organic compounds
N-[(Z)-4-Methoxybenzylidene](methoxycarbonyl)methanamine oxide
aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr
The title compound, C11H13NO4, contains a nitrone group, C=N—O—R, the geometry of which shows a Z configuration with near planarity (r.m.s. deviation = 0.0787 Å) around the C=N double bond. An intramolecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal packing, molecules are linked into R22(12) dimers and R22(14) rings via C—H⋯O intermolecular hydrogen bonds.
Related literature
For the application and synthesis of nitrones, see: Merino (2004); Mocours et al. (1995); Frederickson (1997); Gothelf & Jorgensen (2000); Merino et al. (1998); McCaig et al. (1998); Desvergnes et al. (2005); Hanselmann et al. (2003); Pillard et al. (2007); Merino et al. (2008); Kobayashi et al. (2000). For the synthesis of the title compound, see: Diez-Martinez et al. (2010). For related structures, see: Bedford et al. (1991); Kliegel et al. (1998); Greci & Sgarabotto (1984); Christensen et al. (1990); Merino et al. (1996); Olszewski & Stadnicka (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810032289/bv2158sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810032289/bv2158Isup2.hkl
The title compound was synthesized by the literature method (Diez-Martinez et al., 2010). To a solution of methyl glycine ester hydrochloride salt (4.0 g, 31.8 mmol) in CH2Cl2 (70 ml) was added Et3N (4.4 ml, 31.8 mmol) and MgSO4 (2 g) under an argon atmosphere at room temperature. The resulting mixture was stirred for 2 h, then anisaldehyde (3.9 ml, 31.8 mmol) was added. The reaction mixture was stirred at room temperature for an additional 24 h. The resulting precipitate was filtered through a pad of Celite and the fitrate washed with water (50 ml) and brine (50 ml), then dried over MgSO4. Solvent was removed under reduced pressure. The title compound imine (1) was obtained as a white solid in 77% yield. The crude imine (1) (4.0 g, 19.3 mmol) was dissolved in MeOH (50 ml) and MgSO4 (2 g) was added as a
To this mixture UHP (urea-hydrogen peroxide) (5.5 g, 57.9 mmol) and MeReO3 (methyltrioxorhenium) (96 mg, 0.38 mmol) were added under argon atmosphere at room temperature. The reaction mixture was stirred at room temperature for 7 h. After 7 h the solvent was removed in vacuo, the residue was washed with more CH2Cl2 (3 × 50 ml) then filtered. The filtrate removed under vacuo and the residue subjected to eluting with EtOAc/Hexane (1:1). The title compound was obtained as a pale yellow solid in 47% yield. m.p. 65–66°C.The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). 915 Friedel pairs were averaged before the final
as the could not be determined unambiguously.Nitrones are important and versatile intermediates in organic synthesis since they undergo 1,3-dipolar
reactions with a wide range of and to afford Δ2-isoxazolines (Mocours et al., 1995) and isoxazolidines (Gothelf & Jorgensen, 2000; Frederickson, 1997), respectively. Various cyclic or acyclic have been reported and found to be highly reactive intermediates as 1,3-dipoles (Merino, 2004). The cycloadducts have found numerous application in the synthesis of (Merino et al., 1998), (McCaig et al., 1998), pyrrollizideines (Desvergnes et al., 2005) and amino acids (Hanselmann et al., 2003). are also useful intermediates for nucleophilic additions leading to the corresponding N,N-disubstituted Several types of were used such as (Pillard et al., 2007), alkyl Grignard reagent (Merino et al., 2008) and (Kobayashi et al., 2000).The geometry of the nitrone molecule, which shows a Z configuration with near planarity around the C═N double bond [C8—N1 = 1.303 (2) Å], is typical for aldonitrones (Bedford et al., 1991; Kliegel et al., 1998; Olszewski & Stadnicka, 1995; Greci & Sgarabotto, 1984; Christensen et al., 1990). The torsion angles of O2—N1═C8—H8 and O2—N1═C8—C1 are 176.7 (3)° and -3.3 (3)°, respectively. These results are in good agreement with the literature (Merino et al., 1996; Olszewski & Stadnicka, 1995). An intramolecular C6—H6···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) (Fig. 1). In the crystal packing, molecules are linked into R22(12) dimers and R22(14) rings via C8—H8···O3 and C11—H11C···O2 intermolecular hydrogen bonds at (-1/2 + x, 1/2 - y, -z) and (-1/2 + x, -1/2 - y, -z), respectively (Table 1, Fig. 2). The benzene ring A (C1–C6) and S(6) rings are planar with the maximum r.m.s. deviation from the mean plane as -0.0234 (11) Å for N1 and these rings are coplanar with a dihedral angle of only 1.86 (10)°.
For the application and synhesis of
see: Merino (2004); Mocours et al. (1995); Frederickson (1997); Gothelf & Jorgensen (2000); Merino et al. (1998); McCaig et al. (1998); Desvergnes et al. (2005); Hanselmann et al. (2003); Pillard et al. (2007); Merino et al. (2008); Kobayashi et al. (2000). For the synthesis of the title compound, see: Diez-Martinez et al. (2010). For related strucures, see: Bedford et al. (1991); Kliegel et al. (1998); Greci & Sgarabotto (1984); Christensen et al. (1990); Merino et al. (1996); Olszewski & Stadnicka (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995). [Please check all references have been added correctly]Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H13NO4 | F(000) = 472 |
Mr = 223.22 | Dx = 1.337 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5112 reflections |
a = 4.3808 (3) Å | θ = 2.1–27.1° |
b = 9.8207 (7) Å | µ = 0.10 mm−1 |
c = 25.7780 (17) Å | T = 296 K |
V = 1109.03 (13) Å3 | Prism, colourless |
Z = 4 | 0.77 × 0.46 × 0.25 mm |
Stoe IPDS II diffractometer | 1391 independent reflections |
Radiation source: fine-focus sealed tube | 1053 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
rotation method scans | θmax = 26.5°, θmin = 2.2° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −5→5 |
Tmin = 0.953, Tmax = 0.981 | k = −12→11 |
5112 measured reflections | l = −23→32 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0465P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
1391 reflections | Δρmax = 0.09 e Å−3 |
146 parameters | Δρmin = −0.09 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.030 (4) |
C11H13NO4 | V = 1109.03 (13) Å3 |
Mr = 223.22 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.3808 (3) Å | µ = 0.10 mm−1 |
b = 9.8207 (7) Å | T = 296 K |
c = 25.7780 (17) Å | 0.77 × 0.46 × 0.25 mm |
Stoe IPDS II diffractometer | 1391 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1053 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.981 | Rint = 0.051 |
5112 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.09 e Å−3 |
1391 reflections | Δρmin = −0.09 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6012 (4) | 0.7397 (2) | 0.36104 (8) | 0.0608 (5) | |
C2 | 0.5996 (5) | 0.8775 (2) | 0.34738 (10) | 0.0734 (6) | |
H2 | 0.7092 | 0.9392 | 0.3674 | 0.088* | |
C3 | 0.4417 (6) | 0.9235 (2) | 0.30549 (11) | 0.0808 (7) | |
H3 | 0.4449 | 1.0157 | 0.2973 | 0.097* | |
C4 | 0.2769 (5) | 0.8343 (2) | 0.27506 (10) | 0.0700 (6) | |
C5 | 0.2692 (5) | 0.6979 (2) | 0.28817 (9) | 0.0669 (6) | |
H5 | 0.1550 | 0.6373 | 0.2684 | 0.080* | |
C6 | 0.4307 (5) | 0.6515 (2) | 0.33055 (9) | 0.0642 (5) | |
H6 | 0.4251 | 0.5594 | 0.3389 | 0.077* | |
C7 | −0.0090 (7) | 0.8031 (3) | 0.19685 (11) | 0.0960 (8) | |
H7A | −0.1660 | 0.7516 | 0.2139 | 0.115* | |
H7B | 0.1394 | 0.7421 | 0.1824 | 0.115* | |
H7C | −0.0977 | 0.8568 | 0.1696 | 0.115* | |
C8 | 0.7873 (4) | 0.7021 (2) | 0.40462 (9) | 0.0663 (6) | |
H8 | 0.8911 | 0.7726 | 0.4210 | 0.080* | |
C9 | 1.0392 (4) | 0.5582 (3) | 0.46700 (10) | 0.0735 (6) | |
H9A | 1.1358 | 0.6433 | 0.4767 | 0.088* | |
H9B | 1.1972 | 0.4944 | 0.4568 | 0.088* | |
C10 | 0.8628 (4) | 0.5022 (2) | 0.51187 (9) | 0.0651 (6) | |
C11 | 0.8063 (7) | 0.3210 (2) | 0.57071 (12) | 0.0936 (8) | |
H11A | 0.5973 | 0.3064 | 0.5610 | 0.112* | |
H11B | 0.8145 | 0.3798 | 0.6004 | 0.112* | |
H11C | 0.8999 | 0.2354 | 0.5790 | 0.112* | |
N1 | 0.8278 (3) | 0.58064 (18) | 0.42386 (7) | 0.0635 (5) | |
O1 | 0.1341 (5) | 0.88972 (18) | 0.23310 (7) | 0.0935 (5) | |
O2 | 0.6925 (3) | 0.47139 (14) | 0.40781 (7) | 0.0756 (4) | |
O3 | 0.6482 (4) | 0.55930 (17) | 0.53126 (7) | 0.0837 (5) | |
O4 | 0.9683 (3) | 0.38384 (16) | 0.52795 (7) | 0.0818 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0565 (10) | 0.0555 (12) | 0.0703 (14) | −0.0055 (9) | 0.0131 (10) | −0.0071 (10) |
C2 | 0.0762 (13) | 0.0549 (13) | 0.0892 (17) | −0.0113 (11) | 0.0137 (13) | −0.0082 (12) |
C3 | 0.0940 (15) | 0.0523 (13) | 0.0962 (18) | −0.0079 (12) | 0.0194 (15) | −0.0010 (13) |
C4 | 0.0741 (12) | 0.0629 (14) | 0.0728 (15) | 0.0046 (11) | 0.0182 (11) | 0.0054 (11) |
C5 | 0.0696 (12) | 0.0591 (12) | 0.0720 (16) | −0.0034 (10) | 0.0081 (11) | −0.0023 (10) |
C6 | 0.0685 (11) | 0.0501 (11) | 0.0741 (14) | −0.0057 (9) | 0.0072 (11) | −0.0025 (10) |
C7 | 0.1023 (18) | 0.098 (2) | 0.0877 (18) | 0.0114 (18) | −0.0029 (17) | 0.0066 (15) |
C8 | 0.0579 (10) | 0.0614 (12) | 0.0794 (15) | −0.0110 (10) | 0.0088 (11) | −0.0134 (11) |
C9 | 0.0527 (9) | 0.0765 (15) | 0.0913 (16) | 0.0053 (10) | −0.0047 (12) | −0.0109 (12) |
C10 | 0.0557 (9) | 0.0672 (13) | 0.0725 (14) | 0.0086 (10) | −0.0106 (10) | −0.0172 (11) |
C11 | 0.1051 (17) | 0.0735 (16) | 0.102 (2) | 0.0058 (15) | −0.0075 (17) | 0.0015 (14) |
N1 | 0.0534 (7) | 0.0632 (11) | 0.0740 (12) | −0.0055 (8) | 0.0053 (8) | −0.0128 (9) |
O1 | 0.1121 (12) | 0.0784 (11) | 0.0898 (12) | 0.0083 (11) | 0.0037 (11) | 0.0148 (10) |
O2 | 0.0860 (9) | 0.0599 (9) | 0.0809 (10) | −0.0109 (8) | −0.0067 (9) | −0.0087 (7) |
O3 | 0.0827 (9) | 0.0877 (11) | 0.0806 (11) | 0.0308 (9) | 0.0081 (9) | −0.0077 (9) |
O4 | 0.0730 (8) | 0.0676 (10) | 0.1048 (12) | 0.0181 (8) | 0.0022 (9) | −0.0034 (9) |
C1—C6 | 1.388 (3) | C7—H7C | 0.9600 |
C1—C2 | 1.399 (3) | C8—N1 | 1.304 (3) |
C1—C8 | 1.436 (3) | C8—H8 | 0.9300 |
C2—C3 | 1.359 (4) | C9—N1 | 1.464 (3) |
C2—H2 | 0.9300 | C9—C10 | 1.496 (3) |
C3—C4 | 1.380 (3) | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C4—O1 | 1.363 (3) | C10—O3 | 1.203 (2) |
C4—C5 | 1.382 (3) | C10—O4 | 1.318 (3) |
C5—C6 | 1.379 (3) | C11—O4 | 1.449 (3) |
C5—H5 | 0.9300 | C11—H11A | 0.9600 |
C6—H6 | 0.9300 | C11—H11B | 0.9600 |
C7—O1 | 1.410 (3) | C11—H11C | 0.9600 |
C7—H7A | 0.9600 | N1—O2 | 1.294 (2) |
C7—H7B | 0.9600 | ||
C6—C1—C2 | 117.3 (2) | N1—C8—C1 | 127.57 (19) |
C6—C1—C8 | 126.0 (2) | N1—C8—H8 | 116.2 |
C2—C1—C8 | 116.64 (19) | C1—C8—H8 | 116.2 |
C3—C2—C1 | 121.6 (2) | N1—C9—C10 | 108.42 (15) |
C3—C2—H2 | 119.2 | N1—C9—H9A | 110.0 |
C1—C2—H2 | 119.2 | C10—C9—H9A | 110.0 |
C2—C3—C4 | 120.5 (2) | N1—C9—H9B | 110.0 |
C2—C3—H3 | 119.8 | C10—C9—H9B | 110.0 |
C4—C3—H3 | 119.8 | H9A—C9—H9B | 108.4 |
O1—C4—C5 | 124.8 (2) | O3—C10—O4 | 123.7 (2) |
O1—C4—C3 | 116.0 (2) | O3—C10—C9 | 123.6 (2) |
C5—C4—C3 | 119.3 (2) | O4—C10—C9 | 112.71 (18) |
C4—C5—C6 | 120.1 (2) | O4—C11—H11A | 109.5 |
C4—C5—H5 | 120.0 | O4—C11—H11B | 109.5 |
C6—C5—H5 | 120.0 | H11A—C11—H11B | 109.5 |
C5—C6—C1 | 121.3 (2) | O4—C11—H11C | 109.5 |
C5—C6—H6 | 119.4 | H11A—C11—H11C | 109.5 |
C1—C6—H6 | 119.4 | H11B—C11—H11C | 109.5 |
O1—C7—H7A | 109.5 | O2—N1—C8 | 125.08 (18) |
O1—C7—H7B | 109.5 | O2—N1—C9 | 114.05 (17) |
H7A—C7—H7B | 109.5 | C8—N1—C9 | 120.86 (17) |
O1—C7—H7C | 109.5 | C4—O1—C7 | 119.3 (2) |
H7A—C7—H7C | 109.5 | C10—O4—C11 | 116.31 (17) |
H7B—C7—H7C | 109.5 | ||
C6—C1—C2—C3 | −1.0 (3) | C2—C1—C8—N1 | −179.0 (2) |
C8—C1—C2—C3 | 177.2 (2) | N1—C9—C10—O3 | −57.6 (3) |
C1—C2—C3—C4 | 0.1 (3) | N1—C9—C10—O4 | 122.64 (18) |
C2—C3—C4—O1 | −178.1 (2) | C1—C8—N1—O2 | −3.3 (3) |
C2—C3—C4—C5 | 1.2 (3) | C1—C8—N1—C9 | 176.68 (18) |
O1—C4—C5—C6 | 177.8 (2) | C10—C9—N1—O2 | −60.8 (2) |
C3—C4—C5—C6 | −1.5 (3) | C10—C9—N1—C8 | 119.2 (2) |
C4—C5—C6—C1 | 0.5 (3) | C5—C4—O1—C7 | −6.6 (3) |
C2—C1—C6—C5 | 0.7 (3) | C3—C4—O1—C7 | 172.7 (2) |
C8—C1—C6—C5 | −177.30 (19) | O3—C10—O4—C11 | 1.4 (3) |
C6—C1—C8—N1 | −0.9 (3) | C9—C10—O4—C11 | −178.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2 | 0.93 | 2.30 | 2.900 (3) | 122 |
C8—H8···O3i | 0.93 | 2.35 | 3.275 (3) | 175 |
C9—H9B···O2ii | 0.97 | 2.52 | 3.353 (3) | 144 |
C11—H11C···O2iii | 0.96 | 2.43 | 3.379 (3) | 172 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1, y, z; (iii) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H13NO4 |
Mr | 223.22 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 4.3808 (3), 9.8207 (7), 25.7780 (17) |
V (Å3) | 1109.03 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.77 × 0.46 × 0.25 |
Data collection | |
Diffractometer | Stoe IPDS II |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.953, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5112, 1391, 1053 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.082, 0.96 |
No. of reflections | 1391 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.09, −0.09 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O2 | 0.93 | 2.30 | 2.900 (3) | 122 |
C8—H8···O3i | 0.93 | 2.35 | 3.275 (3) | 175 |
C9—H9B···O2ii | 0.97 | 2.52 | 3.353 (3) | 144 |
C11—H11C···O2iii | 0.96 | 2.43 | 3.379 (3) | 172 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1, y, z; (iii) x+1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions. The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).
References
Bedford, R. B., Chaloner, P. A. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2484–2485. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Christensen, D., Jorgensen, K. A. & Hazell, R. G. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2391–2397. CSD CrossRef Web of Science Google Scholar
Desvergnes, S., Py, S. & Valle, Y. (2005). J. Org. Chem. 70, 1459–1462. Web of Science CSD CrossRef PubMed CAS Google Scholar
Diez-Martinez, A., Gultekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 0678–0688. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frederickson, M. (1997). Tetrahedron, 53, 403–425. CrossRef CAS Web of Science Google Scholar
Gothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449–1458. Web of Science CrossRef Google Scholar
Greci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281–1284. CrossRef Google Scholar
Hanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739–8741. Web of Science CrossRef PubMed CAS Google Scholar
Kliegel, W., Metge, J., Rettig, S. J. & Trotter, J. (1998). Can. J. Chem. 76, 389–399. Web of Science CSD CrossRef CAS Google Scholar
Kobayashi, K., Matoba, T., Irisawa, S., Takanohashi, A., Tanmatsu, M., Morikawa, O. & Konishi, H. (2000). Bull. Chem. Soc. Jpn, 73, 2805–2809. Web of Science CrossRef CAS Google Scholar
McCaig, A. E., Meldrum, K. P. & Wightman, R. H. (1998). Tetrahedron, 54, 9429–9446. Web of Science CrossRef CAS Google Scholar
Merino, P. (2004). Science of Synthesis, edited by G. A. Padwa, Vol. 27, ch. 13, pp. 511—580. Stuttgart: Thieme Verlag. Google Scholar
Merino, P., Franco, S., Garces, N., Merchan, F. L. & Tejero, T. (1998). Chem. Commun. pp. 493–494. Web of Science CSD CrossRef Google Scholar
Merino, P., Mannucci, V. & Tejero, T. (2008). Eur. J. Org. Chem. pp. 3943–3959. Web of Science CSD CrossRef Google Scholar
Merino, P., Merchan, F. L., Tejero, T. & Lanaspa, A. (1996). Acta Cryst. C52, 218–219. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Mocours, P., Braekman, J. C. & Daloze, D. (1995). Tetrahedron, 51, 1415–1428. Google Scholar
Olszewski, P. K. & Stadnicka, K. (1995). Acta Cryst. C51, 98–103. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pillard, C., Desvergnes, V. & Py, S. (2007). Tetrahedron Lett. 48, 6209–6213. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrones are important and versatile intermediates in organic synthesis since they undergo 1,3-dipolar cycloaddition reactions with a wide range of alkynes and alkenes to afford Δ2-isoxazolines (Mocours et al., 1995) and isoxazolidines (Gothelf & Jorgensen, 2000; Frederickson, 1997), respectively. Various cyclic or acyclic nitrones have been reported and found to be highly reactive intermediates as 1,3-dipoles (Merino, 2004). The cycloadducts have found numerous application in the synthesis of nucleosides (Merino et al., 1998), amino sugars (McCaig et al., 1998), pyrrollizideines (Desvergnes et al., 2005) and amino acids (Hanselmann et al., 2003). Nitrones are also useful intermediates for nucleophilic additions leading to the corresponding N,N-disubstituted hydroxylamines. Several types of nucleophile were used such as alkynes (Pillard et al., 2007), alkyl Grignard reagent (Merino et al., 2008) and enolates (Kobayashi et al., 2000).
The geometry of the nitrone molecule, which shows a Z configuration with near planarity around the C═N double bond [C8—N1 = 1.303 (2) Å], is typical for aldonitrones (Bedford et al., 1991; Kliegel et al., 1998; Olszewski & Stadnicka, 1995; Greci & Sgarabotto, 1984; Christensen et al., 1990). The torsion angles of O2—N1═C8—H8 and O2—N1═C8—C1 are 176.7 (3)° and -3.3 (3)°, respectively. These results are in good agreement with the literature (Merino et al., 1996; Olszewski & Stadnicka, 1995). An intramolecular C6—H6···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) (Fig. 1). In the crystal packing, molecules are linked into R22(12) dimers and R22(14) rings via C8—H8···O3 and C11—H11C···O2 intermolecular hydrogen bonds at (-1/2 + x, 1/2 - y, -z) and (-1/2 + x, -1/2 - y, -z), respectively (Table 1, Fig. 2). The benzene ring A (C1–C6) and S(6) rings are planar with the maximum r.m.s. deviation from the mean plane as -0.0234 (11) Å for N1 and these rings are coplanar with a dihedral angle of only 1.86 (10)°.