organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Bromo-2-thien­yl)ethanone

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570 006, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: nanju_xrd@yahoo.com

(Received 19 August 2010; accepted 28 August 2010; online 11 September 2010)

In the title compound, C6H5BrOS, the non-H and aromatic H atoms lie on a crystallographic mirror plane. In the crystal, mol­ecules are linked into chains propagating along the c axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the uses of acetyl thio­phenes, see: Ashalatha et al. (2009[Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 1904-1919.]); Bando et al. (2010[Bando, S., Satake, S. & Kagano, H. (2010). US Patent No. 7659411 B2.]); Ito & Furukawa (1990[Ito, C. & Furukawa, H. (1990). Chem. Pharm. Bull. 38, 1548-1550.]); Lutz et al. (2005[Lutz, G. B., Thomas, S. & Hans-Hartwig, O. (2005). Monatsh. Chem. 136, 635-653.]); Nakayama et al. (1989[Nakayama, J., Konishi, T., Ishii, A. & Hoshino, M. (1989). Bull. Chem. Soc. Jpn, 62, 2608-2612.]); Pelly et al. (2005[Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.]); Yasuhara et al. (2002[Yasuhara, A., Suzuki, N. & Sakamoto, T. (2002). Chem. Pharm. Bull. 50, 143-145.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5BrOS

  • Mr = 205.07

  • Orthorhombic, C m c a

  • a = 6.8263 (17) Å

  • b = 13.149 (4) Å

  • c = 16.007 (4) Å

  • V = 1436.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.92 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Gottingen, Germany.]) Tmin = 0.313, Tmax = 0.384

  • 12363 measured reflections

  • 973 independent reflections

  • 790 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.06

  • 973 reflections

  • 56 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O8i 0.93 2.43 3.352 (4) 174
Symmetry code: (i) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

2-Acetyl-3-bromothiophene is one of the well-known bio-active intermediate used for the construction of number of new heterocycles (Lutz et al. 2005; Pelly et al. 2005). It is used as an intermediate for the synthesis of furo[3,2-a]carbazole alkaloid, furostifoline (Ito et al. 1990) and its derivatives, which show broad pharmacological properties (Yasuhara et al. 2002). Chalcones of 2-acetyl-3-bromothiophene exhibit promising anti-inflammatory, analgesic and antibacterial activities (Ashalatha et al. 2009). Acetyl thiophenes are useful as intermediates for preparing number of pharmaceutical compounds (Bando et al. 2010). Acetyl bromothiophenes are also used for the synthesis of number of biologically active pyridazine derivatives (Nakayama et al. 1989). With this background, the title compound (I), was synthesized and we report its crystal structure here.

The non-hydrogen and aromatic hydrogen atoms of the title molecule lie on a crystallographic mirror plane (Fig. 1). The molecules are linked into a chain along the c axis by intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For the uses of acetyl thiophenes, see: Ashalatha et al. (2009); Bando et al. (2010); Ito & Furukawa (1990); Lutz et al. (2005); Nakayama et al. (1989); Pelly et al. (2005); Yasuhara et al. (2002).

Experimental top

A three-necked, round-bottomed flask was charged with CH2Cl2 (10 ml) and anhydrous AlCl3 (2.45 g, 18.4 mmol). The flask was cooled to 273 K. A dropping funnel was charged with freshly distilled acetyl chloride (1.48 g, 19.6 mmol) in CH2Cl2 (15 ml), and was added drop wise for a period of 30 min. The reaction mixture was stirred for 1 h at 273 K. The reaction mass was further cooled to 250 K. 3-Bromothiophene (1.00 g, 6.13 mmol) in CH2Cl2 (15 mL) was added drop wise for 1 h. The reaction was stirred at 250 K for 30 min and then warmed slowly to room temperature and stirred for 1 h. Then the reaction mixture was quenched on ice water (50 ml). Layers were separated and aqueous layer was repeatedly extracted with CH2Cl2 and the combined organic extracts were washed with saturated NaHCO3 (25 ml), then brine (25 ml) and finally dried over anhydrous Na2SO4. Solvent was removed by distillation at atmospheric pressure. The remaining oily mass was distilled under high vacuum (403 K at 10 mbar) to give a pale yellow oil which was crystallized in n-hexane to give 2-acetyl-3-bromothiophene (1.10 g, 88 %) as a yellow solid. Block-shaped yellow single crystals were obtained by slow evaporation of an n-hexane solution.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2-1.5Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Packing diagram of (I), viewed down the a axis. The dashed lines represent hydrogen bonds.
1-(3-Bromo-2-thienyl)ethanone top
Crystal data top
C6H5BrOSF(000) = 800
Mr = 205.07Dx = 1.896 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 1982 reflections
a = 6.8263 (17) Åθ = 2.5–28.4°
b = 13.149 (4) ŵ = 5.92 mm1
c = 16.007 (4) ÅT = 293 K
V = 1436.8 (7) Å3Block, yellow
Z = 80.25 × 0.21 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
973 independent reflections
Radiation source: fine-focus sealed tube790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.313, Tmax = 0.384k = 1717
12363 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.3829P]
where P = (Fo2 + 2Fc2)/3
973 reflections(Δ/σ)max = 0.001
56 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C6H5BrOSV = 1436.8 (7) Å3
Mr = 205.07Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 6.8263 (17) ŵ = 5.92 mm1
b = 13.149 (4) ÅT = 293 K
c = 16.007 (4) Å0.25 × 0.21 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
973 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
790 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.384Rint = 0.041
12363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.06Δρmax = 0.68 e Å3
973 reflectionsΔρmin = 0.48 e Å3
56 parameters
Special details top

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.000000.01659 (3)0.38478 (2)0.0547 (1)
S50.000000.33480 (6)0.30339 (5)0.0463 (3)
O80.000000.19098 (19)0.51639 (13)0.0584 (9)
C20.000000.1452 (2)0.33378 (18)0.0365 (9)
C30.000000.1547 (3)0.2458 (2)0.0448 (10)
C40.000000.2530 (3)0.2207 (2)0.0479 (10)
C60.000000.2366 (2)0.37465 (17)0.0357 (9)
C70.000000.2587 (2)0.46527 (19)0.0389 (9)
C90.000000.3685 (3)0.4922 (2)0.0541 (11)
H30.000000.099700.209300.0540*
H40.000000.273500.165100.0570*
H9A0.131400.394500.490600.0810*0.500
H9B0.050100.373600.548100.0810*0.500
H9C0.081300.407400.455100.0810*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0910 (3)0.0316 (2)0.0415 (2)0.00000.00000.0009 (1)
S50.0590 (5)0.0401 (4)0.0397 (4)0.00000.00000.0117 (3)
O80.106 (2)0.0408 (13)0.0285 (12)0.00000.00000.0023 (10)
C20.0400 (16)0.0399 (16)0.0297 (14)0.00000.00000.0021 (12)
C30.0512 (18)0.0519 (18)0.0314 (15)0.00000.00000.0035 (13)
C40.0526 (19)0.063 (2)0.0281 (14)0.00000.00000.0069 (14)
C60.0428 (16)0.0333 (14)0.0309 (15)0.00000.00000.0057 (11)
C70.0482 (17)0.0354 (15)0.0332 (15)0.00000.00000.0021 (12)
C90.079 (2)0.0385 (16)0.0448 (19)0.00000.00000.0061 (14)
Geometric parameters (Å, º) top
Br1—C21.878 (3)C3—H30.93
S5—C41.706 (4)C4—H40.93
S5—C61.723 (3)C9—H9A0.96
O8—C71.209 (4)C9—H9B0.96
C2—C31.414 (4)C9—H9C0.96
C2—C61.368 (4)C9—H9Ai0.96
C3—C41.354 (6)C9—H9Bi0.96
C6—C71.479 (4)C9—H9Ci0.96
C7—C91.507 (5)
Br1···O83.114 (3)C3···C3xi3.4158 (11)
Br1···Br1ii3.7144 (12)C3···C3ix3.4158 (11)
Br1···O8ii3.155 (3)C3···C3vi3.4158 (11)
Br1···S5iii3.8453 (15)C4···O8xvi3.352 (4)
Br1···Br1iv3.7144 (12)C4···O8xvii3.352 (4)
Br1···O8iv3.155 (3)C4···S5x3.5993 (17)
Br1···S5v3.8453 (15)C4···S5xi3.5993 (17)
S5···C4vi3.5993 (17)C4···C4x3.5397 (16)
S5···Br1vii3.8453 (15)C4···C4xi3.5397 (16)
S5···Br1viii3.8453 (15)C4···S5ix3.5993 (17)
S5···C4ix3.5993 (17)C4···S5vi3.5993 (17)
S5···C4x3.5993 (17)C4···C4ix3.5397 (16)
S5···C4xi3.5993 (17)C4···C4vi3.5397 (16)
S5···H9Ci2.6700C7···C7xiv3.5970 (17)
S5···H9C2.6700C7···C7xviii3.5970 (17)
O8···Br13.114 (3)C7···C7xix3.5970 (17)
O8···C4xii3.352 (4)C7···C7xv3.5970 (17)
O8···C4xiii3.352 (4)C9···C9xx3.467 (6)
O8···Br1ii3.155 (3)C9···C9xxi3.467 (6)
O8···Br1iv3.155 (3)H4···O8xvi2.4300
O8···H4xii2.4300H4···O8xvii2.4300
O8···H4xiii2.4300H9A···O8xviii2.7600
O8···H9Axiv2.7600H9A···O8xv2.7600
O8···H9Axv2.7600H9C···S52.6700
C3···C3x3.4158 (11)
C4—S5—C692.36 (16)C7—C9—H9B109.00
Br1—C2—C3120.8 (2)C7—C9—H9C109.00
Br1—C2—C6125.7 (2)C7—C9—H9Ai109.00
C3—C2—C6113.5 (3)C7—C9—H9Bi109.00
C2—C3—C4112.3 (3)C7—C9—H9Ci109.00
S5—C4—C3111.8 (2)H9A—C9—H9B109.00
S5—C6—C2110.0 (2)H9A—C9—H9C109.00
S5—C6—C7120.1 (2)H9A—C9—H9Ai138.00
C2—C6—C7129.9 (2)H9A—C9—H9Bi71.00
O8—C7—C6121.3 (3)H9B—C9—H9C109.00
O8—C7—C9120.8 (3)H9Ai—C9—H9B71.00
C6—C7—C9118.0 (2)H9B—C9—H9Ci138.00
C2—C3—H3124.00H9Bi—C9—H9C138.00
C4—C3—H3124.00H9C—C9—H9Ci71.00
S5—C4—H4124.00H9Ai—C9—H9Bi109.00
C3—C4—H4124.00H9Ai—C9—H9Ci109.00
C7—C9—H9A109.00H9Bi—C9—H9Ci109.00
C6—S5—C4—C30.00C3—C2—C6—S50.00
C4—S5—C6—C20.00C3—C2—C6—C7180.00
C4—S5—C6—C7180.00C2—C3—C4—S50.00
Br1—C2—C3—C4180.00S5—C6—C7—O8180.00
C6—C2—C3—C40.00S5—C6—C7—C90.00
Br1—C2—C6—S5180.00C2—C6—C7—O80.00
Br1—C2—C6—C70.00C2—C6—C7—C9180.00
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x1/2, y, z+1/2; (x) x1/2, y, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z+1; (xv) x+1/2, y+1/2, z+1; (xvi) x, y+1/2, z1/2; (xvii) x, y+1/2, z1/2; (xviii) x+1/2, y+1/2, z+1; (xix) x1/2, y+1/2, z+1; (xx) x, y+1, z+1; (xxi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O8xvi0.932.433.352 (4)174
Symmetry code: (xvi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5BrOS
Mr205.07
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)293
a, b, c (Å)6.8263 (17), 13.149 (4), 16.007 (4)
V3)1436.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)5.92
Crystal size (mm)0.25 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.313, 0.384
No. of measured, independent and
observed [I > 2σ(I)] reflections
12363, 973, 790
Rint0.041
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.06
No. of reflections973
No. of parameters56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O8i0.932.433.352 (4)174
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

SNS is grateful to University Grants Commission (UGC), Government of India, for financial support under the major research project [grant No. 38–220/2009 (SR)]. SNS also expresses his sincere gratitude to J. S. S. Mahavidyapeetha for the encouragement towards this research work. MM thanks the University of Mysore for awarding a project (No. DV3/136/2007–2008/24.09.09).

References

First citationAshalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 1904–1919.  Web of Science CrossRef CAS Google Scholar
First citationBando, S., Satake, S. & Kagano, H. (2010). US Patent No. 7659411 B2.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIto, C. & Furukawa, H. (1990). Chem. Pharm. Bull. 38, 1548–1550.  CrossRef CAS Google Scholar
First citationLutz, G. B., Thomas, S. & Hans-Hartwig, O. (2005). Monatsh. Chem. 136, 635–653.  Google Scholar
First citationNakayama, J., Konishi, T., Ishii, A. & Hoshino, M. (1989). Bull. Chem. Soc. Jpn, 62, 2608–2612.  CrossRef CAS Web of Science Google Scholar
First citationPelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474–10481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasuhara, A., Suzuki, N. & Sakamoto, T. (2002). Chem. Pharm. Bull. 50, 143–145.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds