organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Diiso­propyl-2,4,8,10-tetra­thia­spiro­[5.5]undeca­ne

aOrganic Chemistry Department, CCSOOM, Faculty of Chemistry and Chemical Engineering, `Babes-Bolyai' University, Arany Janos Street 11, RO-400028 Cluj Napoca, Romania, and bFaculty of Chemistry and Chemical Engineering, `Babes-Bolyai' University, Arany Janos Street 11, RO-400028 Cluj Napoca, Romania
*Correspondence e-mail: igrosu@chem.ubbcluj.ro

(Received 27 August 2010; accepted 17 September 2010; online 25 September 2010)

The mol­ecule of the title compound, C13H24S4, has C2 symmetry and it crystallizes as a racemate. The structure displays two six-membered rings exhibiting chair conformations, with the isopropyl substituents in equatorial positions. In the crystal structure, weak inter­molecular C—H⋯S inter­actions are observed, leading to a channel-like arrangement along the c axis.

Related literature

For background to the chemistry of spirans, see: Cismaş et al. (2005[Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287-1314.]); Eliel & Wilen (1994[Eliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons.]); Grosu et al. (1995[Grosu, I., Mager, S. & Plé, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1351-1357.], 1997[Grosu, I., Plé, G., Mager, S., Martinez, R., Mesaroş, C. & Camacho, B. del C. (1997). Tetrahedron, 53, 6215-6232.]); Terec et al. (2001[Terec, A., Grosu, I., Muntean, L., Toupet, L., Plé, G., Socaci, C. & Mager, S. (2001). Tetrahedron, 57, 8751-8758.], 2004[Terec, A., Grosu, I., Condamine, E., Breau, L., Plé, G., Ramondenc, Y., Rochon, F. D., Peulon-Agasse, V. & Opriş, D. (2004). Tetrahedron, 60, 3173-3189.]). For other studies regarding the synthesis and stereochemistry of spiranes bearing 1,3-dithiane units, see: Backer & Evenhuis (1937[Backer, H. J. & Evenhuis, N. (1937). Recl Trav. Chim. Pays-Bas, 56, 681-690.]); Gâz et al. (2008[Gâz, Ş. A., Condamine, E., Bogdan, N., Terec, A., Bogdan, E., Ramondenc, Y. & Grosu, I. (2008). Tetrahedron, 64, 3-12.]); Mitkin et al. (2001[Mitkin, O. D., Wan, Y., Kurchan, A. N. & Kutateladze, A. G. (2001). Synthesis, pp. 1133-1142.]). For the crystal structure of a spiran beaing 1,3-dithiane unit atoms, see: Zhou et al. (2001[Zhou, Z.-R., Xu, W., Xia, Y., Wang, Q.-R., Ding, Z.-B., Chen, M.-Q., Hua, Z.-Y. & Tao, F.-G. (2001). Acta Cryst. C57, 471-472.]).

[Scheme 1]

Experimental

Crystal data
  • C13H24S4

  • Mr = 308.56

  • Monoclinic, C 2/c

  • a = 16.701 (5) Å

  • b = 10.241 (3) Å

  • c = 12.063 (3) Å

  • β = 128.418 (4)°

  • V = 1616.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 297 K

  • 0.32 × 0.31 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.857

  • 7606 measured reflections

  • 1432 independent reflections

  • 1311 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.153

  • S = 1.27

  • 1432 reflections

  • 80 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯S1i 0.96 2.93 3.827 (6) 156 (1)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Despite the rich literature dealing with spiro compounds (Cismaş et al., 2005; Eliel & Wilen, 1994; Grosu et al., 1995, 1997; Terec et al., 2001, 2004) new papers were written recently especially including spiro derivatives having sulfur or selenium heteroatoms. Only few spirans bearing 1,3 dithiane units were reported (Backer & Evenhuis, 1937; Gâz et al., 2008; Mitkin et al., 2001) and only 2 crystals were obtained so far (Zhou et al., 2001). The title compound (Fig. 1) exhibits a C2 symmetry unit with chair conformation for both six-membered rings.

Due to the space arrangement there are differences between positions 2, 4 and 2', 4'. Due to these differencies positions 4 and 4' which are oriented towards the other 1,3-dithiane ring are named methylene inside, while the other two CH2 groups (positions 2 and 2') are oriented in opposite direction and they are named methylene outside groups.

In the crystal packing (Fig. 2 and Fig. 3) the sulfur atom from a neighbour molecule is hydrogen-bonded (weak interactions) via a intermolecular C7—H7c ···S1 connection (Table 1).

These weak interactions stabilize the lattice and form a three-dimensional network as a channel-like arrangement along the c axis.

Related literature top

For background to the chemistry of spirans, see: Cismaş et al. (2005); Eliel & Wilen (1994); Grosu et al. (1995, 1997); Terec et al. (2001, 2004). For other studies regarding the synthesis and stereochemistry of spiranes bearing 1,3-dithiane units, see: Backer & Evenhuis (1937); Gâz et al. (2008); Mitkin et al. (2001). For the crystal structure of a spiran beaing 1,3-dithiane unit atoms, see: Zhou et al. (2001).

Experimental top

The synthesis of I has been described elsewhere (Gâz et al., 2008). Crystal were obtained from dichloromethane, by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso = 1.5Ueq (C) for H. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP digram of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure exhibiting the hydrogen bonding interactions.
[Figure 3] Fig. 3. The crystal packing viewed along c axis, exhibiting channel-like arrangement formed most probably by weak interaction between the methyl group H atoms and the sulfur atom from a neighbour molecule.
3,9-Diisopropyl-2,4,8,10-tetrathiaspiro[5.5]undecane top
Crystal data top
C13H24S4F(000) = 664
Mr = 308.56Dx = 1.268 Mg m3
Monoclinic, C2/cMelting point = 416–418 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.701 (5) ÅCell parameters from 3441 reflections
b = 10.241 (3) Åθ = 2.5–28.1°
c = 12.063 (3) ŵ = 0.57 mm1
β = 128.418 (4)°T = 297 K
V = 1616.5 (8) Å3Block, colourless
Z = 40.32 × 0.31 × 0.28 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1432 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1919
Tmin = 0.839, Tmax = 0.857k = 1212
7606 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0592P)2 + 2.605P]
where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H24S4V = 1616.5 (8) Å3
Mr = 308.56Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.701 (5) ŵ = 0.57 mm1
b = 10.241 (3) ÅT = 297 K
c = 12.063 (3) Å0.32 × 0.31 × 0.28 mm
β = 128.418 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1311 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.857Rint = 0.035
7606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.27Δρmax = 0.36 e Å3
1432 reflectionsΔρmin = 0.28 e Å3
80 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50000.7036 (5)1.25000.0439 (11)
C20.4969 (3)0.6137 (4)1.1462 (4)0.0596 (11)
H2A0.43570.56061.09810.071*
H2B0.55510.55511.20010.071*
C30.3816 (3)0.7866 (4)0.9229 (4)0.0486 (9)
H30.32450.72600.88420.058*
C40.4026 (3)0.7860 (4)1.1697 (4)0.0484 (9)
H4A0.40240.83531.23820.058*
H4B0.34440.72731.12180.058*
C50.3655 (3)0.8601 (4)0.7999 (4)0.0585 (11)
H50.42430.91790.83880.070*
C60.3597 (5)0.7656 (6)0.6974 (5)0.103 (2)
H6A0.29970.71230.65290.154*
H6B0.41930.71100.74830.154*
H6C0.35640.81400.62660.154*
C70.2696 (4)0.9437 (6)0.7207 (5)0.0846 (16)
H7A0.25710.97970.63770.127*
H7B0.27861.01320.78090.127*
H7C0.21240.89080.69340.127*
S10.49848 (9)0.69295 (11)1.01407 (11)0.0627 (4)
S20.38431 (7)0.89852 (9)1.04130 (10)0.0529 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.036 (3)0.041 (3)0.0000.026 (2)0.000
C20.076 (3)0.050 (2)0.049 (2)0.016 (2)0.037 (2)0.0054 (18)
C30.047 (2)0.048 (2)0.044 (2)0.0022 (16)0.0251 (18)0.0052 (16)
C40.040 (2)0.055 (2)0.046 (2)0.0010 (16)0.0251 (17)0.0052 (17)
C50.055 (2)0.061 (2)0.050 (2)0.0053 (19)0.028 (2)0.0109 (19)
C60.139 (5)0.112 (5)0.061 (3)0.014 (4)0.064 (4)0.018 (3)
C70.062 (3)0.102 (4)0.068 (3)0.014 (3)0.029 (2)0.039 (3)
S10.0744 (8)0.0695 (7)0.0527 (6)0.0285 (6)0.0437 (6)0.0142 (5)
S20.0497 (6)0.0444 (6)0.0520 (6)0.0097 (4)0.0254 (5)0.0033 (4)
Geometric parameters (Å, º) top
C1—C4i1.529 (4)C4—H4A0.9700
C1—C41.529 (4)C4—H4B0.9700
C1—C21.529 (5)C5—C71.520 (6)
C1—C2i1.529 (5)C5—C61.524 (7)
C2—S11.803 (4)C5—H50.9800
C2—H2A0.9700C6—H6A0.9600
C2—H2B0.9700C6—H6B0.9600
C3—C51.531 (5)C6—H6C0.9600
C3—S11.809 (4)C7—H7A0.9600
C3—S21.810 (4)C7—H7B0.9600
C3—H30.9800C7—H7C0.9600
C4—S21.798 (4)
C4i—C1—C4113.0 (4)S2—C4—H4B108.2
C4i—C1—C2109.4 (2)H4A—C4—H4B107.4
C4—C1—C2109.4 (2)C7—C5—C6109.7 (4)
C4i—C1—C2i109.4 (2)C7—C5—C3111.6 (4)
C4—C1—C2i109.4 (2)C6—C5—C3111.0 (4)
C2—C1—C2i106.0 (4)C7—C5—H5108.2
C1—C2—S1116.2 (3)C6—C5—H5108.2
C1—C2—H2A108.2C3—C5—H5108.2
S1—C2—H2A108.2C5—C6—H6A109.5
C1—C2—H2B108.2C5—C6—H6B109.5
S1—C2—H2B108.2H6A—C6—H6B109.5
H2A—C2—H2B107.4C5—C6—H6C109.5
C5—C3—S1108.9 (3)H6A—C6—H6C109.5
C5—C3—S2110.9 (3)H6B—C6—H6C109.5
S1—C3—S2111.59 (19)C5—C7—H7A109.5
C5—C3—H3108.5C5—C7—H7B109.5
S1—C3—H3108.5H7A—C7—H7B109.5
S2—C3—H3108.5C5—C7—H7C109.5
C1—C4—S2116.3 (2)H7A—C7—H7C109.5
C1—C4—H4A108.2H7B—C7—H7C109.5
S2—C4—H4A108.2C2—S1—C399.99 (18)
C1—C4—H4B108.2C4—S2—C3100.49 (17)
C4i—C1—C2—S159.6 (4)S1—C3—C5—C658.7 (4)
C4—C1—C2—S164.8 (4)S2—C3—C5—C6178.1 (3)
C2i—C1—C2—S1177.4 (4)C1—C2—S1—C361.4 (3)
C4i—C1—C4—S258.00 (19)C5—C3—S1—C2178.1 (3)
C2—C1—C4—S264.2 (4)S2—C3—S1—C259.1 (2)
C2i—C1—C4—S2179.8 (2)C1—C4—S2—C360.4 (3)
S1—C3—C5—C7178.6 (3)C5—C3—S2—C4179.5 (3)
S2—C3—C5—C755.5 (4)S1—C3—S2—C458.9 (2)
Symmetry code: (i) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···S1ii0.962.933.827 (6)156 (1)
Symmetry code: (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H24S4
Mr308.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)16.701 (5), 10.241 (3), 12.063 (3)
β (°) 128.418 (4)
V3)1616.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.32 × 0.31 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.839, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
7606, 1432, 1311
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.153, 1.27
No. of reflections1432
No. of parameters80
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···S1i0.9612.9283.827 (6)156.20 (4)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported by CNCSIS–UEFISCSU, project number PNII–IDEI515/2007. We also thank the National Centre for X-Ray Diffraction, Cluj-Napoca, for support with the solid-state structure determination.

References

First citationBacker, H. J. & Evenhuis, N. (1937). Recl Trav. Chim. Pays-Bas, 56, 681–690.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287–1314.  Google Scholar
First citationEliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGâz, Ş. A., Condamine, E., Bogdan, N., Terec, A., Bogdan, E., Ramondenc, Y. & Grosu, I. (2008). Tetrahedron, 64, 3–12.  Google Scholar
First citationGrosu, I., Mager, S. & Plé, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1351–1357.  CrossRef Google Scholar
First citationGrosu, I., Plé, G., Mager, S., Martinez, R., Mesaroş, C. & Camacho, B. del C. (1997). Tetrahedron, 53, 6215–6232.  CrossRef CAS Web of Science Google Scholar
First citationMitkin, O. D., Wan, Y., Kurchan, A. N. & Kutateladze, A. G. (2001). Synthesis, pp. 1133–1142.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerec, A., Grosu, I., Condamine, E., Breau, L., Plé, G., Ramondenc, Y., Rochon, F. D., Peulon-Agasse, V. & Opriş, D. (2004). Tetrahedron, 60, 3173–3189.  Web of Science CSD CrossRef CAS Google Scholar
First citationTerec, A., Grosu, I., Muntean, L., Toupet, L., Plé, G., Socaci, C. & Mager, S. (2001). Tetrahedron, 57, 8751–8758.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z.-R., Xu, W., Xia, Y., Wang, Q.-R., Ding, Z.-B., Chen, M.-Q., Hua, Z.-Y. & Tao, F.-G. (2001). Acta Cryst. C57, 471–472.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds