organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,5-Di­chloro-3-thien­yl)-3-(3,4-dimeth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cSeQuent Scientific Limited, New Mangalore 575 011, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 6 August 2010; accepted 31 August 2010; online 4 September 2010)

In the title compound, C15H12Cl2O3S, the prop-2-en-1-one (enone) fragment is almost planar [C—C—C—O = 2.2 (4)°] and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thio­phene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. In the crystal, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules, leading to R22(14), R22(24) and C(11) supra­molecular motifs occurring within the three-dimensional network. Weak aromatic ππ stacking [centroid–centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

Related literature

For a related structure and background references, see: Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2O3S

  • Mr = 343.21

  • Monoclinic, P 21 /n

  • a = 8.9331 (2) Å

  • b = 8.9997 (2) Å

  • c = 18.8210 (5) Å

  • β = 100.181 (1)°

  • V = 1489.29 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 120 K

  • 0.24 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SADABS (Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Blessing (1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.873, Tmax = 0.944

  • 22032 measured reflections

  • 3424 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.113

  • S = 1.10

  • 3424 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.53 3.227 (3) 130
C12—H12⋯O1ii 0.95 2.55 3.441 (3) 157
C14—H14A⋯O3iii 0.98 2.53 3.474 (3) 161
C15—H15B⋯Cl1iv 0.98 2.82 3.647 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), (Fig. 1), was prepared as part of our ongoing structural studies (Jasinski et al., 2010) of chalcone-like compounds, in which substituted aromatic ring systems are linked by a prop-2-en-1-one bridge.

The prop-2-en-1-one fragment in (I) is almost planar [C7—C8—C9—O3 = 2.2 (4)°] and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thiophene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. The carbon atoms of the methoxy groups are close to co-planar with their attached benzene ring [displacements of 0.033 (5) and 0.100 (5)Å for C14 and C15, respectively]. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen et al., 1987) and are similar to those in a related structure (Jasinski et al., 2010).

In the crystal, three weak C—H···O and one C—H···Cl interactions (Table 1) link the molecules. Considered individually, they generate the following motifs: the C3—H3 bond generates inversion dimers containing R22(14) rings, whereas the C12—H12 bond leads to C(11) chains propagating in [010]. The methyl-H bonds lead to inversion-generated R22(24) loops (for C15—H15B) and C(11) chains (for C14—H14A). Taken together, these four interactions generate a three-dimensional network. Weak aromatic π-π stacking [centroid-centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

Related literature top

For a related structure and background references, see: Jasinski et al. (2010). For reference structural data, see: Allen et al. (1987).

Experimental top

2,5-Dichloro-3-acetylthiophene was obtained as a gift sample from SeQuent Scientific ltd., New Mangalore, India. 1-(2,5-Dichlorothiophen-3-yl)ethanone (1.95 g, 0.01 mol) was mixed with 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) and dissolved in ethanol (30 ml). To this, 3 ml of 50% KOH was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Irregular yellow crystals of (I) were obtained by the slow evaporation of DMF solution (m.p.: 389–391 K).

Refinement top

The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 ( Farrugia (1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
(E)-1-(2,5-Dichloro-3-thienyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C15H12Cl2O3SF(000) = 704
Mr = 343.21Dx = 1.531 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20728 reflections
a = 8.9331 (2) Åθ = 2.9–27.5°
b = 8.9997 (2) ŵ = 0.58 mm1
c = 18.8210 (5) ÅT = 120 K
β = 100.181 (1)°Fragment, yellow
V = 1489.29 (6) Å30.24 × 0.12 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3424 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω and ϕ scansθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
[SADABS (Bruker, 2003) and Blessing (1995)]
h = 1111
Tmin = 0.873, Tmax = 0.944k = 1111
22032 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.034P)2 + 1.9239P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3424 reflectionsΔρmax = 0.72 e Å3
193 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C15H12Cl2O3SV = 1489.29 (6) Å3
Mr = 343.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9331 (2) ŵ = 0.58 mm1
b = 8.9997 (2) ÅT = 120 K
c = 18.8210 (5) Å0.24 × 0.12 × 0.10 mm
β = 100.181 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3424 independent reflections
Absorption correction: multi-scan
[SADABS (Bruker, 2003) and Blessing (1995)]
2834 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.944Rint = 0.056
22032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.10Δρmax = 0.72 e Å3
3424 reflectionsΔρmin = 0.41 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4943 (3)0.2226 (3)0.72975 (12)0.0218 (5)
C20.5681 (3)0.2506 (3)0.67246 (14)0.0253 (5)
H20.66320.20500.67050.030*
C30.5013 (3)0.3471 (3)0.61723 (14)0.0273 (5)
H30.55120.36440.57740.033*
C40.3644 (3)0.4175 (3)0.61939 (13)0.0248 (5)
C50.2908 (3)0.3901 (3)0.67817 (13)0.0227 (5)
H50.19770.43880.68090.027*
C60.3533 (3)0.2927 (3)0.73192 (12)0.0207 (5)
C70.2948 (3)0.5123 (3)0.55890 (14)0.0269 (5)
H70.34590.51420.51870.032*
C80.1686 (3)0.5971 (3)0.55235 (13)0.0232 (5)
H80.11540.60270.59180.028*
C90.1115 (3)0.6799 (3)0.48719 (13)0.0230 (5)
C100.0865 (3)0.8706 (3)0.43372 (13)0.0217 (5)
C110.0291 (3)0.7698 (3)0.48589 (12)0.0213 (5)
C120.1241 (3)0.7591 (3)0.53941 (13)0.0265 (5)
H120.10350.69550.58030.032*
C130.2457 (3)0.8490 (3)0.52538 (14)0.0298 (6)
C140.6852 (3)0.0533 (3)0.78546 (16)0.0382 (7)
H14A0.70730.01280.82740.057*
H14B0.76720.12640.78750.057*
H14C0.67760.00530.74110.057*
C150.1441 (3)0.3186 (3)0.79360 (15)0.0317 (6)
H15A0.10870.28190.83680.047*
H15B0.07090.29050.75050.047*
H15C0.15320.42700.79600.047*
O10.5440 (2)0.1289 (2)0.78610 (9)0.0284 (4)
O20.28886 (19)0.25494 (19)0.78990 (9)0.0265 (4)
O30.1727 (2)0.6738 (2)0.43354 (10)0.0417 (5)
S10.25196 (7)0.95280 (7)0.44816 (4)0.02811 (19)
Cl10.01562 (8)0.92675 (7)0.35926 (3)0.03212 (19)
Cl20.38786 (8)0.86816 (11)0.57543 (4)0.0513 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (11)0.0212 (12)0.0189 (11)0.0020 (9)0.0004 (9)0.0012 (9)
C20.0203 (11)0.0268 (13)0.0298 (13)0.0032 (10)0.0076 (10)0.0045 (10)
C30.0309 (13)0.0281 (13)0.0250 (13)0.0083 (11)0.0105 (10)0.0000 (10)
C40.0299 (13)0.0216 (12)0.0238 (12)0.0040 (10)0.0073 (10)0.0007 (10)
C50.0266 (12)0.0204 (12)0.0213 (12)0.0007 (9)0.0050 (10)0.0023 (9)
C60.0256 (11)0.0190 (11)0.0182 (11)0.0033 (9)0.0056 (9)0.0021 (9)
C70.0264 (12)0.0298 (14)0.0260 (13)0.0011 (10)0.0084 (10)0.0025 (10)
C80.0204 (11)0.0237 (12)0.0267 (12)0.0006 (9)0.0074 (10)0.0039 (10)
C90.0220 (11)0.0271 (13)0.0208 (12)0.0034 (10)0.0062 (9)0.0009 (10)
C100.0195 (11)0.0242 (12)0.0211 (12)0.0005 (9)0.0025 (9)0.0032 (9)
C110.0213 (11)0.0247 (12)0.0180 (11)0.0003 (9)0.0040 (9)0.0030 (9)
C120.0261 (12)0.0357 (14)0.0181 (12)0.0048 (11)0.0051 (10)0.0003 (10)
C130.0265 (12)0.0410 (15)0.0232 (13)0.0034 (11)0.0077 (10)0.0050 (11)
C140.0296 (14)0.0439 (17)0.0400 (16)0.0158 (12)0.0033 (12)0.0039 (13)
C150.0320 (13)0.0358 (15)0.0307 (14)0.0038 (11)0.0152 (11)0.0037 (11)
O10.0297 (9)0.0313 (10)0.0242 (9)0.0095 (8)0.0045 (7)0.0036 (7)
O20.0308 (9)0.0277 (9)0.0230 (9)0.0043 (7)0.0106 (7)0.0036 (7)
O30.0426 (11)0.0582 (14)0.0277 (10)0.0238 (10)0.0159 (9)0.0103 (9)
S10.0233 (3)0.0303 (4)0.0296 (3)0.0064 (3)0.0016 (2)0.0019 (3)
Cl10.0378 (4)0.0324 (4)0.0278 (3)0.0019 (3)0.0102 (3)0.0059 (3)
Cl20.0363 (4)0.0820 (6)0.0411 (4)0.0219 (4)0.0215 (3)0.0036 (4)
Geometric parameters (Å, º) top
C1—O11.367 (3)C9—C111.491 (3)
C1—C21.383 (3)C10—C111.368 (3)
C1—C61.415 (3)C10—Cl11.713 (2)
C2—C31.404 (4)C10—S11.717 (2)
C2—H20.9500C11—C121.430 (3)
C3—C41.385 (4)C12—C131.343 (4)
C3—H30.9500C12—H120.9500
C4—C51.405 (3)C13—Cl21.718 (3)
C4—C71.470 (3)C13—S11.720 (3)
C5—C61.380 (3)C14—O11.435 (3)
C5—H50.9500C14—H14A0.9800
C6—O21.364 (3)C14—H14B0.9800
C7—C81.348 (3)C14—H14C0.9800
C7—H70.9500C15—O21.427 (3)
C8—C91.448 (3)C15—H15A0.9800
C8—H80.9500C15—H15B0.9800
C9—O31.231 (3)C15—H15C0.9800
O1—C1—C2125.7 (2)C11—C10—Cl1129.58 (18)
O1—C1—C6114.9 (2)C11—C10—S1113.31 (18)
C2—C1—C6119.4 (2)Cl1—C10—S1117.10 (14)
C1—C2—C3119.4 (2)C10—C11—C12110.9 (2)
C1—C2—H2120.3C10—C11—C9125.4 (2)
C3—C2—H2120.3C12—C11—C9123.7 (2)
C4—C3—C2121.5 (2)C13—C12—C11112.4 (2)
C4—C3—H3119.2C13—C12—H12123.8
C2—C3—H3119.2C11—C12—H12123.8
C3—C4—C5118.8 (2)C12—C13—Cl2127.1 (2)
C3—C4—C7119.9 (2)C12—C13—S1113.43 (19)
C5—C4—C7121.3 (2)Cl2—C13—S1119.47 (16)
C6—C5—C4120.3 (2)O1—C14—H14A109.5
C6—C5—H5119.9O1—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
O2—C6—C5124.9 (2)O1—C14—H14C109.5
O2—C6—C1114.6 (2)H14A—C14—H14C109.5
C5—C6—C1120.6 (2)H14B—C14—H14C109.5
C8—C7—C4129.2 (2)O2—C15—H15A109.5
C8—C7—H7115.4O2—C15—H15B109.5
C4—C7—H7115.4H15A—C15—H15B109.5
C7—C8—C9122.1 (2)O2—C15—H15C109.5
C7—C8—H8118.9H15A—C15—H15C109.5
C9—C8—H8118.9H15B—C15—H15C109.5
O3—C9—C8122.1 (2)C1—O1—C14116.9 (2)
O3—C9—C11120.4 (2)C6—O2—C15116.97 (19)
C8—C9—C11117.5 (2)C10—S1—C1389.97 (12)
O1—C1—C2—C3178.3 (2)S1—C10—C11—C120.2 (3)
C6—C1—C2—C30.5 (4)Cl1—C10—C11—C92.3 (4)
C1—C2—C3—C41.3 (4)S1—C10—C11—C9179.10 (19)
C2—C3—C4—C50.5 (4)O3—C9—C11—C1012.1 (4)
C2—C3—C4—C7177.2 (2)C8—C9—C11—C10170.1 (2)
C3—C4—C5—C61.1 (4)O3—C9—C11—C12166.6 (3)
C7—C4—C5—C6175.6 (2)C8—C9—C11—C1211.1 (4)
C4—C5—C6—O2177.8 (2)C10—C11—C12—C130.4 (3)
C4—C5—C6—C11.9 (4)C9—C11—C12—C13178.6 (2)
O1—C1—C6—O20.3 (3)C11—C12—C13—Cl2179.3 (2)
C2—C1—C6—O2178.7 (2)C11—C12—C13—S10.8 (3)
O1—C1—C6—C5179.9 (2)C2—C1—O1—C140.1 (4)
C2—C1—C6—C51.1 (3)C6—C1—O1—C14178.9 (2)
C3—C4—C7—C8175.4 (3)C5—C6—O2—C151.8 (3)
C5—C4—C7—C88.0 (4)C1—C6—O2—C15178.0 (2)
C4—C7—C8—C9177.4 (2)C11—C10—S1—C130.5 (2)
C7—C8—C9—O32.2 (4)Cl1—C10—S1—C13179.29 (16)
C7—C8—C9—C11179.9 (2)C12—C13—S1—C100.7 (2)
Cl1—C10—C11—C12178.78 (19)Cl2—C13—S1—C10179.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.533.227 (3)130
C12—H12···O1ii0.952.553.441 (3)157
C14—H14A···O3iii0.982.533.474 (3)161
C15—H15B···Cl1iv0.982.823.647 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12Cl2O3S
Mr343.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.9331 (2), 8.9997 (2), 18.8210 (5)
β (°) 100.181 (1)
V3)1489.29 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.24 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
[SADABS (Bruker, 2003) and Blessing (1995)]
Tmin, Tmax0.873, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
22032, 3424, 2834
Rint0.056
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.10
No. of reflections3424
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.41

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 ( Farrugia (1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.533.227 (3)130
C12—H12···O1ii0.952.553.441 (3)157
C14—H14A···O3iii0.982.533.474 (3)161
C15—H15B···Cl1iv0.982.823.647 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1.
 

Acknowledgements

CSC thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds