organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2590-o2591

2,2′-(Disulfanediyl)di­benzoic acid–N,N′-bis­­(3-pyridyl­meth­yl)ethane­di­amide (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 September 2010; accepted 13 September 2010; online 18 September 2010)

The asymmetric unit of the title cocrystal, C14H14N4O2·C14H10O4S2, comprises a twisted 2,2′-(disulfanediyl)dibenzoic acid mol­ecule [dihedral angle between the benzene rings = 76.35 (10)°] and a U-shaped N,N′-bis­(3-pyridyl­meth­yl)ethane­diamide mol­ecule with the pyridyl groups lying to the same side of the central diamide moiety [C—C—C—N = 113.8 (2) and −117.6 (2)°]. The latter aggregate into supra­molecular tapes propagating along the a axis via centrosymmetric eight-membered amide {⋯OCNH}2 synthons. Intra­molecular N—H⋯O hydrogen bonds are observed. The 2,2′-(disulfanediyl)dibenzoic acid mol­ecules form carbox­yl–pyridine O—H⋯N hydrogen bonds, bridging a pyridine residue below the plane of the tape and one above the plane with two inter­vening N,N′-bis­(3-pyridyl­meth­yl)ethane­diamide mol­ecules. The supra­molecular chains are consolidated in the crystal packing by C—H⋯O contacts. An inter­molecular C—H⋯S inter­action also occurs.

Related literature

For related studies on co-crystal formation involving 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.], 2010[Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]). For crystal engineering studies on N,N′-bis­(3-pyridyl­meth­yl)ethane­diamide, see: Poplaukhin & Tiekink (2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4O2·C14H10O4S2

  • Mr = 576.63

  • Triclinic, [P \overline 1]

  • a = 10.015 (3) Å

  • b = 10.310 (3) Å

  • c = 14.795 (4) Å

  • α = 86.910 (16)°

  • β = 78.052 (15)°

  • γ = 69.554 (10)°

  • V = 1400.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 98 K

  • 0.50 × 0.19 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.755, Tmax = 1.000

  • 10806 measured reflections

  • 6365 independent reflections

  • 5644 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.120

  • S = 1.09

  • 6365 reflections

  • 373 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1n⋯O2 0.88 (1) 2.37 (2) 2.736 (2) 105 (1)
N2—H1n⋯O2i 0.88 (1) 2.03 (1) 2.789 (3) 144 (2)
N3—H2n⋯O1 0.88 (1) 2.37 (2) 2.698 (2) 103 (1)
N3—H2n⋯O1ii 0.88 (1) 1.97 (1) 2.773 (3) 151 (2)
O4—H1o⋯N1iii 0.84 (2) 1.83 (2) 2.664 (3) 175 (1)
O6—H2o⋯N4ii 0.84 (2) 1.80 (2) 2.641 (3) 179 (4)
C2—H2⋯O3iv 0.95 2.53 3.220 (3) 129
C3—H3⋯O1v 0.95 2.48 3.261 (3) 139
C9—H9b⋯S1i 0.99 2.73 3.370 (2) 123
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker et al., 2008; Broker & Tiekink, 2010; Arman et al., 2010), the co-crystallization of 2,2'-(disulfanediyl)dibenzoic acid and N,N'-bis(3-pyridylmethyl)ethanediamide (Poplaukhin & Tiekink, 2010) was investigated. The asymmetric unit of the resulting co-crystal contains one molecule of 2,2'-(disulfanediyl)dibenzoic acid, Fig. 1, and N,N'-bis(3-pyridylmethyl)ethanediamide, Fig. 2.

The 2,2'-(disulfanediyl)dibenzoic acid molecule adopts the expected conformation (Broker & Tiekink, 2007), stabilized in part by two close S···O(carbonyl) interactions, i.e. S1···O3 = 2.6520 (18) Å and S2···O5 = 2.6593 (19) Å; the dihedral angle formed between the benzene rings = 76.35 (10) °. The N,N'-bis(3-pyridylmethyl)ethanediamide molecule adopts a U-shape with the pyridyl groups lying to the same side of the central diamide moiety [C2—C1—C6—N2 = 113.8 (2) ° and N3—C9—C10—C11 = -117.6 (2) °]; the dihedral angle formed between the pyridyl rings = 72.24 (12) °. The pyridine-N atoms are each directed to the same side of the molecule.

Supramolecular tapes are formed comprising alternately orientated U-shaped N,N'-bis(3-pyridylmethyl)ethanediamide molecules and mediated by centrosymmetric eight-membered amide {···OCNH}2 synthons, Fig. 3; intramolecular N—H···O contacts are also noted, Table 1. This arrangement results in successive pairs of pyridine residues of the N,N'-bis(3-pyridylmethyl)oxamide molecules being orientated above and below the plane of the tape. The 2,2'-(disulfanediyl)dibenzoic acid molecules form carboxylic acid-OH···N-pyridine interactions so that a bridge is formed between a pyridine residue below the plane of the tape and one above the plane with two intervening N,N'-bis(3-pyridylmethyl)oxamide molecules. In summary, amide-mediated chains are gird by N,N'-bis(3-pyridylmethyl)oxamide molecules as highlighted in the end-on view shown in Fig. 4. The tapes are orientated along the a direction with the most prominent connection between them being of the type C—H···O, Fig. 5.

Related literature top

For related studies on co-crystal formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007, 2010); Broker et al. (2008); Arman et al. (2010). For crystal engineering studies on N,N'-bis(3-pyridylmethyl)ethanediamide, see: Poplaukhin & Tiekink (2010).

Experimental top

Equimolar amounts of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka) and N,N'-bis(3-pyridylmethyl)ethanediamide (Poplaukhin & Tiekink, 2010) were dissolved in a 1:1 ethanol/chloroform mixture. Crystals were harvested after a few days of slow evaporation.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.840±0.001 Å and N—H = 0.880±0.001 Å, and with Uiso(H) = yUeq(carrier atom); y = 1.5 for O and y = 1.2 for N.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of N,N'-bis(3-pyridylmethyl)ethanediamide found in the structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular chain along the a axis in (I). The O—H···N and N—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 4] Fig. 4. End-on view of the supramolecular chain along the a axis in (I). The O—H···N and N—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 5] Fig. 5. View in projection down the a axis in (I) showing the crystal packing. The O—H···N and N—H···O hydrogen bonds are shown as orange dashed lines, and C—H···O interactions are shown as blue dashed lines.
2,2'-(disulfanediyl)dibenzoic acid–N,N'-bis(3-pyridylmethyl)ethanediamide (1/1) top
Crystal data top
C14H14N4O2·C14H10O4S2Z = 2
Mr = 576.63F(000) = 600
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.015 (3) ÅCell parameters from 5721 reflections
b = 10.310 (3) Åθ = 2.2–40.6°
c = 14.795 (4) ŵ = 0.24 mm1
α = 86.910 (16)°T = 98 K
β = 78.052 (15)°Block, colourless
γ = 69.554 (10)°0.50 × 0.19 × 0.10 mm
V = 1400.1 (7) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
6365 independent reflections
Radiation source: fine-focus sealed tube5644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1013
Tmin = 0.755, Tmax = 1.000k = 1213
10806 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.7689P]
where P = (Fo2 + 2Fc2)/3
6365 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
C14H14N4O2·C14H10O4S2γ = 69.554 (10)°
Mr = 576.63V = 1400.1 (7) Å3
Triclinic, P1Z = 2
a = 10.015 (3) ÅMo Kα radiation
b = 10.310 (3) ŵ = 0.24 mm1
c = 14.795 (4) ÅT = 98 K
α = 86.910 (16)°0.50 × 0.19 × 0.10 mm
β = 78.052 (15)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
6365 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5644 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 1.000Rint = 0.031
10806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
6365 reflectionsΔρmin = 0.41 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.95625 (5)0.47011 (5)0.27148 (3)0.02334 (12)
S20.77520 (5)0.41447 (5)0.31055 (3)0.02470 (12)
O10.57298 (14)0.09350 (15)0.05444 (10)0.0277 (3)
O20.92729 (14)0.08648 (15)0.06739 (10)0.0274 (3)
O31.18914 (15)0.52923 (14)0.18911 (10)0.0261 (3)
O41.20535 (15)0.73668 (15)0.14860 (11)0.0292 (3)
H1o1.2938 (7)0.688 (2)0.1330 (18)0.044*
O50.57421 (16)0.29499 (15)0.34728 (10)0.0274 (3)
O60.49044 (17)0.21673 (18)0.48313 (10)0.0324 (4)
H2o0.437 (2)0.194 (3)0.4549 (17)0.049*
N10.48914 (18)0.59287 (18)0.10362 (12)0.0262 (4)
N20.78541 (17)0.12250 (17)0.06156 (11)0.0222 (3)
H1n0.8801 (4)0.093 (2)0.0407 (14)0.027*
N30.70914 (17)0.09173 (17)0.08631 (12)0.0231 (3)
H2n0.6141 (4)0.064 (2)0.0674 (15)0.028*
N40.67717 (19)0.14651 (19)0.39347 (12)0.0283 (4)
C10.6801 (2)0.3730 (2)0.10738 (13)0.0212 (4)
C20.5347 (2)0.4577 (2)0.12348 (13)0.0233 (4)
H20.46350.41780.15000.028*
C30.5902 (2)0.6486 (2)0.06698 (16)0.0332 (5)
H30.55980.74460.05400.040*
C40.7377 (2)0.5712 (3)0.04726 (17)0.0363 (5)
H40.80660.61330.02000.044*
C50.7829 (2)0.4320 (2)0.06776 (15)0.0293 (4)
H50.88340.37730.05480.035*
C60.7231 (2)0.2239 (2)0.13762 (13)0.0222 (4)
H6A0.79470.20820.17780.027*
H6B0.63600.20850.17500.027*
C70.7054 (2)0.06452 (19)0.02830 (13)0.0209 (4)
C80.7929 (2)0.0458 (2)0.04751 (13)0.0225 (4)
C90.7676 (2)0.2038 (2)0.15588 (14)0.0249 (4)
H9A0.71050.26640.14220.030*
H9B0.86940.25810.15170.030*
C100.7639 (2)0.1524 (2)0.25316 (14)0.0253 (4)
C110.6821 (2)0.1873 (2)0.30620 (14)0.0253 (4)
H110.62660.24300.27940.030*
C120.7536 (3)0.0680 (3)0.43111 (17)0.0391 (5)
H120.75080.03930.49300.047*
C130.8371 (4)0.0266 (4)0.3833 (2)0.0588 (8)
H130.89070.03000.41150.071*
C140.8410 (3)0.0696 (3)0.29329 (19)0.0517 (7)
H140.89720.04180.25900.062*
C150.9789 (2)0.7291 (2)0.23181 (13)0.0219 (4)
C160.8894 (2)0.65541 (19)0.27535 (13)0.0220 (4)
C170.7493 (2)0.7285 (2)0.32319 (14)0.0269 (4)
H170.68870.67940.35360.032*
C180.6974 (2)0.8720 (2)0.32683 (16)0.0321 (5)
H180.60200.92040.36010.039*
C190.7833 (2)0.9455 (2)0.28253 (16)0.0327 (5)
H190.74721.04380.28500.039*
C200.9230 (2)0.8740 (2)0.23438 (14)0.0273 (4)
H200.98140.92430.20270.033*
C211.1338 (2)0.6551 (2)0.18689 (13)0.0221 (4)
C220.7479 (2)0.40288 (19)0.43378 (13)0.0220 (4)
C230.6509 (2)0.3389 (2)0.48074 (13)0.0223 (4)
C240.6283 (2)0.3319 (2)0.57712 (14)0.0279 (4)
H240.56440.28710.60890.033*
C250.6978 (2)0.3893 (2)0.62702 (15)0.0315 (5)
H250.68020.38550.69250.038*
C260.7928 (2)0.4519 (2)0.58043 (15)0.0293 (4)
H260.84110.49090.61420.035*
C270.8185 (2)0.4583 (2)0.48487 (15)0.0274 (4)
H270.88490.50090.45380.033*
C280.5689 (2)0.2819 (2)0.43016 (14)0.0230 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (2)0.0226 (2)0.0238 (3)0.00938 (18)0.00082 (18)0.00458 (17)
S20.0287 (3)0.0311 (3)0.0190 (2)0.0164 (2)0.00315 (19)0.00354 (18)
O10.0151 (6)0.0334 (8)0.0350 (8)0.0080 (6)0.0035 (6)0.0117 (6)
O20.0158 (6)0.0346 (8)0.0316 (8)0.0075 (6)0.0036 (6)0.0119 (6)
O30.0243 (7)0.0246 (7)0.0284 (8)0.0087 (6)0.0019 (6)0.0029 (6)
O40.0231 (7)0.0279 (8)0.0345 (8)0.0095 (6)0.0013 (6)0.0058 (6)
O50.0319 (7)0.0352 (8)0.0198 (7)0.0171 (6)0.0054 (6)0.0021 (6)
O60.0339 (8)0.0519 (10)0.0230 (8)0.0280 (8)0.0084 (6)0.0042 (7)
N10.0260 (8)0.0275 (9)0.0246 (9)0.0091 (7)0.0045 (7)0.0016 (7)
N20.0174 (7)0.0259 (8)0.0224 (8)0.0060 (6)0.0026 (6)0.0078 (6)
N30.0165 (7)0.0258 (8)0.0271 (9)0.0065 (6)0.0036 (6)0.0092 (7)
N40.0274 (9)0.0337 (9)0.0264 (9)0.0136 (7)0.0053 (7)0.0017 (7)
C10.0234 (9)0.0260 (9)0.0156 (9)0.0097 (8)0.0041 (7)0.0029 (7)
C20.0229 (9)0.0274 (10)0.0206 (10)0.0106 (8)0.0030 (7)0.0009 (7)
C30.0323 (11)0.0325 (11)0.0360 (12)0.0133 (9)0.0082 (9)0.0091 (9)
C40.0283 (11)0.0410 (13)0.0415 (13)0.0176 (10)0.0044 (9)0.0127 (10)
C50.0221 (9)0.0364 (11)0.0295 (11)0.0105 (8)0.0059 (8)0.0048 (9)
C60.0227 (9)0.0259 (9)0.0186 (9)0.0086 (7)0.0038 (7)0.0046 (7)
C70.0183 (8)0.0229 (9)0.0232 (10)0.0078 (7)0.0063 (7)0.0020 (7)
C80.0198 (9)0.0254 (9)0.0229 (10)0.0074 (7)0.0047 (7)0.0035 (7)
C90.0245 (9)0.0247 (9)0.0262 (10)0.0069 (8)0.0069 (8)0.0085 (8)
C100.0244 (9)0.0281 (10)0.0241 (10)0.0097 (8)0.0037 (8)0.0069 (8)
C110.0249 (9)0.0293 (10)0.0242 (10)0.0125 (8)0.0035 (8)0.0043 (8)
C120.0478 (14)0.0460 (14)0.0329 (13)0.0273 (12)0.0095 (10)0.0035 (10)
C130.082 (2)0.080 (2)0.0464 (16)0.0664 (19)0.0207 (15)0.0162 (15)
C140.0701 (19)0.076 (2)0.0388 (14)0.0562 (17)0.0209 (13)0.0040 (13)
C150.0218 (9)0.0252 (9)0.0187 (9)0.0076 (7)0.0046 (7)0.0005 (7)
C160.0248 (9)0.0230 (9)0.0190 (9)0.0079 (7)0.0057 (7)0.0022 (7)
C170.0247 (10)0.0277 (10)0.0264 (11)0.0080 (8)0.0027 (8)0.0001 (8)
C180.0261 (10)0.0280 (11)0.0333 (12)0.0020 (8)0.0004 (8)0.0006 (8)
C190.0372 (12)0.0220 (10)0.0323 (12)0.0042 (9)0.0034 (9)0.0013 (8)
C200.0298 (10)0.0251 (10)0.0262 (10)0.0107 (8)0.0030 (8)0.0037 (8)
C210.0232 (9)0.0276 (10)0.0175 (9)0.0108 (8)0.0044 (7)0.0003 (7)
C220.0228 (9)0.0231 (9)0.0197 (9)0.0073 (7)0.0036 (7)0.0038 (7)
C230.0207 (9)0.0256 (9)0.0212 (10)0.0073 (7)0.0062 (7)0.0015 (7)
C240.0250 (10)0.0384 (11)0.0219 (10)0.0129 (9)0.0046 (8)0.0003 (8)
C250.0325 (11)0.0457 (13)0.0180 (10)0.0143 (10)0.0069 (8)0.0015 (9)
C260.0301 (10)0.0372 (11)0.0253 (11)0.0139 (9)0.0108 (8)0.0039 (8)
C270.0272 (10)0.0312 (10)0.0277 (11)0.0126 (8)0.0086 (8)0.0030 (8)
C280.0195 (9)0.0252 (9)0.0240 (10)0.0076 (7)0.0031 (7)0.0030 (7)
Geometric parameters (Å, º) top
S1—C161.790 (2)C9—C101.510 (3)
S1—S22.0514 (9)C9—H9A0.9900
S2—C221.791 (2)C9—H9B0.9900
O1—C71.233 (2)C10—C141.376 (3)
O2—C81.237 (2)C10—C111.386 (3)
O3—C211.222 (2)C11—H110.9500
O4—C211.321 (2)C12—C131.382 (3)
O4—H1o0.841 (15)C12—H120.9500
O5—C281.219 (2)C13—C141.384 (4)
O6—C281.319 (2)C13—H130.9500
O6—H2o0.84 (2)C14—H140.9500
N1—C31.339 (3)C15—C201.400 (3)
N1—C21.343 (3)C15—C161.407 (3)
N2—C71.331 (2)C15—C211.494 (3)
N2—C61.459 (2)C16—C171.395 (3)
N2—H1n0.880 (12)C17—C181.387 (3)
N3—C81.328 (2)C17—H170.9500
N3—C91.464 (2)C18—C191.382 (3)
N3—H2n0.880 (13)C18—H180.9500
N4—C121.326 (3)C19—C201.389 (3)
N4—C111.342 (3)C19—H190.9500
C1—C51.386 (3)C20—H200.9500
C1—C21.390 (3)C22—C271.396 (3)
C1—C61.514 (3)C22—C231.407 (3)
C2—H20.9500C23—C241.399 (3)
C3—C41.388 (3)C23—C281.489 (3)
C3—H30.9500C24—C251.388 (3)
C4—C51.383 (3)C24—H240.9500
C4—H40.9500C25—C261.381 (3)
C5—H50.9500C25—H250.9500
C6—H6A0.9900C26—C271.386 (3)
C6—H6B0.9900C26—H260.9500
C7—C81.534 (3)C27—H270.9500
C16—S1—S2105.30 (7)N4—C12—C13122.2 (2)
C22—S2—S1105.35 (7)N4—C12—H12118.9
C21—O4—H1O108 (2)C13—C12—H12118.9
C28—O6—H2O113 (2)C12—C13—C14118.5 (2)
C3—N1—C2117.81 (18)C12—C13—H13120.8
C7—N2—C6121.95 (16)C14—C13—H13120.8
C7—N2—H1N119 (2)C10—C14—C13120.4 (2)
C6—N2—H1N119 (2)C10—C14—H14119.8
C8—N3—C9123.05 (16)C13—C14—H14119.8
C8—N3—H2N122 (2)C20—C15—C16119.16 (18)
C9—N3—H2N114 (2)C20—C15—C21119.88 (17)
C12—N4—C11118.65 (18)C16—C15—C21120.90 (17)
C5—C1—C2117.70 (18)C17—C16—C15119.16 (18)
C5—C1—C6121.89 (18)C17—C16—S1120.49 (15)
C2—C1—C6120.31 (17)C15—C16—S1120.34 (15)
N1—C2—C1123.64 (18)C18—C17—C16120.66 (19)
N1—C2—H2118.2C18—C17—H17119.7
C1—C2—H2118.2C16—C17—H17119.7
N1—C3—C4122.4 (2)C19—C18—C17120.6 (2)
N1—C3—H3118.8C19—C18—H18119.7
C4—C3—H3118.8C17—C18—H18119.7
C5—C4—C3119.1 (2)C18—C19—C20119.35 (19)
C5—C4—H4120.4C18—C19—H19120.3
C3—C4—H4120.4C20—C19—H19120.3
C4—C5—C1119.31 (19)C19—C20—C15121.01 (19)
C4—C5—H5120.3C19—C20—H20119.5
C1—C5—H5120.3C15—C20—H20119.5
N2—C6—C1114.21 (16)O3—C21—O4123.62 (18)
N2—C6—H6A108.7O3—C21—C15121.66 (17)
C1—C6—H6A108.7O4—C21—C15114.67 (17)
N2—C6—H6B108.7C27—C22—C23118.96 (18)
C1—C6—H6B108.7C27—C22—S2121.54 (16)
H6A—C6—H6B107.6C23—C22—S2119.48 (14)
O1—C7—N2124.84 (18)C24—C23—C22119.26 (17)
O1—C7—C8121.27 (16)C24—C23—C28119.37 (18)
N2—C7—C8113.89 (16)C22—C23—C28121.35 (17)
O2—C8—N3125.32 (18)C25—C24—C23121.1 (2)
O2—C8—C7121.87 (16)C25—C24—H24119.5
N3—C8—C7112.80 (16)C23—C24—H24119.5
N3—C9—C10113.04 (17)C26—C25—C24119.32 (19)
N3—C9—H9A109.0C26—C25—H25120.3
C10—C9—H9A109.0C24—C25—H25120.3
N3—C9—H9B109.0C25—C26—C27120.63 (18)
C10—C9—H9B109.0C25—C26—H26119.7
H9A—C9—H9B107.8C27—C26—H26119.7
C14—C10—C11117.0 (2)C26—C27—C22120.76 (19)
C14—C10—C9122.02 (18)C26—C27—H27119.6
C11—C10—C9121.01 (18)C22—C27—H27119.6
N4—C11—C10123.35 (19)O5—C28—O6123.38 (17)
N4—C11—H11118.3O5—C28—C23122.65 (18)
C10—C11—H11118.3O6—C28—C23113.97 (17)
C16—S1—S2—C2288.85 (9)C20—C15—C16—S1178.78 (15)
C3—N1—C2—C10.6 (3)C21—C15—C16—S14.0 (2)
C5—C1—C2—N10.7 (3)S2—S1—C16—C1716.77 (17)
C6—C1—C2—N1175.91 (17)S2—S1—C16—C15164.61 (14)
C2—N1—C3—C41.6 (3)C15—C16—C17—C181.0 (3)
N1—C3—C4—C51.4 (4)S1—C16—C17—C18179.59 (17)
C3—C4—C5—C10.1 (3)C16—C17—C18—C190.5 (3)
C2—C1—C5—C40.9 (3)C17—C18—C19—C200.3 (3)
C6—C1—C5—C4175.63 (19)C18—C19—C20—C151.4 (3)
C7—N2—C6—C196.1 (2)C16—C15—C20—C192.9 (3)
C5—C1—C6—N269.8 (2)C21—C15—C20—C19174.42 (19)
C2—C1—C6—N2113.8 (2)C20—C15—C21—O3174.69 (18)
C6—N2—C7—O13.2 (3)C16—C15—C21—O32.5 (3)
C6—N2—C7—C8176.49 (17)C20—C15—C21—O42.8 (3)
C9—N3—C8—O23.2 (3)C16—C15—C21—O4179.98 (17)
C9—N3—C8—C7175.71 (17)S1—S2—C22—C2714.52 (18)
O1—C7—C8—O2172.03 (19)S1—S2—C22—C23166.75 (14)
N2—C7—C8—O27.7 (3)C27—C22—C23—C240.3 (3)
O1—C7—C8—N36.9 (3)S2—C22—C23—C24179.10 (15)
N2—C7—C8—N3173.41 (17)C27—C22—C23—C28178.05 (18)
C8—N3—C9—C10101.3 (2)S2—C22—C23—C280.7 (3)
N3—C9—C10—C1462.5 (3)C22—C23—C24—C251.3 (3)
N3—C9—C10—C11117.6 (2)C28—C23—C24—C25177.13 (19)
C12—N4—C11—C100.4 (3)C23—C24—C25—C261.3 (3)
C14—C10—C11—N41.1 (3)C24—C25—C26—C270.3 (3)
C9—C10—C11—N4178.77 (18)C25—C26—C27—C220.6 (3)
C11—N4—C12—C130.3 (4)C23—C22—C27—C260.6 (3)
N4—C12—C13—C140.3 (5)S2—C22—C27—C26178.14 (16)
C11—C10—C14—C131.1 (4)C24—C23—C28—O5173.73 (19)
C9—C10—C14—C13178.8 (3)C22—C23—C28—O54.6 (3)
C12—C13—C14—C100.4 (5)C24—C23—C28—O66.2 (3)
C20—C15—C16—C172.6 (3)C22—C23—C28—O6175.45 (18)
C21—C15—C16—C17174.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···O20.88 (1)2.37 (2)2.736 (2)105 (1)
N2—H1n···O2i0.88 (1)2.03 (1)2.789 (3)144 (2)
N3—H2n···O10.88 (1)2.37 (2)2.698 (2)103 (1)
N3—H2n···O1ii0.88 (1)1.97 (1)2.773 (3)151 (2)
O4—H1o···N1iii0.84 (2)1.83 (2)2.664 (3)175 (1)
O6—H2o···N4ii0.84 (2)1.80 (2)2.641 (3)179 (4)
C2—H2···O3iv0.952.533.220 (3)129
C3—H3···O1v0.952.483.261 (3)139
C9—H9b···S1i0.992.733.370 (2)123
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H14N4O2·C14H10O4S2
Mr576.63
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)10.015 (3), 10.310 (3), 14.795 (4)
α, β, γ (°)86.910 (16), 78.052 (15), 69.554 (10)
V3)1400.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.19 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.755, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10806, 6365, 5644
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.120, 1.09
No. of reflections6365
No. of parameters373
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.41

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···O20.880 (12)2.37 (2)2.736 (2)105.4 (12)
N2—H1n···O2i0.880 (12)2.026 (10)2.789 (3)144.4 (17)
N3—H2n···O10.880 (13)2.37 (2)2.698 (2)102.6 (12)
N3—H2n···O1ii0.880 (13)1.971 (10)2.773 (3)151.0 (18)
O4—H1o···N1iii0.841 (15)1.825 (15)2.664 (3)175.4 (14)
O6—H2o···N4ii0.84 (2)1.80 (2)2.641 (3)179 (4)
C2—H2···O3iv0.952.533.220 (3)129
C3—H3···O1v0.952.483.261 (3)139
C9—H9b···S1i0.992.733.370 (2)123
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2590-o2591
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds