0.0062 (7)0.0011 (7)0.0055 (7)
C70.0153 (9)0.0188 (10)0.0168 (9)0.0084 (8)0.0016 (7)0.0042 (7)
C80.0150 (9)0.0136 (9)0.0153 (9)0.0050 (7)0.0005 (7)0.0034 (7)
C90.0130 (8)0.0115 (9)0.0134 (8)0.0027 (7)0.0001 (6)0.0017 (7)
C100.0192 (9)0.0161 (10)0.0165 (9)0.0073 (8)0.0021 (7)0.0034 (7)
C110.0208 (10)0.0214 (11)0.0162 (9)0.0049 (8)0.0036 (7)0.0037 (8)
C120.0147 (9)0.0244 (11)0.0220 (9)0.0064 (8)0.0012 (7)0.0076 (8)
C130.0179 (9)0.0166 (9)0.0169 (9)0.0082 (8)0.0002 (7)0.0029 (7)
C140.0193 (9)0.0165 (10)0.0171 (9)0.0096 (8)0.0019 (7)0.0018 (7)
C150.0191 (9)0.0135 (10)0.0230 (10)0.0066 (8)0.0017 (7)0.0030 (8)
C160.0165 (9)0.0143 (9)0.0221 (10)0.0041 (7)0.0015 (7)0.0033 (8)
C170.0179 (9)0.0177 (10)0.0162 (9)0.0066 (8)0.0007 (7)0.0025 (7)
C180.0126 (8)0.0142 (9)0.0155 (9)0.0021 (7)0.0001 (6)0.0028 (7)
C190.0155 (9)0.0154 (9)0.0151 (9)0.0062 (7)0.0020 (7)0.0041 (7)
C200.0164 (9)0.0194 (10)0.0145 (9)0.0053 (8)0.0002 (7)0.0056 (7)
C210.0156 (8)0.0121 (9)0.0144 (8)0.0041 (7)0.0017 (7)0.0038 (7)
C220.0228 (11)0.0158 (10)0.0417 (13)0.0042 (9)0.0060 (9)0.0009 (9)
C230.0213 (10)0.0164 (10)0.0192 (9)0.0054 (8)0.0020 (7)0.0048 (8)
C240.0233 (10)0.0235 (11)0.0259 (10)0.0114 (9)0.0062 (8)0.0090 (9)
C250.0455 (14)0.0428 (15)0.0246 (11)0.0288 (12)0.0159 (10)0.0140 (11)
C260.0605 (17)0.0341 (13)0.0178 (10)0.0319 (13)0.0010 (10)0.0006 (9)
C270.0493 (15)0.0190 (11)0.0265 (11)0.0121 (11)0.0105 (10)0.0024 (9)
C280.0305 (11)0.0186 (10)0.0201 (10)0.0081 (9)0.0004 (8)0.0040 (8)
C290.0129 (8)0.0209 (10)0.0144 (9)0.0011 (7)0.0004 (7)0.0027 (7)
C300.0300 (12)0.0277 (12)0.0203 (10)0.0016 (9)0.0032 (8)0.0086 (9)
C310.0197 (9)0.0150 (9)0.0185 (9)0.0107 (8)0.0000 (7)0.0040 (7)
O60.0292 (8)0.0218 (8)0.0222 (8)0.0026 (6)0.0077 (6)0.0086 (6)
C320.0262 (11)0.0287 (12)0.0241 (10)0.0094 (9)0.0045 (8)0.0037 (9)
Geometric parameters (Å, º) top
O1—C71.444 (2)C15—C161.545 (3)
O1—C61.460 (2)C15—H15A0.9900
O2—C11.241 (2)C15—H15B0.9900
O3—C181.440 (2)C16—C221.531 (3)
O3—H3O0.83 (3)C16—C171.547 (3)
O4—C291.351 (2)C16—H161.0000
O4—C211.454 (2)C17—C181.540 (3)
O5—C291.200 (3)C17—H17A0.9900
N2—C11.330 (2)C17—H17B0.9900
N2—C31.458 (2)C18—C191.519 (3)
N2—H2N0.90 (3)C18—C231.528 (3)
C1—C91.536 (2)C19—C201.315 (3)
C3—C101.535 (3)C19—H190.9500
C3—C41.557 (2)C20—C211.506 (3)
C3—H31.0000C20—H200.9500
C4—C51.551 (2)C21—H211.0000
C4—C91.578 (2)C22—H22A0.9800
C4—H41.0000C22—H22B0.9800
C5—C61.524 (2)C22—H22C0.9800
C5—C111.530 (3)C23—H23A0.9800
C5—H51.0000C23—H23B0.9800
C6—C71.467 (3)C23—H23C0.9800
C6—C121.502 (3)C24—C311.386 (3)
C7—C81.521 (3)C24—C251.398 (3)
C7—H71.0000C24—H240.9500
C8—C131.508 (3)C25—C261.378 (4)
C8—C91.569 (2)C25—H250.9500
C8—H81.0000C26—C271.379 (4)
C9—C211.559 (2)C26—H260.9500
C10—C311.510 (3)C27—C281.390 (3)
C10—H10A0.9900C27—H270.9500
C10—H10B0.9900C28—C311.393 (3)
C11—H11A0.9800C28—H280.9500
C11—H11B0.9800C29—C301.502 (3)
C11—H11C0.9800C30—H30A0.9800
C12—H12A0.9800C30—H30B0.9800
C12—H12B0.9800C30—H30C0.9800
C12—H12C0.9800O6—C321.416 (3)
C13—C141.325 (3)O6—H6O0.84 (3)
C13—H130.9500C32—H32A0.9800
C14—C151.494 (3)C32—H32B0.9800
C14—H140.9500C32—H32C0.9800
C7—O1—C660.70 (12)C16—C15—H15B108.9
C18—O3—H3O109 (2)H15A—C15—H15B107.7
C29—O4—C21119.78 (14)C22—C16—C15109.93 (16)
C1—N2—C3115.28 (15)C22—C16—C17111.15 (17)
C1—N2—H2N122.7 (16)C15—C16—C17112.02 (15)
C3—N2—H2N121.5 (16)C22—C16—H16107.9
O2—C1—N2125.31 (17)C15—C16—H16107.9
O2—C1—C9124.87 (17)C17—C16—H16107.9
N2—C1—C9109.76 (15)C18—C17—C16116.27 (15)
N2—C3—C10109.65 (14)C18—C17—H17A108.2
N2—C3—C4103.39 (14)C16—C17—H17A108.2
C10—C3—C4115.66 (15)C18—C17—H17B108.2
N2—C3—H3109.3C16—C17—H17B108.2
C10—C3—H3109.3H17A—C17—H17B107.4
C4—C3—H3109.3O3—C18—C19105.29 (14)
C5—C4—C3113.89 (14)O3—C18—C23108.79 (15)
C5—C4—C9112.81 (14)C19—C18—C23113.22 (15)
C3—C4—C9104.64 (14)O3—C18—C17110.76 (15)
C5—C4—H4108.4C19—C18—C17109.41 (15)
C3—C4—H4108.4C23—C18—C17109.31 (15)
C9—C4—H4108.4C20—C19—C18124.34 (16)
C6—C5—C11114.86 (16)C20—C19—H19117.8
C6—C5—C4109.27 (14)C18—C19—H19117.8
C11—C5—C4113.97 (15)C19—C20—C21125.68 (17)
C6—C5—H5106.0C19—C20—H20117.2
C11—C5—H5106.0C21—C20—H20117.2
C4—C5—H5106.0O4—C21—C20108.18 (15)
O1—C6—C759.09 (11)O4—C21—C9107.03 (14)
O1—C6—C12114.16 (15)C20—C21—C9115.88 (15)
C7—C6—C12120.90 (16)O4—C21—H21108.5
O1—C6—C5114.31 (15)C20—C21—H21108.5
C7—C6—C5113.23 (15)C9—C21—H21108.5
C12—C6—C5120.09 (16)C16—C22—H22A109.5
O1—C7—C660.21 (12)C16—C22—H22B109.5
O1—C7—C8118.13 (15)H22A—C22—H22B109.5
C6—C7—C8116.79 (15)C16—C22—H22C109.5
O1—C7—H7116.6H22A—C22—H22C109.5
C6—C7—H7116.6H22B—C22—H22C109.5
C8—C7—H7116.6C18—C23—H23A109.5
C13—C8—C7111.45 (15)C18—C23—H23B109.5
C13—C8—C9116.96 (15)H23A—C23—H23B109.5
C7—C8—C9106.34 (14)C18—C23—H23C109.5
C13—C8—H8107.2H23A—C23—H23C109.5
C7—C8—H8107.2H23B—C23—H23C109.5
C9—C8—H8107.2C31—C24—C25120.2 (2)
C1—C9—C21111.33 (14)C31—C24—H24119.9
C1—C9—C8108.67 (14)C25—C24—H24119.9
C21—C9—C8112.47 (14)C26—C25—C24120.7 (2)
C1—C9—C4103.13 (14)C26—C25—H25119.7
C21—C9—C4109.56 (14)C24—C25—H25119.7
C8—C9—C4111.29 (14)C25—C26—C27119.5 (2)
C31—C10—C3115.31 (15)C25—C26—H26120.2
C31—C10—H10A108.4C27—C26—H26120.2
C3—C10—H10A108.4C26—C27—C28120.2 (2)
C31—C10—H10B108.4C26—C27—H27119.9
C3—C10—H10B108.4C28—C27—H27119.9
H10A—C10—H10B107.5C27—C28—C31120.8 (2)
C5—C11—H11A109.5C27—C28—H28119.6
C5—C11—H11B109.5C31—C28—H28119.6
H11A—C11—H11B109.5O5—C29—O4125.02 (18)
C5—C11—H11C109.5O5—C29—C30125.77 (18)
H11A—C11—H11C109.5O4—C29—C30109.20 (17)
H11B—C11—H11C109.5C29—C30—H30A109.5
C6—C12—H12A109.5C29—C30—H30B109.5
C6—C12—H12B109.5H30A—C30—H30B109.5
H12A—C12—H12B109.5C29—C30—H30C109.5
C6—C12—H12C109.5H30A—C30—H30C109.5
H12A—C12—H12C109.5H30B—C30—H30C109.5
H12B—C12—H12C109.5C24—C31—C28118.69 (18)
C14—C13—C8123.18 (17)C24—C31—C10121.66 (18)
C14—C13—H13118.4C28—C31—C10119.63 (17)
C8—C13—H13118.4C32—O6—H6O108 (2)
C13—C14—C15126.72 (18)O6—C32—H32A109.5
C13—C14—H14116.6O6—C32—H32B109.5
C15—C14—H14116.6H32A—C32—H32B109.5
C14—C15—C16113.25 (15)O6—C32—H32C109.5
C14—C15—H15A108.9H32A—C32—H32C109.5
C16—C15—H15A108.9H32B—C32—H32C109.5
C14—C15—H15B108.9
C3—N2—C1—O2176.02 (17)C5—C4—C9—C21132.78 (15)
C3—N2—C1—C96.7 (2)C3—C4—C9—C21102.89 (16)
C1—N2—C3—C10107.04 (18)C5—C4—C9—C87.8 (2)
C1—N2—C3—C416.9 (2)C3—C4—C9—C8132.09 (15)
N2—C3—C4—C5104.44 (16)N2—C3—C10—C31168.78 (15)
C10—C3—C4—C5135.70 (16)C4—C3—C10—C3174.8 (2)
N2—C3—C4—C919.19 (17)C7—C8—C13—C14136.71 (19)
C10—C3—C4—C9100.67 (17)C9—C8—C13—C14100.7 (2)
C3—C4—C5—C671.29 (19)C8—C13—C14—C15178.15 (17)
C9—C4—C5—C647.79 (19)C13—C14—C15—C16112.7 (2)
C3—C4—C5—C1158.7 (2)C14—C15—C16—C22163.36 (17)
C9—C4—C5—C11177.80 (15)C14—C15—C16—C1772.5 (2)
C7—O1—C6—C12112.79 (18)C22—C16—C17—C18116.22 (19)
C7—O1—C6—C5103.53 (17)C15—C16—C17—C18120.37 (18)
C11—C5—C6—O1110.27 (17)C16—C17—C18—O354.2 (2)
C4—C5—C6—O1120.21 (16)C16—C17—C18—C1961.4 (2)
C11—C5—C6—C7175.47 (15)C16—C17—C18—C23174.07 (16)
C4—C5—C6—C755.0 (2)O3—C18—C19—C20167.40 (17)
C11—C5—C6—C1231.1 (2)C23—C18—C19—C2048.7 (2)
C4—C5—C6—C1298.44 (19)C17—C18—C19—C2073.5 (2)
C6—O1—C7—C8106.43 (18)C18—C19—C20—C21172.52 (17)
C12—C6—C7—O1101.40 (18)C29—O4—C21—C20124.04 (17)
C5—C6—C7—O1105.38 (16)C29—O4—C21—C9110.43 (17)
O1—C6—C7—C8108.64 (17)C19—C20—C21—O418.5 (3)
C12—C6—C7—C8149.96 (17)C19—C20—C21—C9138.65 (19)
C5—C6—C7—C83.3 (2)C1—C9—C21—O4170.55 (14)
O1—C7—C8—C13109.94 (18)C8—C9—C21—O448.30 (18)
C6—C7—C8—C13178.77 (15)C4—C9—C21—O476.03 (17)
O1—C7—C8—C9121.54 (16)C1—C9—C21—C2049.8 (2)
C6—C7—C8—C952.7 (2)C8—C9—C21—C2072.4 (2)
O2—C1—C9—C2171.7 (2)C4—C9—C21—C20163.22 (15)
N2—C1—C9—C21110.94 (17)C31—C24—C25—C260.2 (3)
O2—C1—C9—C852.7 (2)C24—C25—C26—C270.4 (4)
N2—C1—C9—C8124.65 (16)C25—C26—C27—C280.0 (4)
O2—C1—C9—C4170.86 (17)C26—C27—C28—C310.5 (3)
N2—C1—C9—C46.46 (18)C21—O4—C29—O55.2 (3)
C13—C8—C9—C168.96 (19)C21—O4—C29—C30175.47 (16)
C7—C8—C9—C156.26 (18)C25—C24—C31—C280.3 (3)
C13—C8—C9—C2154.8 (2)C25—C24—C31—C10178.39 (18)
C7—C8—C9—C21179.99 (14)C27—C28—C31—C240.6 (3)
C13—C8—C9—C4178.15 (15)C27—C28—C31—C10178.06 (19)
C7—C8—C9—C456.64 (18)C3—C10—C31—C2495.0 (2)
C5—C4—C9—C1108.57 (16)C3—C10—C31—C2886.4 (2)
C3—C4—C9—C115.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.83 (3)1.94 (3)2.722 (2)157 (3)
N2—H2N···O3i0.90 (3)1.97 (3)2.867 (2)175 (2)
O6—H6O···O2ii0.84 (3)1.90 (3)2.736 (2)176 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC30H39NO5·CH4O
Mr525.66
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.367 (2), 8.5937 (18), 10.917 (3)
α, β, γ (°)75.312 (9), 87.779 (10), 68.150 (8)
V3)703.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.50 × 0.28
Data collection
DiffractometerRigaku SPIDER
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7075, 3175, 3015
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.00
No. of reflections3175
No. of parameters361
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.83 (3)1.94 (3)2.722 (2)157 (3)
N2—H2N···O3i0.90 (3)1.97 (3)2.867 (2)175 (2)
O6—H6O···O2ii0.84 (3)1.90 (3)2.736 (2)176 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30972869 to L-ML and No. 30772771 to QZ), the Key Project of the Chinese Ministry of Education (No. 209104 to QZ) and the Scientific Research Fund of Sichuan Provincial Education Department (No. 07ZA179 to L-ML).

References

First citationBeno, M. A., Cox, R. H., Wells, J. M., Cole, R. J., Kirksey, J. W. & Christoph, G. G. (1977). J. Am. Chem. Soc. 99, 4123–4130.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBuchi, G., Kitaura, Y., Yuan, S., Wright, H. E., Clardy, J., Demain, A. L., Glinsukon, T., Hunt, N. & Wogan, G. N. (1973). J. Am. Chem. Soc. 95, 5423–5425.  CAS PubMed Web of Science Google Scholar
First citationBurres, N. S., Premachandran, U., Humphrey, P. E., Jackson, M. & Chen, R. H. (1992). J. Antibiot. 45, 1367–1369.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCapasso, R., Evidente, A. & Ritieni, A. (1988). J. Nat. Prod. 51, 567–571.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, T. S., Doss, G. A., Hsu, A., Lingham, R. B., White, R. F. & Monaghan, R. L. (1993). J. Nat. Prod. 56, 755–761.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCole, R. J., Wilson, D. M., Harper, J. L., Cox, R. H., Cochran, T. W., Cutler, H. G. & Bell, D. K. (1982). J. Agric. Food Chem. 30, 301–304.  CrossRef CAS Web of Science Google Scholar
First citationDing, G., Song, Y. C., Chen, J. R., Xu, C., Ge, H. M., Wang, X. T. & Tan, R. X. (2006). J. Nat. Prod. 69, 302–304.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdwards, R. L. & Maitland, D. J. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 57–65.  CrossRef Web of Science Google Scholar
First citationEvidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2002). Phytochemistry, 60, 45–53.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2003). J. Nat. Prod. 66, 1540–1544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, Y., Blunt, J. W., Cole, A. L. J. & Munro, M. H. G. (2002). J. Nat. Prod. 65, 1274–1277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaidle, A. M. & Myers, A. G. (2004). Proc. Natl. Acad. Sci. USA, 101, 12048–12053.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerath, K. B., Jayasuriya, H., Ondeyka, J. G., Polishook, J. D., Bills, G. F., Dombrowski, A. W., Cabelo, A., Vicario, P. P., Zweerink, H., Guan, Z. & Singh, S. B. (2005). J. Antibiot. 58, 689–694.  CrossRef Google Scholar
First citationHirose, T., Izawa, Y., Koyama, K., Natori, S., Iida, K., Yahara, I., Shimaoka, S. & Maruyama, K. (1990). Chem. Pharm. Bull. 38, 971–974.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLingham, R. B., Hsu, A., Silverman, K. C., Bills, G. F., Dombrowski, A., Goldman, M. E., Darke, P. L., Huang, L., Koch, G., Ondeyka, J. G. & Goetz, M. A. (1992). J. Antibiot. 45, 686–691.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMeurer-Grimes, B., Cox, S., Coates, J. & Rhodes, D. (2005). J. Antibiot. 58, 279–283.  Web of Science PubMed Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRochfort, S., Ford, J., Ovenden, S., Wan, S. S., George, S., Wildman, H., Tait, R. M., Zhang, Y., Tian, R., Liu, S., Chen, X., Liu, X. & Che, Y. (2008). Bioorg. Med. Chem. 16, 2627–2634.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds