organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis(4-hy­dr­oxy­phen­yl)-4H-1,2,4-triazol-4-amine monohydrate

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 August 2010; accepted 16 August 2010; online 28 August 2010)

The triazole ring in the title compound, C14H12N4O2·H2O, makes dihedral angles of 36.9 (1) and 37.3 (1)° with the two benzene rings. Each hy­droxy group is a hydrogen-bond donor to a two-coordinate N atom of an adjacent mol­ecule; these O—H⋯N hydrogen bonds generate a layer parallel to the ab plane. Adjacent layers are linked by N—-H⋯O and Owater—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For two modifications of 4-amino-3,5-diphenyl-1,2,4-triazole, see: Ikemi et al. (2002[Ikemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun. 8, 439-442.]); Zhang et al. (2009[Zhang, Y.-W., Wang, J.-Q. & Cheng, L. (2009). Acta Cryst. E65, o2261.]). For comparison structures, see: Wang et al. (2006[Wang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791-o2792.]); Zachara et al. (2004[Zachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57-o59.]); Bentiss et al. (1998[Bentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1998). J. Appl. Electrochem. 29, 1073-1078.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O2·H2O

  • Mr = 286.29

  • Orthorhombic, P c a 21

  • a = 10.6659 (5) Å

  • b = 15.9790 (8) Å

  • c = 7.4632 (4) Å

  • V = 1271.96 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.773, Tmax = 0.956

  • 2460 measured reflections

  • 1275 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.05

  • 1275 reflections

  • 215 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N3i 0.84 (3) 1.92 (3) 2.730 (2) 163 (3)
O2—H2o⋯N4ii 0.84 (3) 2.02 (3) 2.850 (2) 168 (4)
O1w—H11⋯O2iii 0.85 (3) 2.19 (3) 3.020 (3) 166 (4)
N1—H1n⋯O1w 0.87 (3) 2.08 (3) 2.943 (4) 173 (4)
N1—H2n⋯O1iv 0.86 (3) 2.36 (3) 3.202 (4) 164 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+2, z]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [-x+2, -y+1, z-{\script{1\over 2}}]; (iv) [-x+2, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The class of 3,5-bis(n-hydroxyphenyl)-4-amino-1,2,4-triazoles represents a class of efficient corrosion inhibitors that are synthesized from n-hydroxybenzonitrile, hydrazine and hydrazine sulfate. The pure product is obtained in a number of steps that involve acidification/basification followed by recrystallization, as exemplified by 3,5-bis(4-hydroxyphenyl)-4-amino-1,2,4-triazole (Bentiss et al., 1998). The compound can be synthesized, more conveniently, though a microwave route. The compound is, in fact, a monohydrate (Scheme I, Fig. 1).

Related literature top

For the two modifications of 4-amino-3,5-diphenyl-1,2,4-triazole, see: Ikemi et al. (2002); Zhang et al. (2009). For comparison structures, see: Wang et al. (2006); Zachara et al. (2004); Bentiss et al. (1998).

Experimental top

4-Hydroxybenzonitrile (3 mmol), hydrazine dihydrochloride (1 mmol) and anhydrous hydrazine (3 mmol) along with n-butanol (3 ml) were placed in a microwave synthesizer tube. The tube was irradiated in a CEM Discovery Synthesizer. The magnetron was set to 'normal' and the temperature to 403 K. The tube was irradiated for 8 minutes. Water (10 ml) was added to dissolve the contents. The solution was set aside for the growth of the faint-yellow crystals, which separated after 3 days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints [N–H 0.86 + 0.01 Å and O–H 0.84 + 0.01 Å]; their displacement parameters were freely refined. For the water molecule, the H···H distance was restrained to 1.37±0.01 Å. 402 Friedel pairs were merged.

Structure description top

The class of 3,5-bis(n-hydroxyphenyl)-4-amino-1,2,4-triazoles represents a class of efficient corrosion inhibitors that are synthesized from n-hydroxybenzonitrile, hydrazine and hydrazine sulfate. The pure product is obtained in a number of steps that involve acidification/basification followed by recrystallization, as exemplified by 3,5-bis(4-hydroxyphenyl)-4-amino-1,2,4-triazole (Bentiss et al., 1998). The compound can be synthesized, more conveniently, though a microwave route. The compound is, in fact, a monohydrate (Scheme I, Fig. 1).

For the two modifications of 4-amino-3,5-diphenyl-1,2,4-triazole, see: Ikemi et al. (2002); Zhang et al. (2009). For comparison structures, see: Wang et al. (2006); Zachara et al. (2004); Bentiss et al. (1998).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H12N4O2.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3,5-Bis(4-hydroxyphenyl)-4H-1,2,4-triazol-4-amine monohydrate top
Crystal data top
C14H12N4O2·H2OF(000) = 600
Mr = 286.29Dx = 1.495 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 1690 reflections
a = 10.6659 (5) Åθ = 4.1–70.4°
b = 15.9790 (8) ŵ = 0.90 mm1
c = 7.4632 (4) ÅT = 100 K
V = 1271.96 (11) Å3Prism, yellow
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Gemini E
diffractometer
1275 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1952 pixels mm-1θmax = 70.0°, θmin = 5.0°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1419
Tmin = 0.773, Tmax = 0.956l = 98
2460 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0334P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1275 reflectionsΔρmax = 0.23 e Å3
215 parametersΔρmin = 0.24 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (6)
Crystal data top
C14H12N4O2·H2OV = 1271.96 (11) Å3
Mr = 286.29Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 10.6659 (5) ŵ = 0.90 mm1
b = 15.9790 (8) ÅT = 100 K
c = 7.4632 (4) Å0.30 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Gemini E
diffractometer
1275 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1172 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.956Rint = 0.019
2460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0348 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
1275 reflectionsΔρmin = 0.24 e Å3
215 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05710 (16)1.15554 (10)0.5001 (3)0.0257 (5)
O21.07428 (16)0.33922 (9)0.5626 (3)0.0252 (4)
O1W0.8047 (2)0.76244 (13)0.3567 (3)0.0375 (5)
C11.0874 (2)1.07317 (13)0.5123 (3)0.0175 (5)
C21.0093 (2)1.01053 (14)0.4426 (3)0.0184 (5)
H20.93351.02540.38390.022*
C31.0424 (2)0.92705 (14)0.4592 (3)0.0175 (5)
H30.98860.88480.41350.021*
C41.1546 (2)0.90481 (12)0.5428 (3)0.0157 (5)
C51.2323 (2)0.96757 (13)0.6105 (3)0.0166 (5)
H51.30870.95280.66760.020*
C61.1993 (2)1.05105 (13)0.5954 (4)0.0173 (5)
H61.25311.09320.64180.021*
C71.19711 (19)0.81723 (13)0.5495 (4)0.0165 (5)
C81.20070 (19)0.68071 (13)0.5660 (3)0.0154 (5)
C91.1602 (2)0.59292 (12)0.5747 (3)0.0156 (5)
C101.0488 (2)0.56628 (14)0.4941 (3)0.0166 (5)
H100.99280.60630.44440.020*
C111.0195 (2)0.48188 (13)0.4864 (3)0.0177 (5)
H11A0.94480.46400.42880.021*
C121.0998 (2)0.42316 (13)0.5633 (4)0.0176 (5)
C131.2108 (2)0.44890 (13)0.6442 (3)0.0187 (5)
H131.26580.40890.69600.022*
C141.2406 (2)0.53350 (13)0.6487 (3)0.0165 (5)
H141.31670.55110.70290.020*
N10.9975 (2)0.74477 (11)0.6363 (4)0.0212 (5)
N21.1228 (2)0.74854 (9)0.5740 (3)0.0161 (5)
N31.31389 (18)0.79302 (10)0.5291 (3)0.0185 (5)
N41.31642 (18)0.70604 (10)0.5380 (3)0.0188 (5)
H1O0.9790 (11)1.161 (2)0.508 (5)0.042 (10)*
H2O0.9976 (14)0.331 (3)0.542 (7)0.082 (16)*
H110.827 (3)0.7358 (19)0.264 (3)0.053 (12)*
H120.7286 (15)0.7500 (18)0.376 (6)0.072 (17)*
H1N0.945 (3)0.7523 (17)0.549 (4)0.046 (11)*
H2N0.987 (4)0.7803 (18)0.722 (4)0.055 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (8)0.0142 (7)0.0455 (13)0.0051 (6)0.0026 (8)0.0015 (8)
O20.0207 (8)0.0137 (7)0.0412 (12)0.0040 (6)0.0055 (9)0.0015 (8)
O1W0.0296 (11)0.0460 (11)0.0368 (13)0.0008 (9)0.0020 (9)0.0085 (11)
C10.0144 (11)0.0154 (10)0.0226 (14)0.0001 (8)0.0072 (10)0.0021 (9)
C20.0144 (10)0.0202 (11)0.0207 (13)0.0038 (8)0.0007 (9)0.0006 (10)
C30.0147 (11)0.0166 (10)0.0212 (13)0.0018 (8)0.0015 (9)0.0003 (9)
C40.0166 (10)0.0124 (10)0.0181 (11)0.0013 (8)0.0030 (10)0.0009 (9)
C50.0129 (10)0.0187 (10)0.0182 (12)0.0002 (8)0.0013 (9)0.0012 (9)
C60.0147 (10)0.0144 (10)0.0229 (14)0.0039 (8)0.0033 (9)0.0023 (10)
C70.0154 (10)0.0154 (10)0.0186 (13)0.0014 (8)0.0011 (10)0.0010 (10)
C80.0149 (10)0.0148 (10)0.0164 (12)0.0001 (8)0.0006 (10)0.0001 (10)
C90.0157 (10)0.0133 (10)0.0177 (12)0.0008 (8)0.0025 (10)0.0002 (9)
C100.0136 (11)0.0170 (10)0.0192 (13)0.0021 (8)0.0014 (9)0.0010 (9)
C110.0159 (10)0.0185 (12)0.0187 (12)0.0021 (8)0.0010 (10)0.0004 (10)
C120.0158 (11)0.0142 (9)0.0229 (12)0.0018 (8)0.0026 (10)0.0037 (10)
C130.0168 (11)0.0166 (11)0.0225 (14)0.0019 (8)0.0006 (10)0.0038 (9)
C140.0114 (9)0.0197 (9)0.0184 (13)0.0007 (9)0.0004 (9)0.0018 (9)
N10.0135 (11)0.0214 (10)0.0288 (12)0.0006 (7)0.0036 (10)0.0013 (9)
N20.0129 (9)0.0121 (9)0.0234 (11)0.0013 (6)0.0015 (9)0.0002 (7)
N30.0144 (9)0.0118 (9)0.0294 (13)0.0011 (6)0.0004 (8)0.0010 (9)
N40.0148 (9)0.0108 (9)0.0307 (13)0.0007 (6)0.0001 (9)0.0008 (9)
Geometric parameters (Å, º) top
O1—C11.359 (3)C7—N21.366 (3)
O1—H1O0.84 (3)C8—N41.316 (3)
O2—C121.369 (2)C8—N21.367 (3)
O2—H2O0.84 (3)C8—C91.469 (3)
O1w—H110.85 (3)C9—C141.393 (3)
O1w—H120.85 (3)C9—C101.399 (3)
C1—C61.391 (3)C10—C111.385 (3)
C1—C21.402 (3)C10—H100.9500
C2—C31.386 (3)C11—C121.393 (3)
C2—H20.9500C11—H11A0.9500
C3—C41.395 (3)C12—C131.392 (3)
C3—H30.9500C13—C141.389 (3)
C4—C51.396 (3)C13—H130.9500
C4—C71.472 (3)C14—H140.9500
C5—C61.384 (3)N1—N21.416 (3)
C5—H50.9500N1—H1N0.87 (3)
C6—H60.9500N1—H2N0.86 (3)
C7—N31.313 (3)N3—N41.392 (3)
C1—O1—H1O109 (2)C14—C9—C10119.06 (19)
C12—O2—H2O110 (3)C14—C9—C8119.2 (2)
H11—O1W—H12106.8 (17)C10—C9—C8121.4 (2)
O1—C1—C6118.7 (2)C11—C10—C9120.4 (2)
O1—C1—C2121.7 (2)C11—C10—H10119.8
C6—C1—C2119.60 (19)C9—C10—H10119.8
C3—C2—C1120.2 (2)C10—C11—C12120.0 (2)
C3—C2—H2119.9C10—C11—H11A120.0
C1—C2—H2119.9C12—C11—H11A120.0
C2—C3—C4120.2 (2)O2—C12—C13117.4 (2)
C2—C3—H3119.9O2—C12—C11122.4 (2)
C4—C3—H3119.9C13—C12—C11120.15 (19)
C3—C4—C5119.21 (19)C14—C13—C12119.5 (2)
C3—C4—C7121.4 (2)C14—C13—H13120.2
C5—C4—C7119.2 (2)C12—C13—H13120.2
C6—C5—C4120.8 (2)C13—C14—C9120.9 (2)
C6—C5—H5119.6C13—C14—H14119.6
C4—C5—H5119.6C9—C14—H14119.6
C5—C6—C1119.9 (2)N2—N1—H1N111 (3)
C5—C6—H6120.0N2—N1—H2N110 (3)
C1—C6—H6120.0H1N—N1—H2N112 (3)
N3—C7—N2109.22 (19)C7—N2—C8106.2 (2)
N3—C7—C4124.7 (2)C7—N2—N1128.73 (17)
N2—C7—C4126.12 (19)C8—N2—N1123.65 (17)
N4—C8—N2109.47 (19)C7—N3—N4107.88 (16)
N4—C8—C9125.19 (19)C8—N4—N3107.25 (16)
N2—C8—C9125.21 (19)
O1—C1—C2—C3179.3 (2)C10—C11—C12—O2178.7 (2)
C6—C1—C2—C31.1 (4)C10—C11—C12—C131.5 (4)
C1—C2—C3—C41.0 (4)O2—C12—C13—C14179.8 (2)
C2—C3—C4—C50.5 (4)C11—C12—C13—C140.4 (4)
C2—C3—C4—C7175.0 (2)C12—C13—C14—C90.6 (4)
C3—C4—C5—C60.0 (4)C10—C9—C14—C130.4 (3)
C7—C4—C5—C6175.5 (2)C8—C9—C14—C13174.0 (2)
C4—C5—C6—C10.1 (4)N3—C7—N2—C80.5 (3)
O1—C1—C6—C5179.7 (2)C4—C7—N2—C8178.4 (2)
C2—C1—C6—C50.6 (3)N3—C7—N2—N1166.0 (2)
C3—C4—C7—N3140.3 (3)C4—C7—N2—N115.2 (4)
C5—C4—C7—N335.2 (4)N4—C8—N2—C70.1 (3)
C3—C4—C7—N238.4 (4)C9—C8—N2—C7176.1 (2)
C5—C4—C7—N2146.2 (3)N4—C8—N2—N1167.4 (2)
N4—C8—C9—C1434.9 (4)C9—C8—N2—N116.6 (4)
N2—C8—C9—C14149.7 (2)N2—C7—N3—N40.8 (3)
N4—C8—C9—C10138.5 (3)C4—C7—N3—N4178.0 (2)
N2—C8—C9—C1036.9 (4)N2—C8—N4—N30.5 (3)
C14—C9—C10—C110.7 (4)C9—C8—N4—N3176.6 (2)
C8—C9—C10—C11172.7 (2)C7—N3—N4—C80.8 (2)
C9—C10—C11—C121.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N3i0.84 (3)1.92 (3)2.730 (2)163 (3)
O2—H2o···N4ii0.84 (3)2.02 (3)2.850 (2)168 (4)
O1w—H11···O2iii0.85 (3)2.19 (3)3.020 (3)166 (4)
O1w—H12···O1i0.85 (3)2.55 (3)3.137 (3)128 (2)
N1—H1n···O1w0.87 (3)2.08 (3)2.943 (4)173 (4)
N1—H2n···O1iv0.86 (3)2.36 (3)3.202 (4)164 (3)
Symmetry codes: (i) x1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x+2, y+1, z1/2; (iv) x+2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N4O2·H2O
Mr286.29
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)10.6659 (5), 15.9790 (8), 7.4632 (4)
V3)1271.96 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.773, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
2460, 1275, 1172
Rint0.019
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.05
No. of reflections1275
No. of parameters215
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N3i0.84 (3)1.92 (3)2.730 (2)163 (3)
O2—H2o···N4ii0.84 (3)2.02 (3)2.850 (2)168 (4)
O1w—H11···O2iii0.85 (3)2.19 (3)3.020 (3)166 (4)
N1—H1n···O1w0.87 (3)2.08 (3)2.943 (4)173 (4)
N1—H2n···O1iv0.86 (3)2.36 (3)3.202 (4)164 (3)
Symmetry codes: (i) x1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x+2, y+1, z1/2; (iv) x+2, y+2, z+1/2.
 

Acknowledgements

We thank the Ministry of Science, Technology and Innovation (grant No. 04–01–04-SF0144), Universiti Pertanian Malaysia and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1998). J. Appl. Electrochem. 29, 1073–1078.  Web of Science CrossRef Google Scholar
First citationIkemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun. 8, 439–442.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57–o59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-W., Wang, J.-Q. & Cheng, L. (2009). Acta Cryst. E65, o2261.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds