organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trihexyphenidyl hydro­chloride: a powder diffraction study

aDipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli, 7, 20131 Milano, Italy, and bDipartimento di Scienze Chimiche e Ambientali, Università degli Studi dell'Insubria, via Valleggio, 11, 22100 Como, Italy
*Correspondence e-mail: elisabetta.maccaroni@chem.polimi.it

(Received 17 May 2010; accepted 1 September 2010; online 4 September 2010)

In the cation of the title compound [systematic name: 1-(3-cyclo­hexyl-3-hy­droxy-3-phenyl­prop­yl)piperidinium chloride], C20H32NO+·Cl, the cyclo­hexyl and piperidine rings are in chair conformations. In the crystal structure, cations and anions are linked into chains along the c-axis direction via O—H⋯Cl and N—H⋯Cl hydrogen bonds. Weak inter­molecular C—H⋯Cl inter­actions link further these chains into layers parallel to the bc plane. The salt, obtained from a racemic solution, was found to crystallize in the chiral P21212 space group, indicating that, in the absence of any evident chirality-inducing process, the polycrystalline powders consist of an equivalent mixture of R and S enanti­omers, forming a racemic conglomerate.

Related literature

For characterization of related structures, see Camerman & Camerman (1971a[Camerman, N. & Camerman, A. (1971a). Mol. Pharmacol. 7, 406-412.], 1972a[Camerman, A. & Camerman, N. (1972a). J. Am. Chem. Soc. 94, 268-272.]); Codding (1986[Codding, P. W. (1986). Acta Cryst. B42, 632-638.]); Marubayashi et al. (1999[Marubayashi, N., Yamashita, M. & Hirayama, N. (1999). Anal. Sci. 15, 815-816.]). For structure–activity relationships, see Camerman & Camerman (1970[Camerman, A. & Camerman, N. (1970). Science, 168, 1457-1458.], 1971a[Camerman, N. & Camerman, A. (1971a). Mol. Pharmacol. 7, 406-412.],b[Camerman, A. & Camerman, N. (1971b). Acta Cryst. B27, 2205-2211.], 1972a[Camerman, A. & Camerman, N. (1972a). J. Am. Chem. Soc. 94, 268-272.],b[Camerman, N. & Camerman, A. (1972b). J. Am. Chem. Soc. 94, 8553-8556.], 1981[Camerman, A. & Camerman, N. (1981). Acta Cryst. B37, 1677-1679.]). For the profile function, see: Cheary & Coelho (1992[Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109-121.]) and for the March–Dollase orientation correction, see: Dollase (1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32NO+·Cl

  • Mr = 337.93

  • Orthorhombic, P 21 21 2

  • a = 30.0265 (8) Å

  • b = 11.2297 (4) Å

  • c = 5.8931 (2) Å

  • V = 1987.08 (12) Å3

  • Z = 4

  • Cu Kα radiation, λ = 1.540562, 1.544390 Å

  • T = 298 K

  • Flat sheet, 15 × 20 mm

Data collection
  • Bruker D8 Advance diffractometer

  • Specimen mounting: packed powder

  • Data collection mode: reflection

  • Scan method: step

  • 2θmin = 5°, 2θmax = 104.86°, 2θstep = 0.02°

Refinement
  • Rp = 0.051

  • Rwp = 0.075

  • Rexp = 0.008

  • RBragg = 0.023

  • χ2 = 91.317

  • 4994 data points

  • 100 parameters

  • 46 restraints

  • H-atom parameters constrained

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cli 0.91 2.25 3.141 (13) 166
O1—H2⋯Cl 0.88 2.11 2.986 (13) 173
C20—H20B⋯Cl 0.97 2.76 3.623 (12) 149
Symmetry code: (i) x, y, z+1.

Data collection: D8 Software (Bruker, 2005[Bruker (2005). D8 Software. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: TOPAS-R (Coelho, 2005[Coelho, A. (2005). TOPAS-R. Bruker AXS, Karlsruhe, Germany.]); data reduction: TOPAS-R; program(s) used to solve structure: TOPAS-R; program(s) used to refine structure: TOPAS-R; molecular graphics: SHELXTL/NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title compound, THPD-HCl (THPD = trihexyphenidyl) (1), crystallizes in the non-centrosymmetric space group P21212, thus powders of 1 are formed by an equivalent mixture of enantiomorphic crystals in a racemic conglomerate. 1 consists of an ionic packing of N-protonated cations and chloride anions. The organic cation is formed by a phenyl and a cyclohexyl groups connected to the asymmetric carbon atom (C3) which is further linked to an hydroxyl group and to a protonated N-ethyl piperidine moiety (see Fig. 1). Trihexyphenidyl hydrochloride (1), is a salt used in the treatment of all forms of Parkinson's disease. Trihexyphenidyl and other pharmacological agents of the same class, such as procyclidine hydrochloride and biperiden, were completely characterized by single-crystal X-ray analyses (Camerman & Camerman, 1971a, 1972a; Codding, 1986; Marubayashi et al., 1999), which showed some common stereochemical features which were correlated to their common pharmacological activity. The presence of the electron donating OH group and of the heterocyclic nitrogen has been considered as the typical stereochemical feature of these compounds.The distance between the two groups is 4.00 Å, 2.76 Å and 3.55 Å for 1, THPD, biperiden and procyclidine hydrochloride, in sequence. The shorter N—O distance observed in THPD allows the formation of intramolecular hydrogen bonds O—H···N. At variance, 1 and procyclidine hydrochloride form intermolecular hydrogen bonds through chloride anions. In the crystal, the NH group is pointing away from the direction of the OH group, allowing the formation of molecular chains running along the c axis, through intermolecular O—H···Cl and N—H···Cl hydrogen bonds (Table 1). Moreover, weaker C—H···Cl interactions (Table 1) link the chains in a three-dimensional network.

Related literature top

For characterization of related structures, see Camerman & Camerman (1971a, 1972a); Codding (1986); Marubayashi et al. (1999). For structure–activity relationships, see Camerman & Camerman (1970,1971a,b, 1972a,b, 1981).

Experimental top

Samples of the racemic mixture of the title compound were kindly provided by Dr. C. Pellegatta (Solmag, Divisione di Fidia Farmaceutici S.p.A., Garbagnate Milanese, Italy)

Refinement top

Approximate cell parameters for 1 were determined by the SVD indexing algorithm present in the program TOPAS-R (Coelho, 2005), using the first 20 peak positions, M(20) = 31. Structure solution was initiated by employing a semi-rigid molecular fragment (flexible about five torsion angles) taken from the known crystal structure of THPD (see Camerman & Camerman 1972a) and a freely floating Cl- anion. Simulated annealing allowed the location and orientation of the used fragments, later refined by the Rietveld method, using the independent atom model for non-H atoms (geometrically restrained to achieve convergence to a chemically plausible structure) and idealized H-atom positions. The diffraction profile and the difference between the measured and calculated profiles are shown in Fig. 3.

Computing details top

Data collection: D8 software (Bruker, 2005); cell refinement: TOPAS-R (Coelho, 2005); data reduction: TOPAS-R (Coelho, 2005); program(s) used to solve structure: TOPAS-R (Coelho, 2005); program(s) used to refine structure: TOPAS-R (Coelho, 2005); molecular graphics: SHELXTL/NT (Sheldrick, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing the atomic numbering and 50% probabilty displacement spheres.
[Figure 2] Fig. 2. A portion of the crystal packing of 1 viewed down b axis. Intermolecular hydrogen contacts (O—H···Cl and N—H···Cl) are shown as dashed lines.
[Figure 3] Fig. 3. The Rietveld plot for 1 with peak markers at the bottom. The inset shows the high angle region (2θ>40°).
1-(3-cyclohexyl-3-hydroxy-3-phenylpropyl)piperidinium chloride top
Crystal data top
C20H32NO+·ClF(000) = 736
Mr = 337.93Dx = 1.130 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.540562, 1.544390 Å
a = 30.0265 (8) ÅT = 298 K
b = 11.2297 (4) ÅParticle morphology: no specific habit
c = 5.8931 (2) Åwhite
V = 1987.08 (12) Å3flat sheet, 15 × 20 mm
Z = 4Specimen preparation: Prepared at 298 K and 101.325 kPa
Data collection top
Bruker AXS D8 Advance
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tubeScan method: step
Ni filter monochromator2θmin = 5°, 2θmax = 104.86°, 2θstep = 0.02°
Specimen mounting: packed powder
Refinement top
Refinement on InetProfile function: fundamental parameters (Cheary & Coelho, 1992)
Least-squares matrix: full with fixed elements per cycle100 parameters
Rp = 0.05146 restraints
Rwp = 0.075H-atom parameters constrained
Rexp = 0.008w = 1/σ(Yobs)2
RBragg = 0.023(Δ/σ)max = 0.01
χ2 = 91.317Background function: Chebyshev polynomial
4994 data pointsPreferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation 100, texture parameter r = 0.763).
Crystal data top
C20H32NO+·ClV = 1987.08 (12) Å3
Mr = 337.93Z = 4
Orthorhombic, P21212Cu Kα radiation, λ = 1.540562, 1.544390 Å
a = 30.0265 (8) ÅT = 298 K
b = 11.2297 (4) Åflat sheet, 15 × 20 mm
c = 5.8931 (2) Å
Data collection top
Bruker AXS D8 Advance
diffractometer
Scan method: step
Specimen mounting: packed powder2θmin = 5°, 2θmax = 104.86°, 2θstep = 0.02°
Data collection mode: reflection
Refinement top
Rp = 0.0514994 data points
Rwp = 0.075100 parameters
Rexp = 0.00846 restraints
RBragg = 0.023H-atom parameters constrained
χ2 = 91.317
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1539 (3)0.9849 (13)0.521 (2)0.0703 (16)*
N10.2407 (2)1.0155 (11)0.0092 (18)0.0703 (16)*
C10.1953 (3)1.0772 (12)0.079 (3)0.0703 (16)*
C20.1630 (3)0.9800 (12)0.118 (2)0.0703 (16)*
C30.1306 (3)0.9977 (10)0.3049 (17)0.0703 (16)*
C40.0896 (3)0.9088 (8)0.3708 (19)0.0703 (16)*
C50.1053 (3)0.7793 (9)0.349 (2)0.0703 (16)*
C60.0643 (3)0.6928 (9)0.3714 (19)0.0703 (16)*
C70.0458 (3)0.7068 (9)0.6064 (19)0.0703 (16)*
C80.0271 (3)0.8346 (9)0.617 (2)0.0703 (16)*
C90.0682 (3)0.9211 (9)0.612 (2)0.0703 (16)*
C100.1089 (3)1.1202 (8)0.2851 (17)0.0703 (16)*
C110.1119 (4)1.2011 (9)0.4647 (19)0.0703 (16)*
C120.0882 (3)1.3065 (10)0.4550 (18)0.0703 (16)*
C130.0620 (4)1.3275 (10)0.2593 (16)0.0703 (16)*
C140.0603 (4)1.2490 (9)0.0726 (18)0.0703 (16)*
C150.0837 (4)1.1401 (9)0.0896 (18)0.0703 (16)*
C160.2651 (3)1.0901 (10)0.1634 (19)0.0703 (16)*
C170.3081 (3)1.0375 (12)0.2536 (16)0.0703 (16)*
C180.3374 (3)1.0063 (13)0.051 (2)0.0703 (16)*
C190.3122 (3)0.9158 (10)0.091 (2)0.0703 (16)*
C200.2705 (3)0.9634 (13)0.1905 (16)0.0703 (16)*
Cl0.22190 (13)0.8068 (5)0.6675 (10)0.0703 (16)*
H10.231870.950670.071640.0703*
H1A0.199141.123870.216480.0703*
H1B0.184911.129410.040690.0703*
H20.172340.928010.560390.0703*
H2A0.179520.907570.148640.0703*
H2B0.146410.967520.021160.0703*
H40.065860.921160.258920.0703*
H5A0.126880.761780.466480.0703*
H5B0.119510.767730.202720.0703*
H6A0.041840.712660.259460.0703*
H6B0.073680.611160.346740.0703*
H7A0.068950.695730.719080.0703*
H7B0.022340.649090.633620.0703*
H8A0.010160.845990.755760.0703*
H8B0.007720.849710.488820.0703*
H9A0.058721.002540.638160.0703*
H9B0.089560.899320.728250.0703*
H110.129671.184140.589780.0703*
H120.089331.361580.572730.0703*
H130.045061.396700.253390.0703*
H140.044321.268220.057460.0703*
H150.082301.083560.025510.0703*
H16A0.271761.166750.095540.0703*
H16B0.245301.104230.290600.0703*
H17A0.323131.094680.350330.0703*
H17B0.301880.966620.342160.0703*
H18A0.365470.973020.101710.0703*
H18B0.343571.077060.038430.0703*
H19A0.305050.847570.003040.0703*
H19B0.331370.888370.212980.0703*
H20A0.277641.024470.301030.0703*
H20B0.254770.899940.268420.0703*
Geometric parameters (Å, º) top
O1—C31.460 (15)C2—H2A0.9696
O1—H20.8767C2—H2B0.9696
N1—C11.584 (13)C4—H40.9808
N1—C201.511 (14)C5—H5A0.9684
N1—C161.508 (15)C5—H5B0.9705
N1—H10.9096C6—H6A0.9694
C1—C21.478 (17)C6—H6B0.9700
C2—C31.483 (14)C7—H7A0.9693
C3—C41.632 (14)C7—H7B0.9704
C3—C101.527 (14)C8—H8A0.9714
C4—C51.534 (13)C8—H8B0.9685
C4—C91.566 (16)C9—H9A0.9701
C5—C61.574 (13)C9—H9B0.9697
C6—C71.500 (15)C11—H110.9297
C7—C81.542 (14)C12—H120.9301
C8—C91.571 (13)C13—H130.9294
C10—C111.398 (14)C14—H140.9297
C10—C151.396 (15)C15—H150.9301
C11—C121.382 (15)C16—H16A0.9700
C12—C131.416 (15)C16—H16B0.9698
C13—C141.411 (15)C17—H17A0.9700
C14—C151.414 (15)C17—H17B0.9700
C16—C171.516 (14)C18—H18A0.9693
C17—C181.524 (15)C18—H18B0.9713
C18—C191.518 (17)C19—H19A0.9697
C19—C201.482 (14)C19—H19B0.9710
C1—H1A0.9718C20—H20A0.9698
C1—H1B0.9688C20—H20B0.9704
Cl···C203.623 (12)H2B···C152.7799
Cl···O12.986 (13)H2B···H12.5900
Cl···N1i3.141 (13)H2B···H9Bii2.3837
Cl···C16i3.577 (12)H2B···H152.3248
Cl···H20B2.7567H4···C152.7069
Cl···H16A2.9787H4···H6A2.4500
Cl···H5A3.1305H4···H8B2.3510
Cl···H17Bi2.9986H4···H152.5257
Cl···H1i2.2501H5A···Cl3.1305
Cl···H22.1132H5A···H9B2.4538
O1···Cl2.986 (13)H5A···H17A2.4986
O1···H9B2.4795H5A···H7A2.4065
O1···H112.3874H5A···O12.6532
O1···H2Bi2.7145H5A···H22.3779
O1···H5A2.6532H5B···H2A2.4113
O1···H1A2.7389H5B···C22.7635
N1···Clii3.141 (13)H6A···H42.4500
C1···C153.425 (15)H6A···H8B2.2902
C9···C113.516 (15)H7A···H5A2.4065
C11···C93.516 (15)H7A···H9B2.3691
C15···C13.425 (15)H8A···H14iv2.3521
C16···Clii3.577 (12)H8A···C14iv3.0168
C17···C20ii3.564 (14)H8B···H42.3510
C20···Cl3.623 (12)H8B···H6A2.2902
C20···C17i3.564 (14)H9A···C112.9269
C1···H19A3.0690H9A···C102.8888
C2···H5B2.7635H9A···H15i2.2929
C2···H20B3.0310H9B···H5A2.4538
C2···H152.8176H9B···H7A2.3691
C4···H153.0584H9B···O12.4795
C5···H22.8970H9B···H2Bi2.3837
C5···H17A2.9860H9B···H15i2.5364
C5···H2A2.9043H11···O12.3874
C9···H15i2.8409H14···H8Aiii2.3521
C10···H9A2.8888H15···C43.0584
C10···H1A2.7400H15···C9ii2.8409
C10···H1B2.9842H15···H2B2.3248
C11···H9A2.9269H15···H42.5257
C13···H18A2.8767H15···H9Aii2.2929
C14···H8Aiii3.0168H15···H9Bii2.5364
C15···H42.7069H15···C22.8176
C15···H2B2.7799H16A···Cl2.9787
C17···H20Aii2.7832H16A···H18B2.5072
C20···H17Bi2.9110H16B···H1B2.3531
C20···H2A2.8138H17A···H5A2.4986
H1···H2B2.5900H17A···C52.9860
H1···H19A2.5165H17A···H20Aii2.5901
H1···H2A2.0953H17B···Clii2.9986
H1···Clii2.2501H17B···C20ii2.9110
H1A···O12.7389H17B···H19A2.4063
H1A···C102.7400H17B···H20Aii2.3180
H1B···C102.9842H18A···C132.8767
H1B···H19A2.4818H18B···H20A2.5811
H1B···H16B2.3531H18B···H16A2.5072
H2···C52.8970H19A···C13.0690
H2···Cl2.1132H19A···H12.5165
H2···H2A2.4468H19A···H17B2.4063
H2···H5A2.3779H19A···H1B2.4818
H2A···C52.9043H20A···H17Bi2.3180
H2A···H5B2.4113H20A···H18B2.5811
H2A···H20B2.3689H20A···C17i2.7832
H2A···C202.8138H20A···H17Ai2.5901
H2A···H12.0953H20B···Cl2.7567
H2A···H22.4468H20B···C23.0310
H2B···O1ii2.7145H20B···H2A2.3689
C3—O1—H2127.25C5—C6—H6B110.09
C1—N1—C16110.5 (10)C7—C6—H6A110.27
C16—N1—C20113.8 (7)C7—C6—H6B110.17
C1—N1—C20119.7 (10)H6A—C6—H6B108.52
C20—N1—H1103.47C6—C7—H7A110.70
C1—N1—H1103.61C6—C7—H7B110.57
C16—N1—H1103.48C8—C7—H7A110.65
N1—C1—C2106.4 (10)C8—C7—H7B110.52
C1—C2—C3116.5 (11)H7A—C7—H7B108.76
O1—C3—C495.4 (8)C7—C8—H8A110.32
O1—C3—C10111.1 (9)C7—C8—H8B110.50
C2—C3—C4126.1 (9)C9—C8—H8A110.22
C2—C3—C10110.1 (9)C9—C8—H8B110.43
O1—C3—C2108.7 (8)H8A—C8—H8B108.60
C4—C3—C10104.3 (7)C4—C9—H9A110.35
C3—C4—C5109.2 (7)C4—C9—H9B110.34
C3—C4—C9118.1 (8)C8—C9—H9A110.45
C5—C4—C9106.6 (8)C8—C9—H9B110.51
C4—C5—C6109.7 (7)H9A—C9—H9B108.63
C5—C6—C7107.6 (8)C10—C11—H11120.28
C6—C7—C8105.6 (9)C12—C11—H11120.24
C7—C8—C9106.8 (7)C11—C12—H12121.32
C4—C9—C8106.5 (8)C13—C12—H12121.14
C11—C10—C15123.8 (9)C12—C13—H13118.29
C3—C10—C11120.0 (9)C14—C13—H13118.26
C3—C10—C15116.0 (8)C13—C14—H14121.10
C10—C11—C12119.5 (10)C15—C14—H14121.04
C11—C12—C13117.5 (10)C10—C15—H15121.13
C12—C13—C14123.5 (10)C14—C15—H15121.09
C13—C14—C15117.9 (10)N1—C16—H16A108.37
C10—C15—C14117.8 (9)N1—C16—H16B108.33
N1—C16—C17115.7 (9)C17—C16—H16A108.34
C16—C17—C18107.9 (8)C17—C16—H16B108.35
C17—C18—C19107.3 (8)H16A—C16—H16B107.45
C18—C19—C20113.4 (10)C16—C17—H17A110.15
N1—C20—C19111.1 (8)C16—C17—H17B110.15
N1—C1—H1A110.51C18—C17—H17A110.12
N1—C1—H1B110.66C18—C17—H17B110.12
C2—C1—H1A110.28H17A—C17—H17B108.46
C2—C1—H1B110.41C17—C18—H18A110.43
H1A—C1—H1B108.59C17—C18—H18B110.31
C1—C2—H2A108.23C19—C18—H18A110.20
C1—C2—H2B108.19C19—C18—H18B110.09
C3—C2—H2A108.04H18A—C18—H18B108.47
C3—C2—H2B108.10C18—C19—H19A108.92
H2A—C2—H2B107.39C18—C19—H19B108.96
C3—C4—H4107.56C20—C19—H19A108.91
C5—C4—H4107.53C20—C19—H19B108.80
C9—C4—H4107.42H19A—C19—H19B107.67
C4—C5—H5A109.77N1—C20—H20A109.39
C4—C5—H5B109.65N1—C20—H20B109.31
C6—C5—H5A109.75C19—C20—H20A109.50
C6—C5—H5B109.62C19—C20—H20B109.48
H5A—C5—H5B108.29H20A—C20—H20B108.00
C5—C6—H6A110.19
C16—N1—C1—C2144.9 (11)C2—C3—C10—C11122.4 (10)
C20—N1—C1—C279.8 (14)C3—C4—C5—C6170.5 (8)
C1—N1—C16—C17176.9 (9)C3—C4—C9—C8174.3 (8)
C20—N1—C16—C1745.0 (14)C5—C4—C9—C862.5 (9)
C1—N1—C20—C19177.0 (10)C9—C4—C5—C660.9 (10)
C16—N1—C20—C1943.2 (14)C4—C5—C6—C764.1 (11)
N1—C1—C2—C3143.5 (10)C5—C6—C7—C866.4 (9)
C1—C2—C3—O172.9 (14)C6—C7—C8—C969.6 (10)
C1—C2—C3—C4175.4 (10)C7—C8—C9—C467.6 (10)
C1—C2—C3—C1049.0 (12)C3—C10—C11—C12173.1 (9)
O1—C3—C4—C577.8 (10)C15—C10—C11—C121.4 (16)
C2—C3—C10—C1562.7 (11)C3—C10—C15—C14175.3 (9)
C4—C3—C10—C1199.8 (10)C11—C10—C15—C140.6 (16)
C4—C3—C10—C1575.2 (11)C10—C11—C12—C130.5 (15)
C10—C3—C4—C5168.8 (8)C11—C12—C13—C142.4 (16)
C10—C3—C4—C969.3 (10)C12—C13—C14—C154.4 (17)
O1—C3—C10—C111.9 (13)C13—C14—C15—C103.4 (16)
O1—C3—C10—C15176.8 (9)N1—C16—C17—C1853.6 (13)
O1—C3—C4—C944.1 (11)C16—C17—C18—C1960.4 (13)
C2—C3—C4—C540.0 (13)C17—C18—C19—C2064.4 (12)
C2—C3—C4—C9161.9 (9)C18—C19—C20—N154.5 (13)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+2, z+1; (iv) x, y+2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Clii0.912.253.141 (13)166
O1—H2···Cl0.882.112.986 (13)173
C11—H11···O10.932.392.756 (17)103
C20—H20B···Cl0.972.763.623 (12)149
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H32NO+·Cl
Mr337.93
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)30.0265 (8), 11.2297 (4), 5.8931 (2)
V3)1987.08 (12)
Z4
Radiation typeCu Kα, λ = 1.540562, 1.544390 Å
Specimen shape, size (mm)Flat sheet, 15 × 20
Data collection
DiffractometerBruker AXS D8 Advance
diffractometer
Specimen mountingPacked powder
Data collection modeReflection
Scan methodStep
2θ values (°)2θmin = 5 2θmax = 104.86 2θstep = 0.02
Refinement
R factors and goodness of fitRp = 0.051, Rwp = 0.075, Rexp = 0.008, RBragg = 0.023, χ2 = 91.317
No. of data points4994
No. of parameters100
No. of restraints46
H-atom treatmentH-atom parameters constrained

Computer programs: D8 software (Bruker, 2005), TOPAS-R (Coelho, 2005), SHELXTL/NT (Sheldrick, 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cli0.912.253.141 (13)166
O1—H2···Cl0.882.112.986 (13)173
C20—H20B···Cl0.972.763.623 (12)149
Symmetry code: (i) x, y, z+1.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). D8 Software. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A. & Camerman, N. (1970). Science, 168, 1457–1458.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCamerman, N. & Camerman, A. (1971a). Mol. Pharmacol. 7, 406–412.  CAS PubMed Web of Science Google Scholar
First citationCamerman, A. & Camerman, N. (1971b). Acta Cryst. B27, 2205–2211.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCamerman, A. & Camerman, N. (1972a). J. Am. Chem. Soc. 94, 268–272.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationCamerman, N. & Camerman, A. (1972b). J. Am. Chem. Soc. 94, 8553–8556.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationCamerman, A. & Camerman, N. (1981). Acta Cryst. B37, 1677–1679.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109–121.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCodding, P. W. (1986). Acta Cryst. B42, 632–638.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoelho, A. (2005). TOPAS-R. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarubayashi, N., Yamashita, M. & Hirayama, N. (1999). Anal. Sci. 15, 815–816.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds