organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Asparagine–L-tartaric acid (1/1)

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya (81100), Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 18 July 2010; accepted 2 August 2010; online 11 August 2010)

In the title compound, C4H8N2O3·C4H6O6, the amino acid mol­ecule exists as a zwitterion and the carb­oxy­lic acid in an un-ionized state. The tartaric acid mol­ecules are linked into layers parallel to the ab plane by O—H⋯O hydrogen bonds. The amino acid mol­ecules are also linked into layers parallel to the ab plane by N—H⋯O and C—H⋯O hydrogen bonds. The alternating tartaric acid and amino acid layers are linked into a three-dimensional framework by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

Our inter­est in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications. For studies on organic non-linear optical materials, see: Cole et al. (2000[Cole, J. M., Wilson, C. C., Howard, J. A. K. & Cruickshank, F. R. (2000). Acta Cryst. B56, 1085-1093.]); Ravi et al. (1998[Ravi, M., Gangopadhyay, P., Rao, D. N., Cohen, S., Agranat, I. & Radhakrishnan, T. P. (1998). Chem. Mater. 10, 2371-2377.]); Sarma et al. (1997[Sarma, J. A. R. P., Allen, F. H., Hoy, V. J., Howard, J. A. K., Thaimattam, R., Biradha, K. & Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 101-102.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N2O3·C4H6O6

  • Mr = 282.21

  • Monoclinic, P 21

  • a = 5.0860 (4) Å

  • b = 9.6720 (6) Å

  • c = 11.8340 (8) Å

  • β = 95.311 (8)°

  • V = 579.64 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.21 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.959, Tmax = 0.969

  • 1339 measured reflections

  • 1073 independent reflections

  • 1015 reflections with I > 2σ(I)

  • Rint = 0.095

  • 2 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.226

  • S = 1.38

  • 1073 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 2.23 3.053 (8) 160
N1—H1B⋯O3ii 0.86 2.04 2.856 (9) 159
N2—H2A⋯O8iii 0.89 2.19 2.895 (8) 136
N2—H2B⋯O2iv 0.89 2.28 2.921 (9) 129
N2—H2C⋯O7 0.89 2.06 2.912 (8) 160
N2—H2C⋯O8 0.89 2.30 2.916 (8) 126
O4—H4⋯O1v 0.82 1.69 2.500 (6) 168
O6—H6⋯O4vi 0.82 2.19 2.959 (8) 156
O7—H7⋯O6iii 0.82 2.05 2.850 (7) 166
O9—H9⋯O2vii 0.82 1.75 2.570 (7) 180
C2—H2⋯O2iii 0.98 2.56 3.426 (9) 147
C3—H3A⋯O3ii 0.97 2.40 3.158 (10) 134
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) [-x, y-{\script{1\over 2}}, -z]; (vi) [-x+1, y+{\script{1\over 2}}, -z]; (vii) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amino acids and carboxylic acids form proton-transfer complexes and hence the ionization states and stoichiometry of individual molecules and their effect on aggregation patterns are of immense interest. Our interest in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications. Results have shown that an inherent relationship exists between the structure of these materials and their observed properties. On the molecular scale, the extent of charge transfer is assumed to dominate the SHG output while on the supramolecular scale, a high SHG output requires non-centrosymmetry, strong intermolecular interactions and good phase-matching ability (Sarma et al., 1997: Ravi et al., 1998: Cole et al., 2000)

Fig.1 illustrates the molecular structure of the title compound, (I), and the atomic numbering scheme adopted. The amino acid molecule exists as a zwitterion, an uncommon ionization state in the crystal structures of amino-carboxylic acid complexes. Usually, a proton transfer is favoured from the carboxylic acid to the amino acid in these complexes, the former exists in the anionic state and the latter in the cationic state. Similar zwitterionic state for the amino acid molecule is observed in L-phenylalanine fumaric acid and L-phenylalanine benzoic acid. The asparagine carboxylate skeleton, which includes O2, O3, C1 and C2 is nearly planar. The deviation of the amine N atom from the plane of the carboxylate group is 0.516 (2) Å. The twist of the carboxylate group of the asparagine molecule is described by ψ1 = 160.4 (6)° and ψ2 = -24.9 (9)°, corresponding to trans and cis arrangements. The side-chain conformations are observed as χ1 = 63.9 (8)°, χ21 = -80.7 (9)° and χ22 = 95.9 (8)° for the asparagine molecule.

The tartaric acid molecule is in the unionized state. The angle between the planes of the half molecules, O9/O8/C8/C7/O7 and O4/O5/C5/C6/O6 is 57.6 (3)°, which is closer to the value of 54.6° found in the structure of tartaric acid. The carbon skeleton of the tartrate molecule is non-planar, with a C5—C6—C7—C8 torsion angle of - 168.5 (6)°.

Fig. 2 shows the partial packing diagram in which there are large number of O—H···O and N—H···O hydrogen bonds. The tartaric acid molecules are linked into layers parallel to the ab plane by O—H···O hydrogen bonds. The amino acid molecules are linked into chains propagating along the b axis by N—H···O hydrogen bonds. The chains are arranged in layers parallel to the ab plane. The alternating tartaric acid and amino acid layers are linked into a three-dimensional framework by N—H···O and O—H···O hydrogen bonds. In addition, C—H···O hydrogen bonds are observed.

Related literature top

Our interest in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications. For studies on organic non-linear optical materials, see: Cole et al. (2000); Ravi et al. (1998); Sarma et al. (1997).

Experimental top

Colourless, prismatic single crystals of (I) were grown from a saturated solution of water containing L-asparagine and tartaric acid in a 1:1 stoichiometric ratio.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The absolute configuration was assigned based on the known configuration of L-arginine and L-tartaric acid. The H atoms were placed at calculated positions [O–H = 0.82 Å, N–H = 0.86 or 0.89 Å and C–H = 0.98 Å] and were allowed to ride on their respective parent atoms with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Structure description top

Amino acids and carboxylic acids form proton-transfer complexes and hence the ionization states and stoichiometry of individual molecules and their effect on aggregation patterns are of immense interest. Our interest in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications. Results have shown that an inherent relationship exists between the structure of these materials and their observed properties. On the molecular scale, the extent of charge transfer is assumed to dominate the SHG output while on the supramolecular scale, a high SHG output requires non-centrosymmetry, strong intermolecular interactions and good phase-matching ability (Sarma et al., 1997: Ravi et al., 1998: Cole et al., 2000)

Fig.1 illustrates the molecular structure of the title compound, (I), and the atomic numbering scheme adopted. The amino acid molecule exists as a zwitterion, an uncommon ionization state in the crystal structures of amino-carboxylic acid complexes. Usually, a proton transfer is favoured from the carboxylic acid to the amino acid in these complexes, the former exists in the anionic state and the latter in the cationic state. Similar zwitterionic state for the amino acid molecule is observed in L-phenylalanine fumaric acid and L-phenylalanine benzoic acid. The asparagine carboxylate skeleton, which includes O2, O3, C1 and C2 is nearly planar. The deviation of the amine N atom from the plane of the carboxylate group is 0.516 (2) Å. The twist of the carboxylate group of the asparagine molecule is described by ψ1 = 160.4 (6)° and ψ2 = -24.9 (9)°, corresponding to trans and cis arrangements. The side-chain conformations are observed as χ1 = 63.9 (8)°, χ21 = -80.7 (9)° and χ22 = 95.9 (8)° for the asparagine molecule.

The tartaric acid molecule is in the unionized state. The angle between the planes of the half molecules, O9/O8/C8/C7/O7 and O4/O5/C5/C6/O6 is 57.6 (3)°, which is closer to the value of 54.6° found in the structure of tartaric acid. The carbon skeleton of the tartrate molecule is non-planar, with a C5—C6—C7—C8 torsion angle of - 168.5 (6)°.

Fig. 2 shows the partial packing diagram in which there are large number of O—H···O and N—H···O hydrogen bonds. The tartaric acid molecules are linked into layers parallel to the ab plane by O—H···O hydrogen bonds. The amino acid molecules are linked into chains propagating along the b axis by N—H···O hydrogen bonds. The chains are arranged in layers parallel to the ab plane. The alternating tartaric acid and amino acid layers are linked into a three-dimensional framework by N—H···O and O—H···O hydrogen bonds. In addition, C—H···O hydrogen bonds are observed.

Our interest in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications. For studies on organic non-linear optical materials, see: Cole et al. (2000); Ravi et al. (1998); Sarma et al. (1997).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
2-Ammonio-3-carbamoylpropanoate–2,3-dihydroxybutanedioic acid (1/1) top
Crystal data top
C4H8N2O3·C4H6O6F(000) = 296
Mr = 282.21Dx = 1.617 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.0860 (4) Åθ = 2.7–25°
b = 9.6720 (6) ŵ = 0.15 mm1
c = 11.8340 (8) ÅT = 293 K
β = 95.311 (8)°Block, colourless
V = 579.64 (7) Å30.28 × 0.23 × 0.21 mm
Z = 2
Data collection top
Nonius MACH-3
diffractometer
1015 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.095
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ω–2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 111
Tmin = 0.959, Tmax = 0.969l = 1413
1339 measured reflections2 standard reflections every 60 min
1073 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H-atom parameters constrained
S = 1.38 w = 1/[σ2(Fo2) + (0.1143P)2 + 0.7291P]
where P = (Fo2 + 2Fc2)/3
1073 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C4H8N2O3·C4H6O6V = 579.64 (7) Å3
Mr = 282.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.0860 (4) ŵ = 0.15 mm1
b = 9.6720 (6) ÅT = 293 K
c = 11.8340 (8) Å0.28 × 0.23 × 0.21 mm
β = 95.311 (8)°
Data collection top
Nonius MACH-3
diffractometer
1015 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.095
Tmin = 0.959, Tmax = 0.9692 standard reflections every 60 min
1339 measured reflections intensity decay: none
1073 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.226H-atom parameters constrained
S = 1.38Δρmax = 0.34 e Å3
1073 reflectionsΔρmin = 0.40 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0957 (12)0.4538 (7)0.1832 (5)0.0531 (18)
O20.7732 (11)0.5170 (7)0.5295 (5)0.0459 (16)
O30.5946 (13)0.3196 (8)0.5798 (5)0.0544 (18)
N10.0876 (12)0.6710 (7)0.2495 (5)0.0377 (16)
H1A0.05780.68890.20910.045*
H1B0.16220.73360.29300.045*
N20.2460 (11)0.3066 (7)0.4019 (5)0.0322 (14)
H2A0.07300.31700.38470.039*
H2B0.27410.25090.46170.039*
H2C0.31760.26980.34300.039*
C10.6013 (12)0.4214 (8)0.5193 (5)0.0280 (15)
C20.3687 (13)0.4442 (8)0.4293 (5)0.0263 (15)
H20.23780.50130.46330.032*
C30.4415 (14)0.5175 (8)0.3216 (6)0.0333 (17)
H3A0.53360.60300.34200.040*
H3B0.55850.45920.28220.040*
C40.1954 (14)0.5483 (8)0.2447 (6)0.0328 (16)
O40.2756 (10)0.0470 (6)0.0292 (4)0.0378 (13)
H40.16640.03920.08430.057*
O50.4110 (10)0.1599 (6)0.0849 (5)0.0396 (14)
O60.8377 (9)0.1558 (6)0.0676 (4)0.0355 (13)
H60.76350.22830.04780.053*
O70.3467 (9)0.1735 (7)0.1895 (4)0.0385 (14)
H70.21360.16050.14620.058*
O80.7364 (9)0.1781 (7)0.3463 (5)0.0418 (15)
O90.9010 (10)0.0231 (6)0.2943 (5)0.0378 (14)
H91.00490.01020.35050.057*
C50.4314 (12)0.0606 (9)0.0232 (5)0.0283 (15)
C60.6460 (13)0.0500 (8)0.0750 (6)0.0269 (15)
H6A0.73330.04000.07120.032*
C70.5159 (12)0.0584 (8)0.1865 (6)0.0296 (15)
H7A0.41730.02680.19770.035*
C80.7309 (12)0.0778 (8)0.2842 (5)0.0274 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.054 (4)0.034 (3)0.061 (4)0.011 (3)0.043 (3)0.010 (3)
O20.034 (3)0.052 (4)0.047 (3)0.006 (3)0.025 (2)0.006 (3)
O30.052 (4)0.050 (4)0.054 (4)0.010 (3)0.032 (3)0.018 (3)
N10.034 (3)0.037 (4)0.039 (3)0.002 (3)0.017 (3)0.002 (3)
N20.022 (3)0.039 (4)0.033 (3)0.003 (3)0.009 (2)0.001 (3)
C10.017 (3)0.042 (4)0.023 (3)0.003 (3)0.008 (2)0.003 (3)
C20.023 (3)0.033 (4)0.021 (3)0.003 (3)0.008 (3)0.004 (3)
C30.027 (3)0.041 (4)0.030 (3)0.003 (3)0.010 (3)0.005 (3)
C40.029 (3)0.036 (4)0.031 (3)0.001 (3)0.011 (3)0.003 (3)
O40.035 (3)0.033 (3)0.041 (3)0.005 (3)0.023 (2)0.001 (3)
O50.034 (3)0.043 (3)0.038 (3)0.001 (3)0.012 (2)0.008 (3)
O60.023 (2)0.041 (3)0.040 (3)0.004 (2)0.0068 (19)0.001 (3)
O70.021 (2)0.054 (4)0.037 (3)0.008 (2)0.0123 (19)0.008 (3)
O80.023 (2)0.056 (4)0.044 (3)0.004 (3)0.015 (2)0.019 (3)
O90.029 (3)0.041 (3)0.039 (3)0.006 (2)0.019 (2)0.000 (3)
C50.021 (3)0.037 (4)0.026 (3)0.006 (3)0.007 (2)0.006 (3)
C60.019 (3)0.029 (3)0.030 (4)0.001 (3)0.008 (3)0.002 (3)
C70.019 (3)0.036 (4)0.031 (3)0.002 (3)0.011 (2)0.001 (3)
C80.017 (3)0.039 (4)0.025 (3)0.002 (3)0.005 (2)0.003 (3)
Geometric parameters (Å, º) top
O1—C41.247 (10)O4—C51.306 (10)
O2—C11.271 (10)O4—H40.82
O3—C11.219 (10)O5—C51.205 (10)
N1—C41.311 (11)O6—C61.422 (9)
N1—H1A0.86O6—H60.82
N1—H1B0.86O7—C71.409 (9)
N2—C21.492 (10)O7—H70.82
N2—H2A0.89O8—C81.215 (9)
N2—H2B0.89O9—C81.302 (9)
N2—H2C0.89O9—H90.82
C1—C21.533 (9)C5—C61.522 (9)
C2—C31.533 (10)C6—C71.532 (10)
C2—H20.98C6—H6A0.98
C3—C41.507 (9)C7—C81.528 (8)
C3—H3A0.97C7—H7A0.98
C3—H3B0.97
C4—N1—H1A120.0O1—C4—C3118.6 (7)
C4—N1—H1B120.0N1—C4—C3118.7 (7)
H1A—N1—H1B120.0C5—O4—H4109.5
C2—N2—H2A109.5C6—O6—H6109.5
C2—N2—H2B109.5C7—O7—H7109.5
H2A—N2—H2B109.5C8—O9—H9109.5
C2—N2—H2C109.5O5—C5—O4125.7 (6)
H2A—N2—H2C109.5O5—C5—C6122.1 (7)
H2B—N2—H2C109.5O4—C5—C6112.1 (6)
O3—C1—O2126.0 (6)O6—C6—C5110.6 (6)
O3—C1—C2117.5 (6)O6—C6—C7111.6 (6)
O2—C1—C2116.2 (7)C5—C6—C7108.5 (5)
N2—C2—C3111.1 (5)O6—C6—H6A108.7
N2—C2—C1107.6 (6)C5—C6—H6A108.7
C3—C2—C1114.5 (5)C7—C6—H6A108.7
N2—C2—H2107.8O7—C7—C8106.3 (6)
C3—C2—H2107.8O7—C7—C6112.2 (6)
C1—C2—H2107.8C8—C7—C6108.8 (5)
C4—C3—C2110.0 (6)O7—C7—H7A109.8
C4—C3—H3A109.7C8—C7—H7A109.8
C2—C3—H3A109.7C6—C7—H7A109.8
C4—C3—H3B109.7O8—C8—O9124.4 (6)
C2—C3—H3B109.7O8—C8—C7122.0 (6)
H3A—C3—H3B108.2O9—C8—C7113.6 (6)
O1—C4—N1122.6 (6)
O3—C1—C2—N224.9 (9)O5—C5—C6—C7111.3 (8)
O2—C1—C2—N2160.4 (6)O4—C5—C6—C767.4 (8)
O3—C1—C2—C3149.0 (7)O6—C6—C7—O770.9 (7)
O2—C1—C2—C336.4 (9)C5—C6—C7—O751.2 (8)
N2—C2—C3—C463.9 (8)O6—C6—C7—C846.4 (8)
C1—C2—C3—C4173.9 (6)C5—C6—C7—C8168.5 (6)
C2—C3—C4—O180.7 (9)O7—C7—C8—O80.7 (9)
C2—C3—C4—N195.9 (8)C6—C7—C8—O8120.3 (7)
O5—C5—C6—O611.4 (9)O7—C7—C8—O9178.5 (6)
O4—C5—C6—O6170.0 (6)C6—C7—C8—O960.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.233.053 (8)160
N1—H1B···O3ii0.862.042.856 (9)159
N2—H2A···O8iii0.892.192.895 (8)136
N2—H2B···O2iv0.892.282.921 (9)129
N2—H2C···O70.892.062.912 (8)160
N2—H2C···O80.892.302.916 (8)126
O4—H4···O1v0.821.692.500 (6)168
O6—H6···O4vi0.822.192.959 (8)156
O7—H7···O6iii0.822.052.850 (7)166
O9—H9···O2vii0.821.752.570 (7)180
C2—H2···O2iii0.982.563.426 (9)147
C3—H3A···O3ii0.972.403.158 (10)134
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+1; (v) x, y1/2, z; (vi) x+1, y+1/2, z; (vii) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H8N2O3·C4H6O6
Mr282.21
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.0860 (4), 9.6720 (6), 11.8340 (8)
β (°) 95.311 (8)
V3)579.64 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.28 × 0.23 × 0.21
Data collection
DiffractometerNonius MACH-3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.959, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
1339, 1073, 1015
Rint0.095
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.226, 1.38
No. of reflections1073
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.233.053 (8)160
N1—H1B···O3ii0.862.042.856 (9)159
N2—H2A···O8iii0.892.192.895 (8)136
N2—H2B···O2iv0.892.282.921 (9)129
N2—H2C···O70.892.062.912 (8)160
N2—H2C···O80.892.302.916 (8)126
O4—H4···O1v0.821.692.500 (6)168
O6—H6···O4vi0.822.192.959 (8)156
O7—H7···O6iii0.822.052.850 (7)166
O9—H9···O2vii0.821.752.570 (7)180
C2—H2···O2iii0.982.563.426 (9)147
C3—H3A···O3ii0.972.403.158 (10)134
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+1; (v) x, y1/2, z; (vi) x+1, y+1/2, z; (vii) x+2, y1/2, z+1.
 

Acknowledgements

SN thanks the CSIR for the funding provided under the Emeritus Scientist Scheme. JS thanks the management of The Madura College, Madurai, and DST–FIST for funding.

References

First citationCole, J. M., Wilson, C. C., Howard, J. A. K. & Cruickshank, F. R. (2000). Acta Cryst. B56, 1085–1093.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRavi, M., Gangopadhyay, P., Rao, D. N., Cohen, S., Agranat, I. & Radhakrishnan, T. P. (1998). Chem. Mater. 10, 2371–2377.  Web of Science CSD CrossRef Google Scholar
First citationSarma, J. A. R. P., Allen, F. H., Hoy, V. J., Howard, J. A. K., Thaimattam, R., Biradha, K. & Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 101–102.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds