organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Metronidazolium perchlorate

aShandong Provincial Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353, People's Republic of China
*Correspondence e-mail: ceswyt@sohu.com

(Received 10 September 2010; accepted 23 September 2010; online 30 September 2010)

In the crystal structure of the title compound [systematic name: 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazol-3-ium perchlorate], C6H10N3O3+·ClO4, the cations are linked by inter­molecular N—H⋯O hydrogen bonds into zigzag chains along the c axis. The cations and anions are connected by O—H⋯O and C—H⋯O hydrogen bonds. A weak intra­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For metronidazole, see: Castelli et al. (2000[Castelli, M., Malagoli, M., Lupo, L., Bofia, S., Paolucci, F., Cermelli, C., Zanca, A. & Baggio, G. (2000). J. Antimicrob. Chemother. 46, 541-550.]); Contrerasa et al. (2009[Contrerasa, R., Flores-Parraa, A., Mijangosa, E., Téllezb, F., López-Sandoval, H. & Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979-1999.]). For a related structure, see: Wang et al. (2006[Wang, Y.-T., Tang, G.-M., Qin, D.-W., Duan, H.-D. & Ng, S. W. (2006). Acta Cryst. E62, o3094-o3095.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O3+·ClO4

  • Mr = 271.62

  • Monoclinic, P 21 /c

  • a = 7.8541 (13) Å

  • b = 10.6791 (17) Å

  • c = 13.032 (2) Å

  • β = 93.904 (2)°

  • V = 1090.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.928

  • 9191 measured reflections

  • 2509 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.159

  • S = 1.04

  • 2509 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.89 2.02 2.860 (4) 157
N2—H2⋯O1i 0.83 1.98 2.803 (3) 169
C1—H1B⋯O2 0.97 2.52 3.126 (3) 121
C6—H6B⋯O7i 0.96 2.52 3.441 (4) 161
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metronidazole is usually applied in the area of anaerobic protozoan and bacterial infections (Castelli et al., 2000). Its solubility is low in water, so that its absorption is not easy in human body. To solve this problem and to increase its solubility in water, a kind of new strategy of protonated metronidazole has been studied though other methods have been developed in the area of medicine, for example, metal complexes (Contrerasa et al., 2009) and pharmaceutical co-crystals. However, co-crystals containing metronidazole has rarely been investigated. In this paper, we report the 1:1 salt formed by metronidazole and perchloric acid, (I).

A view of the title structure is shown in Fig. 1. The H atom is transferred from the perchloric acid group to the imidazole N atom forming an 1:1 organic salt, which is similar to other organic salt published previously (Wang et al., 2006). In the crystal structure, one-dimensional chains are formed via intermolecular O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For metronidazole, see: Castelli et al. (2000); Contrerasa et al. (2009). For a related structure, see: Wang et al. (2006).

Experimental top

Metronidazole (1.71 g, 10 mmol) and 75% aqueous HClO4 (2 ml) were mixed and dissolved in 10 ml water. The reaction mixture was stirred slowly to room temperature. The bar colourless crystals suitable for X-ray diffraction were obtained after two weeks. Analysis found: C 26.17, H 3.69, N 15.41%; calcd. : C 26.53, H 3.71, N 15.47%. IR (KBr, cm-1): 3394, 3078, 1610, 1546, 1527, 1502, 1411, 1373, 1319, 1251, 1193, 1143, 1111, 1085, 1080, 1062, 037, 867, 831, 736, 671, 630, 559, 516.

Refinement top

All H atoms were located in a difference Fourier map. Oxygen- and nitrogen-bound H atoms were then refined as riding, with Uiso(H) = 1.5Ueq(O, N). Carbon-bound H atoms were positioned geometrically (C—H = 0.96 or 0.97 Å), and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain running along the c axis.
1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazol-3-ium perchlorate top
Crystal data top
C6H10N3O3+·ClO4F(000) = 560
Mr = 271.62Dx = 1.654 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5428 reflections
a = 7.8541 (13) Åθ = 2.5–27.5°
b = 10.6791 (17) ŵ = 0.38 mm1
c = 13.032 (2) ÅT = 296 K
β = 93.904 (2)°Prism, colourless
V = 1090.5 (3) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.862, Tmax = 0.928k = 1313
9191 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.085P)2 + 0.8145P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2509 reflectionsΔρmax = 0.60 e Å3
155 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.190 (12)
Crystal data top
C6H10N3O3+·ClO4V = 1090.5 (3) Å3
Mr = 271.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8541 (13) ŵ = 0.38 mm1
b = 10.6791 (17) ÅT = 296 K
c = 13.032 (2) Å0.40 × 0.20 × 0.20 mm
β = 93.904 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2219 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.928Rint = 0.030
9191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
2509 reflectionsΔρmin = 0.43 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7469 (2)0.70762 (17)0.58597 (12)0.0486 (4)
H10.85990.71180.59450.073*
O20.4144 (3)0.4116 (2)0.66132 (15)0.0639 (6)
O30.2449 (3)0.4469 (2)0.78337 (19)0.0727 (6)
N10.6726 (2)0.55501 (15)0.76908 (12)0.0340 (4)
N20.6393 (3)0.64689 (18)0.91461 (14)0.0437 (5)
H20.65800.69520.96430.066*
N30.3813 (3)0.45742 (19)0.74353 (16)0.0487 (5)
C10.7048 (3)0.5773 (2)0.58035 (16)0.0451 (5)
H1A0.76110.53970.52400.054*
H1B0.58270.56860.56560.054*
C20.7567 (3)0.5070 (2)0.67880 (16)0.0404 (5)
H2A0.72830.41910.66940.048*
H2B0.87940.51310.69220.048*
C30.7495 (3)0.6272 (2)0.84260 (15)0.0384 (5)
C40.4896 (3)0.5882 (2)0.88970 (17)0.0441 (5)
H4A0.39280.58790.92700.053*
C50.5098 (3)0.53022 (19)0.79949 (16)0.0379 (5)
C60.9254 (3)0.6762 (3)0.8466 (2)0.0550 (6)
H6A0.97910.65070.78600.083*
H6B0.98870.64390.90650.083*
H6C0.92280.76600.85000.083*
Cl11.22616 (7)0.74741 (5)0.59693 (4)0.0442 (3)
O41.3343 (4)0.7477 (2)0.6879 (2)0.0994 (10)
O51.1033 (4)0.6500 (3)0.5984 (3)0.1022 (10)
O61.3237 (5)0.7180 (3)0.5116 (2)0.1074 (11)
O71.1515 (5)0.8663 (3)0.5795 (2)0.1214 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0558 (10)0.0482 (10)0.0408 (8)0.0064 (7)0.0038 (7)0.0107 (7)
O20.0773 (14)0.0622 (12)0.0503 (11)0.0159 (10)0.0096 (9)0.0110 (9)
O30.0564 (12)0.0751 (14)0.0870 (16)0.0189 (10)0.0074 (11)0.0038 (12)
N10.0444 (9)0.0313 (8)0.0258 (8)0.0031 (7)0.0008 (6)0.0019 (6)
N20.0642 (12)0.0368 (9)0.0302 (9)0.0026 (8)0.0033 (8)0.0042 (7)
N30.0558 (12)0.0405 (10)0.0487 (11)0.0059 (9)0.0055 (9)0.0065 (8)
C10.0627 (14)0.0457 (12)0.0266 (9)0.0026 (10)0.0012 (9)0.0006 (8)
C20.0534 (12)0.0381 (11)0.0297 (9)0.0067 (9)0.0044 (8)0.0019 (8)
C30.0510 (12)0.0356 (10)0.0279 (9)0.0016 (8)0.0038 (8)0.0012 (7)
C40.0549 (13)0.0390 (11)0.0391 (11)0.0050 (9)0.0086 (9)0.0025 (9)
C50.0452 (11)0.0335 (10)0.0347 (10)0.0013 (8)0.0006 (8)0.0037 (8)
C60.0545 (14)0.0615 (16)0.0476 (13)0.0111 (12)0.0074 (10)0.0048 (11)
Cl10.0468 (4)0.0427 (4)0.0425 (4)0.0003 (2)0.0022 (2)0.0002 (2)
O40.126 (2)0.0840 (18)0.0799 (17)0.0238 (15)0.0504 (17)0.0069 (13)
O50.0761 (16)0.097 (2)0.137 (3)0.0317 (15)0.0297 (16)0.0074 (18)
O60.137 (3)0.106 (2)0.0864 (19)0.013 (2)0.0566 (19)0.0002 (16)
O70.157 (3)0.0654 (16)0.129 (2)0.0509 (17)0.084 (2)0.0367 (15)
Geometric parameters (Å, º) top
O1—C11.431 (3)C1—H1B0.9700
O1—H10.8881C2—H2A0.9700
O2—N31.222 (3)C2—H2B0.9700
O3—N31.227 (3)C3—C61.475 (3)
N1—C31.341 (3)C4—C51.348 (3)
N1—C51.390 (3)C4—H4A0.9300
N1—C21.479 (3)C6—H6A0.9600
N2—C31.336 (3)C6—H6B0.9600
N2—C41.353 (3)C6—H6C0.9600
N2—H20.8328Cl1—O41.410 (3)
N3—C51.434 (3)Cl1—O71.411 (2)
C1—C21.518 (3)Cl1—O51.420 (3)
C1—H1A0.9700Cl1—O61.427 (3)
C1—O1—H1106.3N2—C3—N1108.12 (19)
C3—N1—C5106.50 (17)N2—C3—C6124.7 (2)
C3—N1—C2124.35 (18)N1—C3—C6127.2 (2)
C5—N1—C2129.02 (18)C5—C4—N2105.7 (2)
C3—N2—C4110.65 (18)C5—C4—H4A127.2
C3—N2—H2123.8N2—C4—H4A127.2
C4—N2—H2125.3C4—C5—N1109.1 (2)
O2—N3—O3125.3 (2)C4—C5—N3124.9 (2)
O2—N3—C5118.6 (2)N1—C5—N3126.03 (19)
O3—N3—C5116.1 (2)C3—C6—H6A109.5
O1—C1—C2112.96 (18)C3—C6—H6B109.5
O1—C1—H1A109.0H6A—C6—H6B109.5
C2—C1—H1A109.0C3—C6—H6C109.5
O1—C1—H1B109.0H6A—C6—H6C109.5
C2—C1—H1B109.0H6B—C6—H6C109.5
H1A—C1—H1B107.8O4—Cl1—O7110.68 (15)
N1—C2—C1113.07 (18)O4—Cl1—O5111.2 (2)
N1—C2—H2A109.0O7—Cl1—O5112.8 (2)
C1—C2—H2A109.0O4—Cl1—O6109.3 (2)
N1—C2—H2B109.0O7—Cl1—O6108.2 (2)
C1—C2—H2B109.0O5—Cl1—O6104.49 (19)
H2A—C2—H2B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.892.022.860 (4)157
N2—H2···O1i0.831.982.803 (3)169
C1—H1B···O20.972.523.126 (3)121
C6—H6B···O7i0.962.523.441 (4)161
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H10N3O3+·ClO4
Mr271.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8541 (13), 10.6791 (17), 13.032 (2)
β (°) 93.904 (2)
V3)1090.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
9191, 2509, 2219
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.159, 1.04
No. of reflections2509
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.892.022.860 (4)157
N2—H2···O1i0.831.982.803 (3)169
C1—H1B···O20.972.523.126 (3)121
C6—H6B···O7i0.962.523.441 (4)161
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Project of Shandong Province Higher Educational Science and Technology Program (J09LB03) and the Starting Fund of Shandong Institute of Light Industry for financial support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastelli, M., Malagoli, M., Lupo, L., Bofia, S., Paolucci, F., Cermelli, C., Zanca, A. & Baggio, G. (2000). J. Antimicrob. Chemother. 46, 541–550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationContrerasa, R., Flores-Parraa, A., Mijangosa, E., Téllezb, F., López-Sandoval, H. & Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979–1999.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M., Qin, D.-W., Duan, H.-D. & Ng, S. W. (2006). Acta Cryst. E62, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds