organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Chloro­benzyl­­idene]-N′-phenyl­benzene-1,4-di­amine

aDepartment of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: karimah@salam.uitm.edu.my

(Received 8 July 2010; accepted 11 July 2010; online 17 July 2010)

The title compound, C19H15ClN2, adopts an E configuration with respect to the position of the chloro­benzene and diphenyl­amine groups on the C=N azomethine bond. The mol­ecule is not planar, the central six-membered ring making angles of 12.26 (10) and 44.18 (11)° with the 4-chloro­phenyl and phenyl rings, respectively. In the crystal structure, weak C—H⋯π inter­actions contribute to the stabilization of the packing.

Related literature

For related structures, see: Ojala et al. (2007[Ojala, W. H., Arola, T. M., Herrera, N., Balidemaj, B. & Ojala, C. R. (2007). Acta Cryst. C63, o207-o211.]); Fun et al. (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the biological activity of Schiff bases, see: Küstü et al. (2007[Küstü, C., Emregül, K. C. & Atakol, O. (2007). Corros. Sci. pp. 2800-2814.]) and for their pharmaceutical properties and applications as corrosion inhibitors, see: Singh & Dhakarey (2009[Singh, P. & Dhakarey, R. K. S. (2009). Rasayan J. Chem. 2, 869-874.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClN2

  • Mr = 306.78

  • Monoclinic, P 21 /c

  • a = 10.3353 (15) Å

  • b = 17.045 (3) Å

  • c = 8.7893 (13) Å

  • β = 97.384 (3)°

  • V = 1535.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.50 × 0.39 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.971

  • 8939 measured reflections

  • 2860 independent reflections

  • 2076 reflections with I > 2/s(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.127

  • S = 1.05

  • 2860 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1BCg3i 0.93 2.95 3.661 (2) 135
C16—H16ACg1ii 0.93 2.90 3.624 (2) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The continuing study on Schiff bases are driven not only because of their application as ligands but also because of their biological (Singh & Dhakarey, 2009) and pharmaceutical properties and as corrosion inhibitors (Küstü et al., 2007).

The title compound, C19H15N2Cl (I), is a Schiff base having chlorobenzylidene and phenyl groups attached at the terminal nitrogen atoms of the 1,4-diaminobenzene group (Fig.1). The whole molecule is not planar. Each benzene ring is planar with a maximum deviation of 0.011 (2) Å for the C6 atom from the (C1—C6) ring. The middle (C8—C13) ring makes angles of 12.26 (10)° and 44.18 (11)° with the (C1—C6) and (C14—C19) rings, respectively. The dihedral angle between (C1—C6) and (C14—C19) rings is 56.00 (11)°. The E conformation about the C7=N1 double bond is also observed in N,N' -bis(2-methoxybenzylidene)-p-phenylenediamine (II) with an angle of 12.10 (15)° between the mean planes of the benzene rings (Ojala et al., 2007). The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II) and 2-{(4-(phenyldiazenyl)phenl]imino-methyl}phenol (Fun et al., 2008).

In the crystal structure, the molecule is stablized by C—H..π interactions, C1—H1B ···Cg3 (C14—C19) and C16—H16A···Cg1 (C1—C6) with H···Cg distances of 2.95 and 2.90 Å, and C—H···Cg angles of 135 and 136°, respectively.

Related literature top

For related structures, see: Ojala et al. (2007); Fun et al. (2008). For standard bond lengths, see: Allen et al. (1987). For the biological activity of Schiff bases, see: Küstü et al. (2007) and for their pharmaceutical properties and applications as corrosion inhibitors, see: Singh & Dhakarey (2009).

Experimental top

4-Chlorobenzaldehyde (0.7029 g, 0.005 mol) in 15 ml of ethanol and N-phenyl-1,4-phenylenediamine (0.9212 g, 0.005 mol) in 10 ml of ethanol were mixed in a round bottom flask. The mixture was stirred for 30 minutes at about 30 °C. The mixture was left to cool down in an ice bath. A green solid was collected and washed with cold ethanol. Green crystals were obtained by recrystallization from toluene (yield 72%; melting point: 408–411 K; CHNS: C, 74.38; H, 4.93; N, 9.13. Found: C, 74.09; H, 4.91; N, 9.08. IR (cm-1): C=N, 1592; N—H, 3408; C—Cl, 749.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2 x Ueq (C or N).

Structure description top

The continuing study on Schiff bases are driven not only because of their application as ligands but also because of their biological (Singh & Dhakarey, 2009) and pharmaceutical properties and as corrosion inhibitors (Küstü et al., 2007).

The title compound, C19H15N2Cl (I), is a Schiff base having chlorobenzylidene and phenyl groups attached at the terminal nitrogen atoms of the 1,4-diaminobenzene group (Fig.1). The whole molecule is not planar. Each benzene ring is planar with a maximum deviation of 0.011 (2) Å for the C6 atom from the (C1—C6) ring. The middle (C8—C13) ring makes angles of 12.26 (10)° and 44.18 (11)° with the (C1—C6) and (C14—C19) rings, respectively. The dihedral angle between (C1—C6) and (C14—C19) rings is 56.00 (11)°. The E conformation about the C7=N1 double bond is also observed in N,N' -bis(2-methoxybenzylidene)-p-phenylenediamine (II) with an angle of 12.10 (15)° between the mean planes of the benzene rings (Ojala et al., 2007). The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II) and 2-{(4-(phenyldiazenyl)phenl]imino-methyl}phenol (Fun et al., 2008).

In the crystal structure, the molecule is stablized by C—H..π interactions, C1—H1B ···Cg3 (C14—C19) and C16—H16A···Cg1 (C1—C6) with H···Cg distances of 2.95 and 2.90 Å, and C—H···Cg angles of 135 and 136°, respectively.

For related structures, see: Ojala et al. (2007); Fun et al. (2008). For standard bond lengths, see: Allen et al. (1987). For the biological activity of Schiff bases, see: Küstü et al. (2007) and for their pharmaceutical properties and applications as corrosion inhibitors, see: Singh & Dhakarey (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
N-[(E)-4-Chlorobenzylidene]-N'-phenylbenzene-1,4-diamine top
Crystal data top
C19H15ClN2F(000) = 640
Mr = 306.78Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1956 reflections
a = 10.3353 (15) Åθ = 1.9–25.5°
b = 17.045 (3) ŵ = 0.25 mm1
c = 8.7893 (13) ÅT = 298 K
β = 97.384 (3)°Block, colourless
V = 1535.5 (4) Å30.50 × 0.39 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2076 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.038
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.9°
ω scanh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1420
Tmin = 0.886, Tmax = 0.971l = 109
8939 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.388P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H15ClN2V = 1535.5 (4) Å3
Mr = 306.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3353 (15) ŵ = 0.25 mm1
b = 17.045 (3) ÅT = 298 K
c = 8.7893 (13) Å0.50 × 0.39 × 0.12 mm
β = 97.384 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2076 reflections with I > 2/s(I)
Tmin = 0.886, Tmax = 0.971Rint = 0.038
8939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2860 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49291 (8)0.14092 (4)1.51538 (8)0.0878 (3)
N10.19891 (17)0.12993 (11)0.7853 (2)0.0563 (5)
N20.00657 (18)0.08239 (12)0.1689 (2)0.0649 (6)
H2A0.03630.04920.12120.078*
C10.3831 (2)0.03701 (13)1.1159 (3)0.0595 (6)
H1B0.39180.01231.07300.071*
C20.4384 (2)0.05077 (14)1.2645 (3)0.0614 (6)
H2B0.48510.01161.32100.074*
C30.4233 (2)0.12328 (14)1.3281 (3)0.0568 (6)
C40.3532 (2)0.18165 (13)1.2465 (3)0.0583 (6)
H4A0.34210.23011.29150.070*
C50.2997 (2)0.16732 (13)1.0975 (3)0.0540 (6)
H5A0.25260.20671.04180.065*
C60.3150 (2)0.09492 (13)1.0290 (2)0.0502 (5)
C70.2607 (2)0.07919 (13)0.8699 (3)0.0556 (6)
H7A0.27230.02960.82960.067*
C80.1486 (2)0.11346 (13)0.6310 (2)0.0506 (5)
C90.0617 (2)0.16743 (13)0.5585 (3)0.0565 (6)
H9A0.03880.21100.61300.068*
C100.0079 (2)0.15853 (13)0.4074 (3)0.0574 (6)
H10A0.04970.19600.36150.069*
C110.0396 (2)0.09396 (13)0.3239 (3)0.0514 (5)
C120.1269 (2)0.03969 (14)0.3963 (3)0.0575 (6)
H12A0.14930.00400.34180.069*
C130.1808 (2)0.04887 (13)0.5455 (3)0.0561 (6)
H13A0.23950.01170.59070.067*
C140.1137 (2)0.11789 (12)0.0811 (3)0.0500 (5)
C150.2251 (2)0.13990 (12)0.1426 (3)0.0532 (6)
H15A0.22970.13310.24680.064*
C160.3291 (2)0.17186 (13)0.0496 (3)0.0581 (6)
H16A0.40320.18710.09200.070*
C170.3251 (2)0.18156 (14)0.1047 (3)0.0649 (6)
H17A0.39570.20340.16670.078*
C180.2160 (3)0.15871 (14)0.1662 (3)0.0650 (6)
H18A0.21330.16420.27100.078*
C190.1107 (2)0.12777 (14)0.0752 (3)0.0592 (6)
H19A0.03680.11330.11850.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1158 (6)0.0755 (5)0.0653 (4)0.0226 (4)0.0141 (4)0.0041 (3)
N10.0524 (11)0.0529 (11)0.0630 (12)0.0028 (9)0.0051 (9)0.0015 (10)
N20.0588 (12)0.0757 (14)0.0600 (12)0.0135 (10)0.0066 (10)0.0130 (10)
C10.0701 (15)0.0421 (12)0.0673 (16)0.0003 (11)0.0133 (12)0.0000 (11)
C20.0662 (15)0.0529 (14)0.0643 (15)0.0013 (12)0.0057 (12)0.0133 (12)
C30.0604 (14)0.0540 (14)0.0555 (14)0.0116 (11)0.0057 (11)0.0039 (11)
C40.0668 (15)0.0431 (13)0.0659 (15)0.0022 (11)0.0121 (12)0.0037 (11)
C50.0508 (13)0.0477 (13)0.0633 (14)0.0054 (10)0.0072 (11)0.0043 (11)
C60.0457 (12)0.0469 (13)0.0594 (14)0.0024 (10)0.0116 (10)0.0018 (11)
C70.0589 (14)0.0455 (13)0.0628 (15)0.0044 (11)0.0092 (11)0.0050 (11)
C80.0451 (12)0.0494 (13)0.0573 (14)0.0045 (10)0.0066 (10)0.0005 (10)
C90.0581 (14)0.0464 (13)0.0653 (15)0.0028 (11)0.0083 (11)0.0064 (11)
C100.0578 (14)0.0478 (13)0.0645 (15)0.0046 (11)0.0005 (11)0.0023 (11)
C110.0426 (12)0.0540 (14)0.0583 (14)0.0037 (10)0.0091 (10)0.0028 (11)
C120.0481 (13)0.0568 (14)0.0677 (15)0.0041 (11)0.0082 (11)0.0126 (12)
C130.0460 (12)0.0538 (14)0.0681 (15)0.0056 (11)0.0056 (11)0.0019 (12)
C140.0481 (12)0.0453 (12)0.0562 (13)0.0049 (10)0.0052 (10)0.0059 (10)
C150.0550 (13)0.0522 (13)0.0535 (13)0.0032 (11)0.0119 (10)0.0031 (10)
C160.0528 (13)0.0527 (14)0.0691 (16)0.0027 (11)0.0087 (11)0.0079 (12)
C170.0684 (16)0.0557 (14)0.0676 (16)0.0073 (12)0.0033 (13)0.0016 (12)
C180.0788 (17)0.0640 (16)0.0519 (14)0.0021 (13)0.0072 (12)0.0003 (12)
C190.0574 (14)0.0626 (15)0.0603 (15)0.0054 (12)0.0175 (11)0.0071 (12)
Geometric parameters (Å, º) top
Cl1—C31.736 (2)C9—C101.381 (3)
N1—C71.260 (3)C9—H9A0.9300
N1—C81.417 (3)C10—C111.385 (3)
N2—C111.399 (3)C10—H10A0.9300
N2—C141.402 (3)C11—C121.388 (3)
N2—H2A0.8600C12—C131.367 (3)
C1—C21.377 (3)C12—H12A0.9300
C1—C61.384 (3)C13—H13A0.9300
C1—H1B0.9300C14—C151.385 (3)
C2—C31.373 (3)C14—C191.389 (3)
C2—H2B0.9300C15—C161.376 (3)
C3—C41.377 (3)C15—H15A0.9300
C4—C51.376 (3)C16—C171.373 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.391 (3)C17—C181.368 (3)
C5—H5A0.9300C17—H17A0.9300
C6—C71.463 (3)C18—C191.370 (3)
C7—H7A0.9300C18—H18A0.9300
C8—C91.382 (3)C19—H19A0.9300
C8—C131.397 (3)
C7—N1—C8121.7 (2)C9—C10—C11120.2 (2)
C11—N2—C14128.39 (19)C9—C10—H10A119.9
C11—N2—H2A115.8C11—C10—H10A119.9
C14—N2—H2A115.8C10—C11—C12118.1 (2)
C2—C1—C6121.4 (2)C10—C11—N2123.6 (2)
C2—C1—H1B119.3C12—C11—N2118.2 (2)
C6—C1—H1B119.3C13—C12—C11121.6 (2)
C3—C2—C1119.0 (2)C13—C12—H12A119.2
C3—C2—H2B120.5C11—C12—H12A119.2
C1—C2—H2B120.5C12—C13—C8120.7 (2)
C2—C3—C4121.2 (2)C12—C13—H13A119.6
C2—C3—Cl1119.14 (19)C8—C13—H13A119.6
C4—C3—Cl1119.66 (19)C15—C14—C19118.6 (2)
C5—C4—C3119.2 (2)C15—C14—N2122.7 (2)
C5—C4—H4A120.4C19—C14—N2118.7 (2)
C3—C4—H4A120.4C16—C15—C14120.0 (2)
C4—C5—C6121.0 (2)C16—C15—H15A120.0
C4—C5—H5A119.5C14—C15—H15A120.0
C6—C5—H5A119.5C17—C16—C15121.0 (2)
C1—C6—C5118.2 (2)C17—C16—H16A119.5
C1—C6—C7120.1 (2)C15—C16—H16A119.5
C5—C6—C7121.7 (2)C18—C17—C16119.1 (2)
N1—C7—C6122.8 (2)C18—C17—H17A120.4
N1—C7—H7A118.6C16—C17—H17A120.4
C6—C7—H7A118.6C17—C18—C19120.8 (2)
C9—C8—C13117.5 (2)C17—C18—H18A119.6
C9—C8—N1116.5 (2)C19—C18—H18A119.6
C13—C8—N1126.0 (2)C18—C19—C14120.5 (2)
C10—C9—C8121.8 (2)C18—C19—H19A119.8
C10—C9—H9A119.1C14—C19—H19A119.8
C8—C9—H9A119.1
C6—C1—C2—C31.1 (4)C9—C10—C11—N2177.3 (2)
C1—C2—C3—C40.7 (4)C14—N2—C11—C1018.4 (4)
C1—C2—C3—Cl1179.97 (17)C14—N2—C11—C12164.8 (2)
C2—C3—C4—C51.4 (3)C10—C11—C12—C130.1 (3)
Cl1—C3—C4—C5179.28 (17)N2—C11—C12—C13177.0 (2)
C3—C4—C5—C60.3 (3)C11—C12—C13—C80.5 (3)
C2—C1—C6—C52.1 (3)C9—C8—C13—C120.5 (3)
C2—C1—C6—C7178.2 (2)N1—C8—C13—C12179.1 (2)
C4—C5—C6—C11.4 (3)C11—N2—C14—C1532.5 (3)
C4—C5—C6—C7178.9 (2)C11—N2—C14—C19150.9 (2)
C8—N1—C7—C6179.28 (18)C19—C14—C15—C160.9 (3)
C1—C6—C7—N1179.3 (2)N2—C14—C15—C16177.6 (2)
C5—C6—C7—N11.0 (3)C14—C15—C16—C170.8 (3)
C7—N1—C8—C9167.8 (2)C15—C16—C17—C180.2 (4)
C7—N1—C8—C1313.6 (3)C16—C17—C18—C191.2 (4)
C13—C8—C9—C100.1 (3)C17—C18—C19—C141.0 (4)
N1—C8—C9—C10178.8 (2)C15—C14—C19—C180.0 (3)
C8—C9—C10—C110.5 (3)N2—C14—C19—C18176.8 (2)
C9—C10—C11—C120.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg3i0.932.953.661 (2)135
C16—H16A···Cg1ii0.932.903.624 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC19H15ClN2
Mr306.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3353 (15), 17.045 (3), 8.7893 (13)
β (°) 97.384 (3)
V3)1535.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.39 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.886, 0.971
No. of measured, independent and
observed [I > 2/s(I)] reflections
8939, 2860, 2076
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.05
No. of reflections2860
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg3i0.932.953.661 (2)135
C16—H16A···Cg1ii0.932.903.624 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia, Universiti Teknologi MARA and Universiti Kebangsaan Malaysian for the research grants Nos. 600-RMI/ST/FRGS 5/3/Fst(47/2010) and UKM-OUP-BTT-28/2007. NZNH thanks UiTM for the Fellowship Scheme Award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKüstü, C., Emregül, K. C. & Atakol, O. (2007). Corros. Sci. pp. 2800–2814.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOjala, W. H., Arola, T. M., Herrera, N., Balidemaj, B. & Ojala, C. R. (2007). Acta Cryst. C63, o207–o211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P. & Dhakarey, R. K. S. (2009). Rasayan J. Chem. 2, 869–874.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds