metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­bis­­(pyridine-κN)copper(II)]-μ-2,2′-(p-phenyl­enedi­­oxy)di­acetato-κ2O:O′]

aDepartment of X-ray, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and bSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 6 September 2010; accepted 12 September 2010; online 18 September 2010)

In the title compound, [Cu(C10H8O6)(C5H5N)2(H2O)]n, the Cu atom is five-coordinated by two O atoms from two carboxyl­ate groups of two different 2,2′-(p-phenyl­enedi­oxy)diacetate ligands, two N atoms from two pyridine mol­ecules and one water O atom. The geometry is square-pyramidal with the water O atom occupying the apical position. The carboxyl­ate group bridges adjacent Cu atoms, forming an infinite zigzag chain extending parallel to [001]. The chains are linked into layers by O—H⋯O hydrogen bonds. The Cu and water O atoms lie on special positions of site symmetry 2.

Related literature

For the isotypic zinc analog, see: Hong et al. (2005[Hong, X.-L., Li, Y.-Z. & Bai, J.-F. (2005). Acta Cryst. E61, m1863-m1865.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8O6)(C5H5N)2(H2O)]

  • Mr = 463.93

  • Monoclinic, C 2/c

  • a = 15.363 (4) Å

  • b = 6.0888 (12) Å

  • c = 21.896 (6) Å

  • β = 103.67 (3)°

  • V = 1990.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.875, Tmax = 0.907

  • 7227 measured reflections

  • 1737 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.123

  • S = 1.08

  • 1737 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.81 (6) 1.87 (6) 2.677 (5) 174 (7)
Symmetry code: (i) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The metal-organic framework, which is formed by carboxylate ligand as the strut and transition metal as the node, has recently attracted more attentions owing to the potential applications of catalyst and H-storage. In this paper, flexible ligand-BDOA as the strut bridges the Cu cations to result in the formation of infinite zigzag chain of [Cu(py)2(H2O)BDOA]n.

The asymmetrical unit of [Cu(py)2(H2O)BDOA]n (py=pyridine, BDOA=benzene-1,4-dioxyacetate) which is isostructural with of [Zn(py)2(H2O)BDOA]n (Hong, et al., 2005), is composed of one half of Cu cation, one half of BDOA, one half of water molecule and one pyridine molecule (Fig.1). Five-coordinated Cu cation lies in the basal position of pyramid constructed by two O atoms from two carboxyl groups of two different BDOA, two nitrogen atoms of two pyridines and one water oxygen atom situated at the apical position. The bond distances of Cu—N, Cu—O and Cu—Ow are 2.109 (23) Å, 1.965 (35) Å and 2.192 (6) Å, respectively. The bond angles of O—Cu—O and N—Cu—O are 179.85 (14)° and 167.68 (18)°, respectively. Cu and water oxygen lie at 2-fold axis and BDOA at the inversion center.

The monodentate µ2-BDOA bridges the adjacent Cu cations to form the infinite zigzag chain along (001) direction. The H-bonds of Ow—H···O (free oxygen of carboxyl) link the adjacent chains to two-dimensional layer (bc planar), which is packed by the ver dan Waals force (Fig.2).

Related literature top

For the isotypiczinc analog, see: Hong et al. (2005).

Experimental top

(I) was synthesized under hydrothermal condition. In a typically route, H2BDOA (0.22 g, 1 mmol) was dissolved in 10 ml deionized water under stirring, and then pyridine (1.6 ml, 20 mmol) and Cu(Ac)2.3H2O (0.235 g, 1 mmol) were added to a blue solution. After continuously stirred for 1 h, the solution with the molar ratio of H2BDOA: 20py: Cu(Ac)2.3H2O: 555H2O was transferred into 23 ml autoclave and heated at 438 K for 5 days. After naturally cooling to room temperature, blue block product was collected by filtration as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.82 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The remaining H-atoms were placed in calculated positions (C—H (phenyl and pyridine ring) = 0.93 Å, C—H (methylene) = 0.97 Å) and were included in the refinement in the riding-model approximation, with U(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -x, y, 0.5 - z; (ii) -x, 1 - y, -z.]
[Figure 2] Fig. 2. The ball-stick plot of (I), displaying the zigzag chain along (001) direction composed of briging the Cu cation with monodentate µ2-BDOA. Cu is shown in the cyan, O in red, N in blue and C in grey.
catena-Poly[[aquabis(pyridine-κN)copper(II)]-µ- 2,2'-(p-phenylenedioxy)diacetato-κ2O:O'] top
Crystal data top
[Cu(C10H8O6)(C5H5N)2(H2O)]F(000) = 956
Mr = 463.93Dx = 1.548 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2000 reflections
a = 15.363 (4) Åθ = 3.6–25°
b = 6.0888 (12) ŵ = 1.14 mm1
c = 21.896 (6) ÅT = 298 K
β = 103.67 (3)°Block, blue
V = 1990.2 (8) Å30.12 × 0.11 × 0.09 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1737 independent reflections
Radiation source: fine-focus sealed tube1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 76
Tmin = 0.875, Tmax = 0.907l = 2525
7227 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0254P)2 + 4.0919P]
where P = (Fo2 + 2Fc2)/3
1737 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C10H8O6)(C5H5N)2(H2O)]V = 1990.2 (8) Å3
Mr = 463.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.363 (4) ŵ = 1.14 mm1
b = 6.0888 (12) ÅT = 298 K
c = 21.896 (6) Å0.12 × 0.11 × 0.09 mm
β = 103.67 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1737 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1096 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.907Rint = 0.119
7227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
1737 reflectionsΔρmin = 0.38 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00001.02668 (15)0.25000.0480 (4)
O10.0864 (2)1.0271 (7)0.16798 (16)0.0584 (10)
O20.0691 (3)0.6662 (7)0.15674 (17)0.0679 (12)
O30.1479 (3)0.6794 (7)0.03254 (17)0.0656 (12)
C10.0948 (4)0.8473 (11)0.1365 (2)0.0506 (15)
C20.1406 (4)0.8781 (10)0.0675 (2)0.0581 (16)
H2A0.20010.93770.06430.070*
H2B0.10700.98400.04930.070*
C30.0715 (4)0.5975 (10)0.0191 (2)0.0528 (15)
C40.0125 (4)0.6894 (10)0.0344 (3)0.0618 (17)
H40.02180.81820.05790.074*
C50.0824 (4)0.4048 (10)0.0158 (3)0.0605 (17)
H50.13850.33870.02660.073*
N10.0988 (3)0.9911 (8)0.20420 (18)0.0503 (12)
C60.1565 (4)0.8241 (10)0.2156 (3)0.0571 (16)
H60.15120.72280.24630.068*
C70.2226 (4)0.7939 (11)0.1847 (3)0.0681 (18)
H70.26050.67310.19370.082*
C80.2327 (4)0.9417 (13)0.1405 (3)0.0713 (19)
H80.27870.92700.11980.086*
C90.1732 (5)1.1140 (12)0.1271 (3)0.075 (2)
H90.17711.21560.09620.090*
C100.1086 (4)1.1333 (10)0.1598 (3)0.0659 (18)
H100.06931.25140.15080.079*
O1W0.00001.3867 (10)0.25000.085 (2)
H1A0.023 (5)1.463 (10)0.280 (3)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0449 (6)0.0454 (6)0.0508 (6)0.0000.0055 (4)0.000
O10.047 (2)0.067 (3)0.055 (2)0.003 (2)0.0017 (18)0.007 (2)
O20.082 (3)0.057 (3)0.059 (3)0.000 (2)0.006 (2)0.007 (2)
O30.052 (3)0.080 (3)0.062 (2)0.005 (2)0.009 (2)0.016 (2)
C10.040 (4)0.069 (5)0.042 (3)0.005 (3)0.008 (3)0.001 (3)
C20.055 (4)0.064 (4)0.052 (3)0.004 (3)0.005 (3)0.001 (3)
C30.043 (4)0.070 (4)0.042 (3)0.001 (3)0.004 (3)0.002 (3)
C40.057 (5)0.065 (4)0.060 (4)0.010 (3)0.008 (3)0.015 (3)
C50.042 (4)0.072 (4)0.067 (4)0.012 (3)0.013 (3)0.006 (3)
N10.042 (3)0.057 (3)0.048 (3)0.005 (3)0.004 (2)0.001 (2)
C60.051 (4)0.062 (4)0.057 (4)0.005 (3)0.010 (3)0.011 (3)
C70.054 (5)0.073 (5)0.081 (5)0.005 (4)0.024 (4)0.006 (4)
C80.049 (4)0.103 (6)0.066 (4)0.026 (4)0.020 (3)0.020 (4)
C90.063 (5)0.093 (5)0.070 (4)0.018 (4)0.018 (4)0.017 (4)
C100.053 (4)0.069 (4)0.070 (4)0.004 (3)0.004 (3)0.015 (4)
O1W0.114 (6)0.041 (4)0.078 (5)0.0000.021 (4)0.000
Geometric parameters (Å, º) top
Cu1—O11.964 (3)C4—H40.9300
Cu1—O1i1.964 (3)C5—C4ii1.362 (8)
Cu1—N12.019 (4)C5—H50.9300
Cu1—N1i2.019 (4)N1—C61.333 (7)
Cu1—O1W2.192 (6)N1—C101.338 (7)
O1—C11.284 (6)C6—C71.359 (8)
O2—C11.219 (6)C6—H60.9300
O3—C31.370 (6)C7—C81.357 (8)
O3—C21.422 (6)C7—H70.9300
C1—C21.520 (7)C8—C91.377 (9)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.357 (8)
C3—C41.373 (7)C9—H90.9300
C3—C51.388 (8)C10—H100.9300
C4—C5ii1.362 (8)O1W—H1A0.81 (6)
O1—Cu1—O1i179.8 (3)C5ii—C4—H4119.4
O1—Cu1—N188.32 (15)C3—C4—H4119.4
O1i—Cu1—N191.70 (15)C4ii—C5—C3121.3 (6)
O1—Cu1—N1i91.70 (15)C4ii—C5—H5119.4
O1i—Cu1—N1i88.32 (15)C3—C5—H5119.4
N1—Cu1—N1i167.7 (3)C6—N1—C10116.5 (5)
O1—Cu1—O1W89.92 (13)C6—N1—Cu1122.2 (4)
O1i—Cu1—O1W89.92 (13)C10—N1—Cu1121.3 (4)
N1—Cu1—O1W96.16 (14)N1—C6—C7123.5 (6)
N1i—Cu1—O1W96.16 (14)N1—C6—H6118.3
C1—O1—Cu1116.8 (4)C7—C6—H6118.3
C3—O3—C2117.5 (5)C8—C7—C6119.4 (6)
O2—C1—O1126.4 (5)C8—C7—H7120.3
O2—C1—C2120.4 (5)C6—C7—H7120.3
O1—C1—C2113.1 (5)C7—C8—C9118.3 (6)
O3—C2—C1113.0 (5)C7—C8—H8120.8
O3—C2—H2A109.0C9—C8—H8120.8
C1—C2—H2A109.0C10—C9—C8119.0 (6)
O3—C2—H2B109.0C10—C9—H9120.5
C1—C2—H2B109.0C8—C9—H9120.5
H2A—C2—H2B107.8N1—C10—C9123.3 (6)
O3—C3—C4127.1 (6)N1—C10—H10118.4
O3—C3—C5115.3 (5)C9—C10—H10118.4
C4—C3—C5117.6 (6)Cu1—O1W—H1A125 (5)
C5ii—C4—C3121.1 (6)
N1—Cu1—O1—C166.8 (4)O1i—Cu1—N1—C656.9 (4)
N1i—Cu1—O1—C1100.9 (4)N1i—Cu1—N1—C633.0 (4)
O1W—Cu1—O1—C1162.9 (4)O1W—Cu1—N1—C6147.0 (4)
Cu1—O1—C1—O215.7 (8)O1—Cu1—N1—C1055.6 (4)
Cu1—O1—C1—C2163.2 (3)O1i—Cu1—N1—C10124.3 (4)
C3—O3—C2—C173.6 (6)N1i—Cu1—N1—C10145.9 (4)
O2—C1—C2—O30.3 (8)O1W—Cu1—N1—C1034.1 (4)
O1—C1—C2—O3178.6 (5)C10—N1—C6—C70.1 (8)
C2—O3—C3—C41.8 (8)Cu1—N1—C6—C7178.8 (4)
C2—O3—C3—C5179.3 (4)N1—C6—C7—C81.3 (10)
O3—C3—C4—C5ii177.2 (5)C6—C7—C8—C92.2 (9)
C5—C3—C4—C5ii0.3 (9)C7—C8—C9—C102.0 (9)
O3—C3—C5—C4ii177.5 (5)C6—N1—C10—C90.1 (8)
C4—C3—C5—C4ii0.3 (9)Cu1—N1—C10—C9179.0 (5)
O1—Cu1—N1—C6123.2 (4)C8—C9—C10—N10.9 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.81 (6)1.87 (6)2.677 (5)174 (7)
Symmetry code: (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8O6)(C5H5N)2(H2O)]
Mr463.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.363 (4), 6.0888 (12), 21.896 (6)
β (°) 103.67 (3)
V3)1990.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.875, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
7227, 1737, 1096
Rint0.119
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.123, 1.08
No. of reflections1737
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.81 (6)1.87 (6)2.677 (5)174 (7)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHong, X.-L., Li, Y.-Z. & Bai, J.-F. (2005). Acta Cryst. E61, m1863–m1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds