metal-organic compounds
Bis[N-(4-chlorophenyl)pyridine-3-carboxamide]silver(I) nitrate
aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, bApplied Chemistry Department, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and cCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: qtliu@yahoo.com.cn
In the title compound, [Ag(C12H9ClN2O)2]NO3, two N atoms from two pyridine rings of two N-(4-chlorophenyl)pyridine-3-carboxamide ligands coordinate to the AgI atom, forming a nearly linear geometry with an N—Ag—N angle of 173.41 (7)°. The is stabilized by N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 3.5469 (16) Å] between the pyridyl and benzene rings. The shortest Ag⋯Ag distance is 3.2574 (5) Å.
Related literature
For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron et al. (2002); Zhang et al. (2002); Mondal et al. (2004); Jacob & Mukherjee (2006). For related structures and the synthesis of the title ligand, see: Shi et al. (2007, 2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810025511/zl2286sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025511/zl2286Isup2.hkl
N-(4'-chlorophenyl)-3-pyridinecarboxamide was prepared from nicotinoyl chloride hydrochloride and 4-chloroaniline in the presence of triethylamine, yield 80% (Shi et al., 2008). An ethanolic solution of the organic ligand (0.5 mmol in 20 ml ethanol) was added dropwise to AgNO3 (0.5 mmol in 5 ml water). The resulting mixture was stirred for 20 min at room temperature and was then filtered. Single crystals suitable for data collection were obtained by slow evaporation of the solvent in a dark room (0.12g, yield 67%). M.P.: 345-346K. 1H NMR (d6-DMSO ): δ 10.48 (s, 1H, H1), 9.09 (s, 1H, H3), 8.73 (d, 1H, H4), 8.28 (d, 1H, H6), 7.80 (d, 2H, H7, H10), 7.54 (m, 1H, H5), 7.36 (d, 2H, H8, H9). IR (KBr)/cm-1: 701, 724, 833, 1093, 1329, 1351, 1398, 1489, 1535, 1604, 1650, 1680, 3067, 3276.
The H atoms bound to the N atoms were located in a difference Fourier map and refined with a distance restraint of 0.87 (2) Å. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.84 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy groups.
Supramolecular chemistry has generated considerable interest due to the novel structural topologies that can be built that way and due to its potential applications in many areas of science. The carboxamide functionality is an appropriate intermolecular connector, in part due to its well known ability to act as a hydrogen-bonding donor (via the amide hydrogen atoms) or acceptor (via the amide carbonyl oxygen atoms) to enhance structure diversities. Therefore, pyridyl-type compounds that contain a carboxamide group have been used to produce a great number of novel metal-organic complexes (see, for example, Noveron et al., 2002; Zhang et al., 2002; Mondal et al., 2004; Jacob & Mukherjee, 2006). Recently, we have used the non-chelating ligand 3-pyridinecarboxamide in the syntheses of several metal complexes with different topologies (Shi et al., 2007; Shi et al., 2008). In this paper, the
of the title silver(I) complex is reported.In the title complex (Fig. 1), each π-π interactions between pyridyl rings within the dimers [Cg1···Cg2ii = 3.631 (1) Å with a slippage of 1.371 Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C13–C17 pyridyl rings].
contains one NO3– anion and one [Ag(N-(4'-chlorophenyl)-3-pyridinecarboxamide)2]+ cation. The AgI ion is coordinated by two nitrogen atoms from two pyridyl rings of two crystallographically independent ligands, thus forming a slightly distorted linear coordination geometry around the silver center. Adjacent symmetry related Ag atoms are connected through nitrate anions via weak interactions with two of the nitrate oxygen atoms (O3 and O5) to form dinuclear units. The distances of Ag···O3ii and Ag···O5 are 2.773 (3) and 2.835 (2) Å, respectively (symmetry operator ii = 2-x,1-y,1-z). The dinculear units are inversion symmetric and the two symmetry related silver ions are bridged in a chelating fashion by two symmetry equivalent nitrate ions. The Ag1···Ag1ii seperation within the units is 3.2574 (5) Å. Via the third oxygen atom the bridging nitrate anion is also hydrogen bonded to one of the amide N—H groups (Table 1). The dimeric units are further stabilized byThe amide unit on the other ligand molecule undergoes a hydrogen bond with one of the amide keto groups in neighboring molecules, which link the dinuclear units together to form infinite 1-D chains via double N—H···O hydrogen bonds [N4···O1i = 2.931 (3) Å, symmetry operator i: x+1, y+1, z+1, Table 1].
The infinite parallel hydrogen bonded chains of complexes are further connected through non-classical hydrogen bonds (Table 1) to generate a 2-D sheet-like network (Fig. 2). These sheets are ultimately joined together to form a 3-D solid network by additional hydrogen bonds and π-π stacking interactions between the pyridyl and benzene rings of neighboring ligands [Cg2···Cg4v (Symmetry operator v: -x+2, -y+2, -z+2) = 3.5469 (16) Å with a slippage of 0.082 Å, where Cg2 and Cg4 are the centroids of the N3/C13–C17 pyridyl and C19–C24 benzene rings].
For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron et al. (2002); Zhang et al. (2002); Mondal et al. (2004); Jacob & Mukherjee (2006). For related structures and the synthesis of the title ligand, see: Shi et al. (2007, 2008).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines and π-π interactions as double arrows. |
[Ag(C12H9ClN2O)2]NO3 | Z = 2 |
Mr = 635.20 | F(000) = 636 |
Triclinic, P1 | Dx = 1.741 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0745 (10) Å | Cell parameters from 4853 reflections |
b = 10.1425 (10) Å | θ = 2.2–27.8° |
c = 13.473 (2) Å | µ = 1.10 mm−1 |
α = 107.515 (2)° | T = 296 K |
β = 102.602 (2)° | Block, colourless |
γ = 103.706 (1)° | 0.24 × 0.23 × 0.18 mm |
V = 1211.6 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 4232 independent reflections |
Radiation source: fine-focus sealed tube | 3848 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.776, Tmax = 0.820 | k = −12→11 |
6194 measured reflections | l = −7→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0278P)2 + 0.6379P] where P = (Fo2 + 2Fc2)/3 |
4232 reflections | (Δ/σ)max = 0.002 |
334 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Ag(C12H9ClN2O)2]NO3 | γ = 103.706 (1)° |
Mr = 635.20 | V = 1211.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.0745 (10) Å | Mo Kα radiation |
b = 10.1425 (10) Å | µ = 1.10 mm−1 |
c = 13.473 (2) Å | T = 296 K |
α = 107.515 (2)° | 0.24 × 0.23 × 0.18 mm |
β = 102.602 (2)° |
Bruker APEXII CCD area-detector diffractometer | 4232 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3848 reflections with I > 2σ(I) |
Tmin = 0.776, Tmax = 0.820 | Rint = 0.014 |
6194 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.27 e Å−3 |
4232 reflections | Δρmin = −0.39 e Å−3 |
334 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.87169 (2) | 0.56734 (2) | 0.518117 (14) | 0.04869 (8) | |
Cl1 | 0.58438 (8) | 0.45918 (8) | −0.36615 (5) | 0.05917 (18) | |
Cl2 | 1.33119 (13) | 1.05319 (10) | 1.51069 (6) | 0.0891 (3) | |
N2 | 0.64188 (19) | 0.3727 (2) | 0.05514 (14) | 0.0375 (4) | |
H1 | 0.7178 | 0.4325 | 0.1077 | 0.045* | |
O1 | 0.44206 (18) | 0.17952 (18) | 0.01256 (13) | 0.0507 (4) | |
N3 | 0.9912 (2) | 0.7669 (2) | 0.65614 (15) | 0.0402 (4) | |
N1 | 0.7302 (2) | 0.3744 (2) | 0.38083 (14) | 0.0388 (4) | |
C6 | 0.5572 (2) | 0.2683 (2) | 0.07732 (17) | 0.0356 (5) | |
C7 | 0.6197 (2) | 0.3948 (2) | −0.04546 (17) | 0.0347 (5) | |
N4 | 1.2066 (2) | 0.9810 (2) | 1.04496 (15) | 0.0417 (5) | |
H2 | 1.2615 | 1.0478 | 1.0314 | 0.050* | |
C8 | 0.4900 (2) | 0.3301 (3) | −0.12996 (18) | 0.0406 (5) | |
H7 | 0.4103 | 0.2727 | −0.1208 | 0.049* | |
C3 | 0.7042 (2) | 0.2420 (3) | 0.38709 (19) | 0.0422 (5) | |
H4 | 0.7352 | 0.2354 | 0.4551 | 0.051* | |
C2 | 0.6833 (2) | 0.3825 (2) | 0.28185 (17) | 0.0355 (5) | |
H3 | 0.6993 | 0.4742 | 0.2771 | 0.043* | |
C13 | 1.0816 (2) | 0.8926 (2) | 0.85119 (18) | 0.0355 (5) | |
O2 | 1.0207 (2) | 0.7703 (2) | 0.96688 (15) | 0.0770 (7) | |
C16 | 1.0810 (3) | 1.0276 (3) | 0.7337 (2) | 0.0457 (6) | |
H13 | 1.1003 | 1.1159 | 0.7233 | 0.055* | |
C5 | 0.5870 (2) | 0.1236 (2) | 0.19497 (18) | 0.0378 (5) | |
H6 | 0.5396 | 0.0392 | 0.1327 | 0.045* | |
C4 | 0.6329 (2) | 0.1148 (3) | 0.29612 (19) | 0.0412 (5) | |
H5 | 0.6161 | 0.0243 | 0.3031 | 0.049* | |
N5 | 0.9683 (2) | 0.6282 (2) | 0.31338 (17) | 0.0501 (5) | |
C1 | 0.6126 (2) | 0.2601 (2) | 0.18731 (17) | 0.0333 (5) | |
C23 | 1.3156 (2) | 1.1510 (3) | 1.34542 (19) | 0.0412 (5) | |
H17 | 1.3479 | 1.2442 | 1.3993 | 0.049* | |
C17 | 1.1113 (2) | 1.0260 (2) | 0.8381 (2) | 0.0413 (5) | |
H14 | 1.1510 | 1.1130 | 0.8989 | 0.050* | |
C9 | 0.4794 (3) | 0.3512 (2) | −0.22784 (19) | 0.0421 (5) | |
H8 | 0.3927 | 0.3077 | −0.2846 | 0.050* | |
C15 | 1.0219 (3) | 0.8970 (3) | 0.6450 (2) | 0.0453 (6) | |
H12 | 1.0026 | 0.8990 | 0.5749 | 0.054* | |
C10 | 0.5971 (3) | 0.4366 (2) | −0.24093 (18) | 0.0404 (5) | |
C24 | 1.2834 (2) | 1.1322 (2) | 1.23596 (18) | 0.0365 (5) | |
H18 | 1.2933 | 1.2132 | 1.2159 | 0.044* | |
C22 | 1.2991 (3) | 1.0296 (3) | 1.37339 (19) | 0.0453 (6) | |
C14 | 1.0215 (2) | 0.7664 (2) | 0.75782 (17) | 0.0361 (5) | |
H11 | 1.0012 | 0.6767 | 0.7662 | 0.043* | |
C19 | 1.2365 (2) | 0.9934 (2) | 1.15612 (18) | 0.0359 (5) | |
O5 | 0.9102 (3) | 0.7052 (2) | 0.3672 (2) | 0.0828 (7) | |
C11 | 0.7258 (3) | 0.5049 (3) | −0.1567 (2) | 0.0482 (6) | |
H9 | 0.8045 | 0.5640 | −0.1658 | 0.058* | |
C20 | 1.2222 (3) | 0.8724 (3) | 1.1858 (2) | 0.0440 (6) | |
H15 | 1.1914 | 0.7791 | 1.1323 | 0.053* | |
C18 | 1.1008 (2) | 0.8748 (3) | 0.95936 (19) | 0.0411 (5) | |
C12 | 0.7364 (3) | 0.4844 (2) | −0.05886 (19) | 0.0434 (5) | |
H10 | 0.8224 | 0.5309 | −0.0015 | 0.052* | |
O3 | 1.0717 (3) | 0.6017 (3) | 0.3604 (2) | 0.0869 (7) | |
C21 | 1.2540 (3) | 0.8910 (3) | 1.2953 (2) | 0.0475 (6) | |
H16 | 1.2450 | 0.8105 | 1.3159 | 0.057* | |
O4 | 0.9214 (2) | 0.5770 (3) | 0.21319 (16) | 0.0913 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.05203 (13) | 0.04686 (12) | 0.03000 (11) | 0.00860 (9) | 0.00232 (8) | 0.00417 (8) |
Cl1 | 0.0777 (5) | 0.0579 (4) | 0.0394 (3) | 0.0099 (3) | 0.0166 (3) | 0.0252 (3) |
Cl2 | 0.1476 (9) | 0.0747 (5) | 0.0392 (4) | 0.0264 (5) | 0.0197 (5) | 0.0274 (4) |
N2 | 0.0337 (9) | 0.0385 (10) | 0.0285 (9) | −0.0010 (8) | 0.0017 (8) | 0.0120 (8) |
O1 | 0.0446 (9) | 0.0506 (10) | 0.0358 (9) | −0.0106 (8) | −0.0024 (7) | 0.0180 (8) |
N3 | 0.0381 (10) | 0.0429 (11) | 0.0332 (10) | 0.0096 (8) | 0.0069 (8) | 0.0113 (8) |
N1 | 0.0409 (10) | 0.0396 (10) | 0.0298 (9) | 0.0097 (8) | 0.0061 (8) | 0.0109 (8) |
C6 | 0.0361 (12) | 0.0344 (11) | 0.0296 (11) | 0.0061 (9) | 0.0065 (9) | 0.0095 (9) |
C7 | 0.0369 (11) | 0.0315 (11) | 0.0299 (10) | 0.0066 (9) | 0.0072 (9) | 0.0095 (9) |
N4 | 0.0408 (10) | 0.0384 (10) | 0.0321 (10) | −0.0039 (8) | 0.0060 (8) | 0.0115 (8) |
C8 | 0.0357 (12) | 0.0432 (13) | 0.0367 (12) | 0.0035 (10) | 0.0078 (10) | 0.0163 (10) |
C3 | 0.0421 (13) | 0.0488 (14) | 0.0359 (12) | 0.0122 (11) | 0.0085 (10) | 0.0207 (11) |
C2 | 0.0355 (11) | 0.0345 (11) | 0.0335 (11) | 0.0086 (9) | 0.0077 (9) | 0.0130 (9) |
C13 | 0.0273 (10) | 0.0388 (12) | 0.0352 (11) | 0.0065 (9) | 0.0086 (9) | 0.0109 (10) |
O2 | 0.0791 (14) | 0.0669 (13) | 0.0411 (10) | −0.0345 (11) | 0.0039 (10) | 0.0162 (9) |
C16 | 0.0442 (13) | 0.0392 (13) | 0.0535 (15) | 0.0114 (11) | 0.0103 (11) | 0.0221 (11) |
C5 | 0.0347 (11) | 0.0353 (12) | 0.0368 (12) | 0.0069 (9) | 0.0081 (9) | 0.0102 (9) |
C4 | 0.0404 (12) | 0.0392 (12) | 0.0455 (13) | 0.0113 (10) | 0.0108 (10) | 0.0212 (11) |
N5 | 0.0533 (13) | 0.0433 (12) | 0.0390 (11) | −0.0037 (10) | 0.0013 (10) | 0.0199 (10) |
C1 | 0.0293 (10) | 0.0371 (11) | 0.0303 (11) | 0.0072 (9) | 0.0083 (9) | 0.0117 (9) |
C23 | 0.0435 (13) | 0.0369 (12) | 0.0353 (12) | 0.0097 (10) | 0.0092 (10) | 0.0075 (10) |
C17 | 0.0361 (12) | 0.0350 (12) | 0.0436 (13) | 0.0068 (10) | 0.0077 (10) | 0.0091 (10) |
C9 | 0.0431 (13) | 0.0398 (12) | 0.0346 (12) | 0.0077 (10) | 0.0035 (10) | 0.0127 (10) |
C15 | 0.0441 (13) | 0.0514 (14) | 0.0406 (13) | 0.0141 (11) | 0.0079 (11) | 0.0220 (11) |
C10 | 0.0531 (14) | 0.0359 (12) | 0.0309 (11) | 0.0107 (10) | 0.0127 (10) | 0.0140 (9) |
C24 | 0.0335 (11) | 0.0338 (11) | 0.0379 (12) | 0.0061 (9) | 0.0076 (9) | 0.0138 (10) |
C22 | 0.0524 (14) | 0.0493 (14) | 0.0349 (12) | 0.0161 (11) | 0.0109 (11) | 0.0188 (11) |
C14 | 0.0320 (11) | 0.0348 (11) | 0.0346 (11) | 0.0057 (9) | 0.0070 (9) | 0.0102 (9) |
C19 | 0.0297 (11) | 0.0380 (12) | 0.0339 (11) | 0.0055 (9) | 0.0067 (9) | 0.0114 (9) |
O5 | 0.114 (2) | 0.0582 (13) | 0.0899 (17) | 0.0286 (13) | 0.0503 (16) | 0.0324 (12) |
C11 | 0.0481 (14) | 0.0441 (13) | 0.0467 (14) | 0.0004 (11) | 0.0147 (11) | 0.0206 (11) |
C20 | 0.0491 (14) | 0.0333 (12) | 0.0439 (13) | 0.0108 (10) | 0.0120 (11) | 0.0103 (10) |
C18 | 0.0377 (12) | 0.0408 (12) | 0.0333 (11) | 0.0002 (10) | 0.0101 (10) | 0.0086 (10) |
C12 | 0.0381 (12) | 0.0411 (13) | 0.0371 (12) | −0.0018 (10) | 0.0032 (10) | 0.0131 (10) |
O3 | 0.0772 (15) | 0.0788 (15) | 0.0962 (18) | 0.0178 (12) | −0.0082 (13) | 0.0520 (14) |
C21 | 0.0557 (15) | 0.0424 (13) | 0.0474 (14) | 0.0157 (11) | 0.0136 (12) | 0.0227 (11) |
O4 | 0.0622 (13) | 0.129 (2) | 0.0382 (11) | −0.0217 (13) | −0.0009 (10) | 0.0228 (12) |
Ag1—N3 | 2.1467 (19) | C16—C15 | 1.379 (3) |
Ag1—N1 | 2.1519 (18) | C16—C17 | 1.379 (3) |
Ag1—Ag1i | 3.2574 (5) | C16—H13 | 0.9300 |
Cl1—C10 | 1.751 (2) | C5—C4 | 1.377 (3) |
Cl2—C22 | 1.738 (2) | C5—C1 | 1.386 (3) |
N2—C6 | 1.346 (3) | C5—H6 | 0.9300 |
N2—C7 | 1.419 (3) | C4—H5 | 0.9300 |
N2—H1 | 0.8600 | N5—O4 | 1.224 (3) |
O1—C6 | 1.228 (3) | N5—O3 | 1.228 (3) |
N3—C14 | 1.339 (3) | N5—O5 | 1.240 (3) |
N3—C15 | 1.343 (3) | C23—C22 | 1.377 (3) |
N1—C3 | 1.338 (3) | C23—C24 | 1.382 (3) |
N1—C2 | 1.348 (3) | C23—H17 | 0.9300 |
C6—C1 | 1.499 (3) | C17—H14 | 0.9300 |
C7—C12 | 1.388 (3) | C9—C10 | 1.373 (3) |
C7—C8 | 1.389 (3) | C9—H8 | 0.9300 |
N4—C18 | 1.341 (3) | C15—H12 | 0.9300 |
N4—C19 | 1.422 (3) | C10—C11 | 1.381 (3) |
N4—H2 | 0.8600 | C24—C19 | 1.384 (3) |
C8—C9 | 1.384 (3) | C24—H18 | 0.9300 |
C8—H7 | 0.9300 | C22—C21 | 1.374 (3) |
C3—C4 | 1.381 (3) | C14—H11 | 0.9300 |
C3—H4 | 0.9300 | C19—C20 | 1.387 (3) |
C2—C1 | 1.380 (3) | C11—C12 | 1.381 (3) |
C2—H3 | 0.9300 | C11—H9 | 0.9300 |
C13—C14 | 1.385 (3) | C20—C21 | 1.383 (3) |
C13—C17 | 1.387 (3) | C20—H15 | 0.9300 |
C13—C18 | 1.499 (3) | C12—H10 | 0.9300 |
O2—C18 | 1.216 (3) | C21—H16 | 0.9300 |
N3—Ag1—N1 | 173.41 (7) | C2—C1—C5 | 118.5 (2) |
N3—Ag1—Ag1i | 100.45 (5) | C2—C1—C6 | 122.95 (19) |
N1—Ag1—Ag1i | 86.14 (5) | C5—C1—C6 | 118.50 (19) |
C6—N2—C7 | 127.13 (18) | C22—C23—C24 | 118.9 (2) |
C6—N2—H1 | 116.4 | C22—C23—H17 | 120.5 |
C7—N2—H1 | 116.4 | C24—C23—H17 | 120.5 |
C14—N3—C15 | 117.8 (2) | C16—C17—C13 | 119.1 (2) |
C14—N3—Ag1 | 120.15 (15) | C16—C17—H14 | 120.5 |
C15—N3—Ag1 | 121.49 (16) | C13—C17—H14 | 120.5 |
C3—N1—C2 | 118.20 (19) | C10—C9—C8 | 119.8 (2) |
C3—N1—Ag1 | 121.23 (15) | C10—C9—H8 | 120.1 |
C2—N1—Ag1 | 119.84 (15) | C8—C9—H8 | 120.1 |
O1—C6—N2 | 124.0 (2) | N3—C15—C16 | 122.5 (2) |
O1—C6—C1 | 119.57 (19) | N3—C15—H12 | 118.8 |
N2—C6—C1 | 116.38 (18) | C16—C15—H12 | 118.8 |
C12—C7—C8 | 119.4 (2) | C9—C10—C11 | 120.9 (2) |
C12—C7—N2 | 116.96 (19) | C9—C10—Cl1 | 119.65 (18) |
C8—C7—N2 | 123.61 (19) | C11—C10—Cl1 | 119.43 (18) |
C18—N4—C19 | 126.02 (19) | C23—C24—C19 | 120.3 (2) |
C18—N4—H2 | 117.0 | C23—C24—H18 | 119.9 |
C19—N4—H2 | 117.0 | C19—C24—H18 | 119.9 |
C9—C8—C7 | 120.0 (2) | C21—C22—C23 | 121.6 (2) |
C9—C8—H7 | 120.0 | C21—C22—Cl2 | 119.61 (19) |
C7—C8—H7 | 120.0 | C23—C22—Cl2 | 118.78 (19) |
N1—C3—C4 | 122.4 (2) | N3—C14—C13 | 123.3 (2) |
N1—C3—H4 | 118.8 | N3—C14—H11 | 118.3 |
C4—C3—H4 | 118.8 | C13—C14—H11 | 118.3 |
N1—C2—C1 | 122.6 (2) | C24—C19—C20 | 120.0 (2) |
N1—C2—H3 | 118.7 | C24—C19—N4 | 117.7 (2) |
C1—C2—H3 | 118.7 | C20—C19—N4 | 122.3 (2) |
C14—C13—C17 | 118.0 (2) | C12—C11—C10 | 119.3 (2) |
C14—C13—C18 | 117.1 (2) | C12—C11—H9 | 120.3 |
C17—C13—C18 | 124.7 (2) | C10—C11—H9 | 120.3 |
C15—C16—C17 | 119.3 (2) | C21—C20—C19 | 119.8 (2) |
C15—C16—H13 | 120.4 | C21—C20—H15 | 120.1 |
C17—C16—H13 | 120.4 | C19—C20—H15 | 120.1 |
C4—C5—C1 | 119.1 (2) | O2—C18—N4 | 123.4 (2) |
C4—C5—H6 | 120.5 | O2—C18—C13 | 120.3 (2) |
C1—C5—H6 | 120.5 | N4—C18—C13 | 116.31 (19) |
C5—C4—C3 | 119.2 (2) | C11—C12—C7 | 120.5 (2) |
C5—C4—H5 | 120.4 | C11—C12—H10 | 119.8 |
C3—C4—H5 | 120.4 | C7—C12—H10 | 119.8 |
O4—N5—O3 | 119.8 (3) | C22—C21—C20 | 119.4 (2) |
O4—N5—O5 | 120.0 (3) | C22—C21—H16 | 120.3 |
O3—N5—O5 | 120.1 (3) | C20—C21—H16 | 120.3 |
Ag1i—Ag1—N3—C14 | −83.05 (17) | C17—C16—C15—N3 | 0.5 (4) |
Ag1i—Ag1—N3—C15 | 105.37 (18) | C8—C9—C10—C11 | −1.5 (4) |
Ag1i—Ag1—N1—C3 | 66.84 (17) | C8—C9—C10—Cl1 | 178.39 (19) |
Ag1i—Ag1—N1—C2 | −103.19 (16) | C22—C23—C24—C19 | −0.6 (4) |
C7—N2—C6—O1 | −3.7 (4) | C24—C23—C22—C21 | 1.2 (4) |
C7—N2—C6—C1 | 174.4 (2) | C24—C23—C22—Cl2 | −176.88 (19) |
C6—N2—C7—C12 | −164.4 (2) | C15—N3—C14—C13 | 0.4 (3) |
C6—N2—C7—C8 | 14.4 (4) | Ag1—N3—C14—C13 | −171.44 (16) |
C12—C7—C8—C9 | 2.2 (4) | C17—C13—C14—N3 | 0.2 (3) |
N2—C7—C8—C9 | −176.6 (2) | C18—C13—C14—N3 | 176.3 (2) |
C2—N1—C3—C4 | 0.7 (3) | C23—C24—C19—C20 | −0.3 (3) |
Ag1—N1—C3—C4 | −169.49 (18) | C23—C24—C19—N4 | −179.3 (2) |
C3—N1—C2—C1 | −1.3 (3) | C18—N4—C19—C24 | −143.7 (2) |
Ag1—N1—C2—C1 | 169.04 (16) | C18—N4—C19—C20 | 37.3 (4) |
C1—C5—C4—C3 | −0.5 (3) | C9—C10—C11—C12 | 1.2 (4) |
N1—C3—C4—C5 | 0.2 (4) | Cl1—C10—C11—C12 | −178.6 (2) |
N1—C2—C1—C5 | 1.0 (3) | C24—C19—C20—C21 | 0.4 (4) |
N1—C2—C1—C6 | 178.6 (2) | N4—C19—C20—C21 | 179.4 (2) |
C4—C5—C1—C2 | 0.0 (3) | C19—N4—C18—O2 | −3.9 (4) |
C4—C5—C1—C6 | −177.8 (2) | C19—N4—C18—C13 | 174.3 (2) |
O1—C6—C1—C2 | −142.3 (2) | C14—C13—C18—O2 | −28.4 (3) |
N2—C6—C1—C2 | 39.6 (3) | C17—C13—C18—O2 | 147.4 (3) |
O1—C6—C1—C5 | 35.4 (3) | C14—C13—C18—N4 | 153.3 (2) |
N2—C6—C1—C5 | −142.8 (2) | C17—C13—C18—N4 | −30.8 (3) |
C15—C16—C17—C13 | 0.1 (4) | C10—C11—C12—C7 | 0.8 (4) |
C14—C13—C17—C16 | −0.4 (3) | C8—C7—C12—C11 | −2.5 (4) |
C18—C13—C17—C16 | −176.2 (2) | N2—C7—C12—C11 | 176.4 (2) |
C7—C8—C9—C10 | −0.3 (4) | C23—C22—C21—C20 | −1.1 (4) |
C14—N3—C15—C16 | −0.8 (4) | Cl2—C22—C21—C20 | 177.0 (2) |
Ag1—N3—C15—C16 | 170.97 (18) | C19—C20—C21—C22 | 0.2 (4) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O4 | 0.86 | 2.10 | 2.953 (3) | 169 |
N4—H2···O1ii | 0.86 | 2.10 | 2.931 (3) | 162 |
C2—H3···O5 | 0.93 | 2.51 | 3.210 (3) | 133 |
C3—H4···O3i | 0.93 | 2.57 | 3.300 (3) | 136 |
C4—H5···Cl2iii | 0.93 | 2.83 | 3.516 (3) | 132 |
C5—H6···O1iv | 0.93 | 2.55 | 3.376 (3) | 148 |
C8—H7···O1 | 0.93 | 2.27 | 2.841 (3) | 119 |
C11—H9···O2v | 0.93 | 2.49 | 3.194 (4) | 132 |
C16—H13···O5vi | 0.93 | 2.48 | 3.370 (4) | 160 |
C20—H15···O2 | 0.93 | 2.46 | 2.906 (3) | 109 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y+1, z+1; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y, −z; (v) x, y, z−1; (vi) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C12H9ClN2O)2]NO3 |
Mr | 635.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 10.0745 (10), 10.1425 (10), 13.473 (2) |
α, β, γ (°) | 107.515 (2), 102.602 (2), 103.706 (1) |
V (Å3) | 1211.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.10 |
Crystal size (mm) | 0.24 × 0.23 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.776, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6194, 4232, 3848 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.064, 1.05 |
No. of reflections | 4232 |
No. of parameters | 334 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.39 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O4 | 0.860 | 2.104 | 2.953 (3) | 169.32 |
N4—H2···O1i | 0.860 | 2.100 | 2.931 (3) | 162.07 |
C2—H3···O5 | 0.93 | 2.51 | 3.210 (3) | 133 |
C3—H4···O3ii | 0.93 | 2.57 | 3.300 (3) | 136 |
C4—H5···Cl2iii | 0.93 | 2.83 | 3.516 (3) | 132 |
C5—H6···O1iv | 0.93 | 2.55 | 3.376 (3) | 148 |
C8—H7···O1 | 0.93 | 2.27 | 2.841 (3) | 119 |
C11—H9···O2v | 0.93 | 2.49 | 3.194 (4) | 132 |
C16—H13···O5vi | 0.93 | 2.48 | 3.370 (4) | 160 |
C20—H15···O2 | 0.93 | 2.46 | 2.906 (3) | 109 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y, −z; (v) x, y, z−1; (vi) −x+2, −y+2, −z+1. |
Acknowledgements
This project was supported by the Innovation Team Foundation of the Education Bureau of Liaoning Province (2007 T052) and by the Key Laboratory Foundation of the Education Bureau of Liaoning Province (2008 S104).
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565–4573. Web of Science CSD CrossRef CAS Google Scholar
Mondal, A., Li, Y., Khan, M. A., Ross, J. H. & Houser, R. P. (2004). Inorg. Chem. 43, 7075–7082. Web of Science CSD CrossRef PubMed CAS Google Scholar
Noveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, C. Y., Ge, C. H., Gao, E. J., Yin, H. X. & Liu, Q. T. (2008). Inorg. Chem. Commun. 11, 703–706. Web of Science CSD CrossRef CAS Google Scholar
Shi, C.-Y., Ge, C.-H., Song, X.-M. & Liu, Q.-T. (2007). Acta Cryst. E63, m2104–m2105. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, J., You, X. & Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591–597. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular chemistry has generated considerable interest due to the novel structural topologies that can be built that way and due to its potential applications in many areas of science. The carboxamide functionality is an appropriate intermolecular connector, in part due to its well known ability to act as a hydrogen-bonding donor (via the amide hydrogen atoms) or acceptor (via the amide carbonyl oxygen atoms) to enhance structure diversities. Therefore, pyridyl-type compounds that contain a carboxamide group have been used to produce a great number of novel metal-organic complexes (see, for example, Noveron et al., 2002; Zhang et al., 2002; Mondal et al., 2004; Jacob & Mukherjee, 2006). Recently, we have used the non-chelating ligand 3-pyridinecarboxamide in the syntheses of several metal complexes with different topologies (Shi et al., 2007; Shi et al., 2008). In this paper, the crystal structure of the title silver(I) complex is reported.
In the title complex (Fig. 1), each asymmetric unit contains one NO3– anion and one [Ag(N-(4'-chlorophenyl)-3-pyridinecarboxamide)2]+ cation. The AgI ion is coordinated by two nitrogen atoms from two pyridyl rings of two crystallographically independent ligands, thus forming a slightly distorted linear coordination geometry around the silver center. Adjacent symmetry related Ag atoms are connected through nitrate anions via weak interactions with two of the nitrate oxygen atoms (O3 and O5) to form dinuclear units. The distances of Ag···O3ii and Ag···O5 are 2.773 (3) and 2.835 (2) Å, respectively (symmetry operator ii = 2-x,1-y,1-z). The dinculear units are inversion symmetric and the two symmetry related silver ions are bridged in a chelating fashion by two symmetry equivalent nitrate ions. The Ag1···Ag1ii seperation within the units is 3.2574 (5) Å. Via the third oxygen atom the bridging nitrate anion is also hydrogen bonded to one of the amide N—H groups (Table 1). The dimeric units are further stabilized by π-π interactions between pyridyl rings within the dimers [Cg1···Cg2ii = 3.631 (1) Å with a slippage of 1.371 Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C13–C17 pyridyl rings].
The amide unit on the other ligand molecule undergoes a hydrogen bond with one of the amide keto groups in neighboring molecules, which link the dinuclear units together to form infinite 1-D chains via double N—H···O hydrogen bonds [N4···O1i = 2.931 (3) Å, symmetry operator i: x+1, y+1, z+1, Table 1].
The infinite parallel hydrogen bonded chains of complexes are further connected through non-classical hydrogen bonds (Table 1) to generate a 2-D sheet-like network (Fig. 2). These sheets are ultimately joined together to form a 3-D solid network by additional hydrogen bonds and π-π stacking interactions between the pyridyl and benzene rings of neighboring ligands [Cg2···Cg4v (Symmetry operator v: -x+2, -y+2, -z+2) = 3.5469 (16) Å with a slippage of 0.082 Å, where Cg2 and Cg4 are the centroids of the N3/C13–C17 pyridyl and C19–C24 benzene rings].