metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N-(4-chloro­phen­yl)pyridine-3-carboxamide]­silver(I) nitrate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, bApplied Chemistry Department, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and cCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: qtliu@yahoo.com.cn

(Received 14 June 2010; accepted 29 June 2010; online 3 July 2010)

In the title compound, [Ag(C12H9ClN2O)2]NO3, two N atoms from two pyridine rings of two N-(4-chloro­phen­yl)pyridine-3-carboxamide ligands coordinate to the AgI atom, forming a nearly linear geometry with an N—Ag—N angle of 173.41 (7)°. The crystal structure is stabilized by N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.5469 (16) Å] between the pyridyl and benzene rings. The shortest Ag⋯Ag distance is 3.2574 (5) Å.

Related literature

For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron et al. (2002[Noveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613-6625.]); Zhang et al. (2002[Zhang, J., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, J., You, X. & Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591-597.]); Mondal et al. (2004[Mondal, A., Li, Y., Khan, M. A., Ross, J. H. & Houser, R. P. (2004). Inorg. Chem. 43, 7075-7082.]); Jacob & Mukherjee (2006[Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565-4573.]). For related structures and the synthesis of the title ligand, see: Shi et al. (2007[Shi, C.-Y., Ge, C.-H., Song, X.-M. & Liu, Q.-T. (2007). Acta Cryst. E63, m2104-m2105.], 2008[Shi, C. Y., Ge, C. H., Gao, E. J., Yin, H. X. & Liu, Q. T. (2008). Inorg. Chem. Commun. 11, 703-706.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H9ClN2O)2]NO3

  • Mr = 635.20

  • Triclinic, [P \overline 1]

  • a = 10.0745 (10) Å

  • b = 10.1425 (10) Å

  • c = 13.473 (2) Å

  • α = 107.515 (2)°

  • β = 102.602 (2)°

  • γ = 103.706 (1)°

  • V = 1211.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 296 K

  • 0.24 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.776, Tmax = 0.820

  • 6194 measured reflections

  • 4232 independent reflections

  • 3848 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.05

  • 4232 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O4 0.86 2.10 2.953 (3) 169
N4—H2⋯O1i 0.86 2.10 2.931 (3) 162
C2—H3⋯O5 0.93 2.51 3.210 (3) 133
C3—H4⋯O3ii 0.93 2.57 3.300 (3) 136
C4—H5⋯Cl2iii 0.93 2.83 3.516 (3) 132
C5—H6⋯O1iv 0.93 2.55 3.376 (3) 148
C8—H7⋯O1 0.93 2.27 2.841 (3) 119
C11—H9⋯O2v 0.93 2.49 3.194 (4) 132
C16—H13⋯O5vi 0.93 2.48 3.370 (4) 160
C20—H15⋯O2 0.93 2.46 2.906 (3) 109
Symmetry codes: (i) x+1, y+1, z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y, -z; (v) x, y, z-1; (vi) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular chemistry has generated considerable interest due to the novel structural topologies that can be built that way and due to its potential applications in many areas of science. The carboxamide functionality is an appropriate intermolecular connector, in part due to its well known ability to act as a hydrogen-bonding donor (via the amide hydrogen atoms) or acceptor (via the amide carbonyl oxygen atoms) to enhance structure diversities. Therefore, pyridyl-type compounds that contain a carboxamide group have been used to produce a great number of novel metal-organic complexes (see, for example, Noveron et al., 2002; Zhang et al., 2002; Mondal et al., 2004; Jacob & Mukherjee, 2006). Recently, we have used the non-chelating ligand 3-pyridinecarboxamide in the syntheses of several metal complexes with different topologies (Shi et al., 2007; Shi et al., 2008). In this paper, the crystal structure of the title silver(I) complex is reported.

In the title complex (Fig. 1), each asymmetric unit contains one NO3 anion and one [Ag(N-(4'-chlorophenyl)-3-pyridinecarboxamide)2]+ cation. The AgI ion is coordinated by two nitrogen atoms from two pyridyl rings of two crystallographically independent ligands, thus forming a slightly distorted linear coordination geometry around the silver center. Adjacent symmetry related Ag atoms are connected through nitrate anions via weak interactions with two of the nitrate oxygen atoms (O3 and O5) to form dinuclear units. The distances of Ag···O3ii and Ag···O5 are 2.773 (3) and 2.835 (2) Å, respectively (symmetry operator ii = 2-x,1-y,1-z). The dinculear units are inversion symmetric and the two symmetry related silver ions are bridged in a chelating fashion by two symmetry equivalent nitrate ions. The Ag1···Ag1ii seperation within the units is 3.2574 (5) Å. Via the third oxygen atom the bridging nitrate anion is also hydrogen bonded to one of the amide N—H groups (Table 1). The dimeric units are further stabilized by π-π interactions between pyridyl rings within the dimers [Cg1···Cg2ii = 3.631 (1) Å with a slippage of 1.371 Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C13–C17 pyridyl rings].

The amide unit on the other ligand molecule undergoes a hydrogen bond with one of the amide keto groups in neighboring molecules, which link the dinuclear units together to form infinite 1-D chains via double N—H···O hydrogen bonds [N4···O1i = 2.931 (3) Å, symmetry operator i: x+1, y+1, z+1, Table 1].

The infinite parallel hydrogen bonded chains of complexes are further connected through non-classical hydrogen bonds (Table 1) to generate a 2-D sheet-like network (Fig. 2). These sheets are ultimately joined together to form a 3-D solid network by additional hydrogen bonds and π-π stacking interactions between the pyridyl and benzene rings of neighboring ligands [Cg2···Cg4v (Symmetry operator v: -x+2, -y+2, -z+2) = 3.5469 (16) Å with a slippage of 0.082 Å, where Cg2 and Cg4 are the centroids of the N3/C13–C17 pyridyl and C19–C24 benzene rings].

Related literature top

For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron et al. (2002); Zhang et al. (2002); Mondal et al. (2004); Jacob & Mukherjee (2006). For related structures and the synthesis of the title ligand, see: Shi et al. (2007, 2008).

Experimental top

N-(4'-chlorophenyl)-3-pyridinecarboxamide was prepared from nicotinoyl chloride hydrochloride and 4-chloroaniline in the presence of triethylamine, yield 80% (Shi et al., 2008). An ethanolic solution of the organic ligand (0.5 mmol in 20 ml ethanol) was added dropwise to AgNO3 (0.5 mmol in 5 ml water). The resulting mixture was stirred for 20 min at room temperature and was then filtered. Single crystals suitable for data collection were obtained by slow evaporation of the solvent in a dark room (0.12g, yield 67%). M.P.: 345-346K. 1H NMR (d6-DMSO ): δ 10.48 (s, 1H, H1), 9.09 (s, 1H, H3), 8.73 (d, 1H, H4), 8.28 (d, 1H, H6), 7.80 (d, 2H, H7, H10), 7.54 (m, 1H, H5), 7.36 (d, 2H, H8, H9). IR (KBr)/cm-1: 701, 724, 833, 1093, 1329, 1351, 1398, 1489, 1535, 1604, 1650, 1680, 3067, 3276.

Refinement top

The H atoms bound to the N atoms were located in a difference Fourier map and refined with a distance restraint of 0.87 (2) Å. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.84 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy groups.

Structure description top

Supramolecular chemistry has generated considerable interest due to the novel structural topologies that can be built that way and due to its potential applications in many areas of science. The carboxamide functionality is an appropriate intermolecular connector, in part due to its well known ability to act as a hydrogen-bonding donor (via the amide hydrogen atoms) or acceptor (via the amide carbonyl oxygen atoms) to enhance structure diversities. Therefore, pyridyl-type compounds that contain a carboxamide group have been used to produce a great number of novel metal-organic complexes (see, for example, Noveron et al., 2002; Zhang et al., 2002; Mondal et al., 2004; Jacob & Mukherjee, 2006). Recently, we have used the non-chelating ligand 3-pyridinecarboxamide in the syntheses of several metal complexes with different topologies (Shi et al., 2007; Shi et al., 2008). In this paper, the crystal structure of the title silver(I) complex is reported.

In the title complex (Fig. 1), each asymmetric unit contains one NO3 anion and one [Ag(N-(4'-chlorophenyl)-3-pyridinecarboxamide)2]+ cation. The AgI ion is coordinated by two nitrogen atoms from two pyridyl rings of two crystallographically independent ligands, thus forming a slightly distorted linear coordination geometry around the silver center. Adjacent symmetry related Ag atoms are connected through nitrate anions via weak interactions with two of the nitrate oxygen atoms (O3 and O5) to form dinuclear units. The distances of Ag···O3ii and Ag···O5 are 2.773 (3) and 2.835 (2) Å, respectively (symmetry operator ii = 2-x,1-y,1-z). The dinculear units are inversion symmetric and the two symmetry related silver ions are bridged in a chelating fashion by two symmetry equivalent nitrate ions. The Ag1···Ag1ii seperation within the units is 3.2574 (5) Å. Via the third oxygen atom the bridging nitrate anion is also hydrogen bonded to one of the amide N—H groups (Table 1). The dimeric units are further stabilized by π-π interactions between pyridyl rings within the dimers [Cg1···Cg2ii = 3.631 (1) Å with a slippage of 1.371 Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C13–C17 pyridyl rings].

The amide unit on the other ligand molecule undergoes a hydrogen bond with one of the amide keto groups in neighboring molecules, which link the dinuclear units together to form infinite 1-D chains via double N—H···O hydrogen bonds [N4···O1i = 2.931 (3) Å, symmetry operator i: x+1, y+1, z+1, Table 1].

The infinite parallel hydrogen bonded chains of complexes are further connected through non-classical hydrogen bonds (Table 1) to generate a 2-D sheet-like network (Fig. 2). These sheets are ultimately joined together to form a 3-D solid network by additional hydrogen bonds and π-π stacking interactions between the pyridyl and benzene rings of neighboring ligands [Cg2···Cg4v (Symmetry operator v: -x+2, -y+2, -z+2) = 3.5469 (16) Å with a slippage of 0.082 Å, where Cg2 and Cg4 are the centroids of the N3/C13–C17 pyridyl and C19–C24 benzene rings].

For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron et al. (2002); Zhang et al. (2002); Mondal et al. (2004); Jacob & Mukherjee (2006). For related structures and the synthesis of the title ligand, see: Shi et al. (2007, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines and π-π interactions as double arrows.
Bis[N-(4-chlorophenyl)pyridine-3-carboxamide]silver(I) nitrate top
Crystal data top
[Ag(C12H9ClN2O)2]NO3Z = 2
Mr = 635.20F(000) = 636
Triclinic, P1Dx = 1.741 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0745 (10) ÅCell parameters from 4853 reflections
b = 10.1425 (10) Åθ = 2.2–27.8°
c = 13.473 (2) ŵ = 1.10 mm1
α = 107.515 (2)°T = 296 K
β = 102.602 (2)°Block, colourless
γ = 103.706 (1)°0.24 × 0.23 × 0.18 mm
V = 1211.6 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube3848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.776, Tmax = 0.820k = 1211
6194 measured reflectionsl = 716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.6379P]
where P = (Fo2 + 2Fc2)/3
4232 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ag(C12H9ClN2O)2]NO3γ = 103.706 (1)°
Mr = 635.20V = 1211.6 (2) Å3
Triclinic, P1Z = 2
a = 10.0745 (10) ÅMo Kα radiation
b = 10.1425 (10) ŵ = 1.10 mm1
c = 13.473 (2) ÅT = 296 K
α = 107.515 (2)°0.24 × 0.23 × 0.18 mm
β = 102.602 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3848 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.820Rint = 0.014
6194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4232 reflectionsΔρmin = 0.39 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.87169 (2)0.56734 (2)0.518117 (14)0.04869 (8)
Cl10.58438 (8)0.45918 (8)0.36615 (5)0.05917 (18)
Cl21.33119 (13)1.05319 (10)1.51069 (6)0.0891 (3)
N20.64188 (19)0.3727 (2)0.05514 (14)0.0375 (4)
H10.71780.43250.10770.045*
O10.44206 (18)0.17952 (18)0.01256 (13)0.0507 (4)
N30.9912 (2)0.7669 (2)0.65614 (15)0.0402 (4)
N10.7302 (2)0.3744 (2)0.38083 (14)0.0388 (4)
C60.5572 (2)0.2683 (2)0.07732 (17)0.0356 (5)
C70.6197 (2)0.3948 (2)0.04546 (17)0.0347 (5)
N41.2066 (2)0.9810 (2)1.04496 (15)0.0417 (5)
H21.26151.04781.03140.050*
C80.4900 (2)0.3301 (3)0.12996 (18)0.0406 (5)
H70.41030.27270.12080.049*
C30.7042 (2)0.2420 (3)0.38709 (19)0.0422 (5)
H40.73520.23540.45510.051*
C20.6833 (2)0.3825 (2)0.28185 (17)0.0355 (5)
H30.69930.47420.27710.043*
C131.0816 (2)0.8926 (2)0.85119 (18)0.0355 (5)
O21.0207 (2)0.7703 (2)0.96688 (15)0.0770 (7)
C161.0810 (3)1.0276 (3)0.7337 (2)0.0457 (6)
H131.10031.11590.72330.055*
C50.5870 (2)0.1236 (2)0.19497 (18)0.0378 (5)
H60.53960.03920.13270.045*
C40.6329 (2)0.1148 (3)0.29612 (19)0.0412 (5)
H50.61610.02430.30310.049*
N50.9683 (2)0.6282 (2)0.31338 (17)0.0501 (5)
C10.6126 (2)0.2601 (2)0.18731 (17)0.0333 (5)
C231.3156 (2)1.1510 (3)1.34542 (19)0.0412 (5)
H171.34791.24421.39930.049*
C171.1113 (2)1.0260 (2)0.8381 (2)0.0413 (5)
H141.15101.11300.89890.050*
C90.4794 (3)0.3512 (2)0.22784 (19)0.0421 (5)
H80.39270.30770.28460.050*
C151.0219 (3)0.8970 (3)0.6450 (2)0.0453 (6)
H121.00260.89900.57490.054*
C100.5971 (3)0.4366 (2)0.24093 (18)0.0404 (5)
C241.2834 (2)1.1322 (2)1.23596 (18)0.0365 (5)
H181.29331.21321.21590.044*
C221.2991 (3)1.0296 (3)1.37339 (19)0.0453 (6)
C141.0215 (2)0.7664 (2)0.75782 (17)0.0361 (5)
H111.00120.67670.76620.043*
C191.2365 (2)0.9934 (2)1.15612 (18)0.0359 (5)
O50.9102 (3)0.7052 (2)0.3672 (2)0.0828 (7)
C110.7258 (3)0.5049 (3)0.1567 (2)0.0482 (6)
H90.80450.56400.16580.058*
C201.2222 (3)0.8724 (3)1.1858 (2)0.0440 (6)
H151.19140.77911.13230.053*
C181.1008 (2)0.8748 (3)0.95936 (19)0.0411 (5)
C120.7364 (3)0.4844 (2)0.05886 (19)0.0434 (5)
H100.82240.53090.00150.052*
O31.0717 (3)0.6017 (3)0.3604 (2)0.0869 (7)
C211.2540 (3)0.8910 (3)1.2953 (2)0.0475 (6)
H161.24500.81051.31590.057*
O40.9214 (2)0.5770 (3)0.21319 (16)0.0913 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05203 (13)0.04686 (12)0.03000 (11)0.00860 (9)0.00232 (8)0.00417 (8)
Cl10.0777 (5)0.0579 (4)0.0394 (3)0.0099 (3)0.0166 (3)0.0252 (3)
Cl20.1476 (9)0.0747 (5)0.0392 (4)0.0264 (5)0.0197 (5)0.0274 (4)
N20.0337 (9)0.0385 (10)0.0285 (9)0.0010 (8)0.0017 (8)0.0120 (8)
O10.0446 (9)0.0506 (10)0.0358 (9)0.0106 (8)0.0024 (7)0.0180 (8)
N30.0381 (10)0.0429 (11)0.0332 (10)0.0096 (8)0.0069 (8)0.0113 (8)
N10.0409 (10)0.0396 (10)0.0298 (9)0.0097 (8)0.0061 (8)0.0109 (8)
C60.0361 (12)0.0344 (11)0.0296 (11)0.0061 (9)0.0065 (9)0.0095 (9)
C70.0369 (11)0.0315 (11)0.0299 (10)0.0066 (9)0.0072 (9)0.0095 (9)
N40.0408 (10)0.0384 (10)0.0321 (10)0.0039 (8)0.0060 (8)0.0115 (8)
C80.0357 (12)0.0432 (13)0.0367 (12)0.0035 (10)0.0078 (10)0.0163 (10)
C30.0421 (13)0.0488 (14)0.0359 (12)0.0122 (11)0.0085 (10)0.0207 (11)
C20.0355 (11)0.0345 (11)0.0335 (11)0.0086 (9)0.0077 (9)0.0130 (9)
C130.0273 (10)0.0388 (12)0.0352 (11)0.0065 (9)0.0086 (9)0.0109 (10)
O20.0791 (14)0.0669 (13)0.0411 (10)0.0345 (11)0.0039 (10)0.0162 (9)
C160.0442 (13)0.0392 (13)0.0535 (15)0.0114 (11)0.0103 (11)0.0221 (11)
C50.0347 (11)0.0353 (12)0.0368 (12)0.0069 (9)0.0081 (9)0.0102 (9)
C40.0404 (12)0.0392 (12)0.0455 (13)0.0113 (10)0.0108 (10)0.0212 (11)
N50.0533 (13)0.0433 (12)0.0390 (11)0.0037 (10)0.0013 (10)0.0199 (10)
C10.0293 (10)0.0371 (11)0.0303 (11)0.0072 (9)0.0083 (9)0.0117 (9)
C230.0435 (13)0.0369 (12)0.0353 (12)0.0097 (10)0.0092 (10)0.0075 (10)
C170.0361 (12)0.0350 (12)0.0436 (13)0.0068 (10)0.0077 (10)0.0091 (10)
C90.0431 (13)0.0398 (12)0.0346 (12)0.0077 (10)0.0035 (10)0.0127 (10)
C150.0441 (13)0.0514 (14)0.0406 (13)0.0141 (11)0.0079 (11)0.0220 (11)
C100.0531 (14)0.0359 (12)0.0309 (11)0.0107 (10)0.0127 (10)0.0140 (9)
C240.0335 (11)0.0338 (11)0.0379 (12)0.0061 (9)0.0076 (9)0.0138 (10)
C220.0524 (14)0.0493 (14)0.0349 (12)0.0161 (11)0.0109 (11)0.0188 (11)
C140.0320 (11)0.0348 (11)0.0346 (11)0.0057 (9)0.0070 (9)0.0102 (9)
C190.0297 (11)0.0380 (12)0.0339 (11)0.0055 (9)0.0067 (9)0.0114 (9)
O50.114 (2)0.0582 (13)0.0899 (17)0.0286 (13)0.0503 (16)0.0324 (12)
C110.0481 (14)0.0441 (13)0.0467 (14)0.0004 (11)0.0147 (11)0.0206 (11)
C200.0491 (14)0.0333 (12)0.0439 (13)0.0108 (10)0.0120 (11)0.0103 (10)
C180.0377 (12)0.0408 (12)0.0333 (11)0.0002 (10)0.0101 (10)0.0086 (10)
C120.0381 (12)0.0411 (13)0.0371 (12)0.0018 (10)0.0032 (10)0.0131 (10)
O30.0772 (15)0.0788 (15)0.0962 (18)0.0178 (12)0.0082 (13)0.0520 (14)
C210.0557 (15)0.0424 (13)0.0474 (14)0.0157 (11)0.0136 (12)0.0227 (11)
O40.0622 (13)0.129 (2)0.0382 (11)0.0217 (13)0.0009 (10)0.0228 (12)
Geometric parameters (Å, º) top
Ag1—N32.1467 (19)C16—C151.379 (3)
Ag1—N12.1519 (18)C16—C171.379 (3)
Ag1—Ag1i3.2574 (5)C16—H130.9300
Cl1—C101.751 (2)C5—C41.377 (3)
Cl2—C221.738 (2)C5—C11.386 (3)
N2—C61.346 (3)C5—H60.9300
N2—C71.419 (3)C4—H50.9300
N2—H10.8600N5—O41.224 (3)
O1—C61.228 (3)N5—O31.228 (3)
N3—C141.339 (3)N5—O51.240 (3)
N3—C151.343 (3)C23—C221.377 (3)
N1—C31.338 (3)C23—C241.382 (3)
N1—C21.348 (3)C23—H170.9300
C6—C11.499 (3)C17—H140.9300
C7—C121.388 (3)C9—C101.373 (3)
C7—C81.389 (3)C9—H80.9300
N4—C181.341 (3)C15—H120.9300
N4—C191.422 (3)C10—C111.381 (3)
N4—H20.8600C24—C191.384 (3)
C8—C91.384 (3)C24—H180.9300
C8—H70.9300C22—C211.374 (3)
C3—C41.381 (3)C14—H110.9300
C3—H40.9300C19—C201.387 (3)
C2—C11.380 (3)C11—C121.381 (3)
C2—H30.9300C11—H90.9300
C13—C141.385 (3)C20—C211.383 (3)
C13—C171.387 (3)C20—H150.9300
C13—C181.499 (3)C12—H100.9300
O2—C181.216 (3)C21—H160.9300
N3—Ag1—N1173.41 (7)C2—C1—C5118.5 (2)
N3—Ag1—Ag1i100.45 (5)C2—C1—C6122.95 (19)
N1—Ag1—Ag1i86.14 (5)C5—C1—C6118.50 (19)
C6—N2—C7127.13 (18)C22—C23—C24118.9 (2)
C6—N2—H1116.4C22—C23—H17120.5
C7—N2—H1116.4C24—C23—H17120.5
C14—N3—C15117.8 (2)C16—C17—C13119.1 (2)
C14—N3—Ag1120.15 (15)C16—C17—H14120.5
C15—N3—Ag1121.49 (16)C13—C17—H14120.5
C3—N1—C2118.20 (19)C10—C9—C8119.8 (2)
C3—N1—Ag1121.23 (15)C10—C9—H8120.1
C2—N1—Ag1119.84 (15)C8—C9—H8120.1
O1—C6—N2124.0 (2)N3—C15—C16122.5 (2)
O1—C6—C1119.57 (19)N3—C15—H12118.8
N2—C6—C1116.38 (18)C16—C15—H12118.8
C12—C7—C8119.4 (2)C9—C10—C11120.9 (2)
C12—C7—N2116.96 (19)C9—C10—Cl1119.65 (18)
C8—C7—N2123.61 (19)C11—C10—Cl1119.43 (18)
C18—N4—C19126.02 (19)C23—C24—C19120.3 (2)
C18—N4—H2117.0C23—C24—H18119.9
C19—N4—H2117.0C19—C24—H18119.9
C9—C8—C7120.0 (2)C21—C22—C23121.6 (2)
C9—C8—H7120.0C21—C22—Cl2119.61 (19)
C7—C8—H7120.0C23—C22—Cl2118.78 (19)
N1—C3—C4122.4 (2)N3—C14—C13123.3 (2)
N1—C3—H4118.8N3—C14—H11118.3
C4—C3—H4118.8C13—C14—H11118.3
N1—C2—C1122.6 (2)C24—C19—C20120.0 (2)
N1—C2—H3118.7C24—C19—N4117.7 (2)
C1—C2—H3118.7C20—C19—N4122.3 (2)
C14—C13—C17118.0 (2)C12—C11—C10119.3 (2)
C14—C13—C18117.1 (2)C12—C11—H9120.3
C17—C13—C18124.7 (2)C10—C11—H9120.3
C15—C16—C17119.3 (2)C21—C20—C19119.8 (2)
C15—C16—H13120.4C21—C20—H15120.1
C17—C16—H13120.4C19—C20—H15120.1
C4—C5—C1119.1 (2)O2—C18—N4123.4 (2)
C4—C5—H6120.5O2—C18—C13120.3 (2)
C1—C5—H6120.5N4—C18—C13116.31 (19)
C5—C4—C3119.2 (2)C11—C12—C7120.5 (2)
C5—C4—H5120.4C11—C12—H10119.8
C3—C4—H5120.4C7—C12—H10119.8
O4—N5—O3119.8 (3)C22—C21—C20119.4 (2)
O4—N5—O5120.0 (3)C22—C21—H16120.3
O3—N5—O5120.1 (3)C20—C21—H16120.3
Ag1i—Ag1—N3—C1483.05 (17)C17—C16—C15—N30.5 (4)
Ag1i—Ag1—N3—C15105.37 (18)C8—C9—C10—C111.5 (4)
Ag1i—Ag1—N1—C366.84 (17)C8—C9—C10—Cl1178.39 (19)
Ag1i—Ag1—N1—C2103.19 (16)C22—C23—C24—C190.6 (4)
C7—N2—C6—O13.7 (4)C24—C23—C22—C211.2 (4)
C7—N2—C6—C1174.4 (2)C24—C23—C22—Cl2176.88 (19)
C6—N2—C7—C12164.4 (2)C15—N3—C14—C130.4 (3)
C6—N2—C7—C814.4 (4)Ag1—N3—C14—C13171.44 (16)
C12—C7—C8—C92.2 (4)C17—C13—C14—N30.2 (3)
N2—C7—C8—C9176.6 (2)C18—C13—C14—N3176.3 (2)
C2—N1—C3—C40.7 (3)C23—C24—C19—C200.3 (3)
Ag1—N1—C3—C4169.49 (18)C23—C24—C19—N4179.3 (2)
C3—N1—C2—C11.3 (3)C18—N4—C19—C24143.7 (2)
Ag1—N1—C2—C1169.04 (16)C18—N4—C19—C2037.3 (4)
C1—C5—C4—C30.5 (3)C9—C10—C11—C121.2 (4)
N1—C3—C4—C50.2 (4)Cl1—C10—C11—C12178.6 (2)
N1—C2—C1—C51.0 (3)C24—C19—C20—C210.4 (4)
N1—C2—C1—C6178.6 (2)N4—C19—C20—C21179.4 (2)
C4—C5—C1—C20.0 (3)C19—N4—C18—O23.9 (4)
C4—C5—C1—C6177.8 (2)C19—N4—C18—C13174.3 (2)
O1—C6—C1—C2142.3 (2)C14—C13—C18—O228.4 (3)
N2—C6—C1—C239.6 (3)C17—C13—C18—O2147.4 (3)
O1—C6—C1—C535.4 (3)C14—C13—C18—N4153.3 (2)
N2—C6—C1—C5142.8 (2)C17—C13—C18—N430.8 (3)
C15—C16—C17—C130.1 (4)C10—C11—C12—C70.8 (4)
C14—C13—C17—C160.4 (3)C8—C7—C12—C112.5 (4)
C18—C13—C17—C16176.2 (2)N2—C7—C12—C11176.4 (2)
C7—C8—C9—C100.3 (4)C23—C22—C21—C201.1 (4)
C14—N3—C15—C160.8 (4)Cl2—C22—C21—C20177.0 (2)
Ag1—N3—C15—C16170.97 (18)C19—C20—C21—C220.2 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O40.862.102.953 (3)169
N4—H2···O1ii0.862.102.931 (3)162
C2—H3···O50.932.513.210 (3)133
C3—H4···O3i0.932.573.300 (3)136
C4—H5···Cl2iii0.932.833.516 (3)132
C5—H6···O1iv0.932.553.376 (3)148
C8—H7···O10.932.272.841 (3)119
C11—H9···O2v0.932.493.194 (4)132
C16—H13···O5vi0.932.483.370 (4)160
C20—H15···O20.932.462.906 (3)109
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x+1, y, z; (v) x, y, z1; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C12H9ClN2O)2]NO3
Mr635.20
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0745 (10), 10.1425 (10), 13.473 (2)
α, β, γ (°)107.515 (2), 102.602 (2), 103.706 (1)
V3)1211.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.24 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.776, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
6194, 4232, 3848
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.05
No. of reflections4232
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O40.8602.1042.953 (3)169.32
N4—H2···O1i0.8602.1002.931 (3)162.07
C2—H3···O50.932.513.210 (3)133
C3—H4···O3ii0.932.573.300 (3)136
C4—H5···Cl2iii0.932.833.516 (3)132
C5—H6···O1iv0.932.553.376 (3)148
C8—H7···O10.932.272.841 (3)119
C11—H9···O2v0.932.493.194 (4)132
C16—H13···O5vi0.932.483.370 (4)160
C20—H15···O20.932.462.906 (3)109
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x+1, y, z; (v) x, y, z1; (vi) x+2, y+2, z+1.
 

Acknowledgements

This project was supported by the Innovation Team Foundation of the Education Bureau of Liaoning Province (2007 T052) and by the Key Laboratory Foundation of the Education Bureau of Liaoning Province (2008 S104).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565–4573.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, A., Li, Y., Khan, M. A., Ross, J. H. & Houser, R. P. (2004). Inorg. Chem. 43, 7075–7082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNoveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, C. Y., Ge, C. H., Gao, E. J., Yin, H. X. & Liu, Q. T. (2008). Inorg. Chem. Commun. 11, 703–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, C.-Y., Ge, C.-H., Song, X.-M. & Liu, Q.-T. (2007). Acta Cryst. E63, m2104–m2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, J., You, X. & Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591–597.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds