organic compounds
Piperazine-1,4-diium bis(2-carboxy-1H-pyrazole-4-carboxylate) tetrahydrate
aKey Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamxhzhou@njupt.edu.cn
The 4H12N22+·2C5H3N2O4−·4H2O, comprises one-half of a piperazine-1,4-diium cation, which lies on an inversion centre, a 2-carboxy-1H-pyrazole-4-carboxylate anion and two water molecules. An extensive network of intermolecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds between the cations, anions and water molecules leads to a three-dimensional supramolecular framework.
of the title compound, CRelated literature
For 3,5-pyrazoledicarboxylic acid, see: King et al. (2003); Pan et al. (2001). For reference structural data, see: Li & Su (2007); Reviriego et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681003655X/om2361sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681003655X/om2361Isup2.hkl
A mixture of 3,5-pyrazoledicarboxylic acid (0.2 mmol, 34.8 mg), Cd(NO3)2.4H2O (0.1 mmol, 30.8 mg), piperazine (0.2 mmol, 17.2 mg) and H2O (8 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 150°C for 5 days. The reaction mixture was slowly cooled to room temperature to obtain the colorless block crystals of (I) suitable for X-ray diffraction analysis.
Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C—H = 0.93 Å for aromatic H atom, 0.97 Å for methylene H atoms, respectively, and Uiso(H) = 1.2Ueq(C). The H atoms on the O and N atoms were located in difference Fourier map with their bond lengths freely refined and Uiso(H) = 1.2Ueq(O or N).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radii. [Symmetry code; (i) 1 - x, 1 - y, -z.] | |
Fig. 2. A view of the crystal packing. Hydrogen bonds are indicated by green dashed lines. |
C4H12N2·2C5H3N2O4·4H2O | F(000) = 496 |
Mr = 470.41 | Dx = 1.560 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1373 reflections |
a = 8.3363 (13) Å | θ = 2.7–24.0° |
b = 16.246 (3) Å | µ = 0.14 mm−1 |
c = 7.3930 (11) Å | T = 291 K |
β = 90.812 (3)° | Block, white |
V = 1001.2 (3) Å3 | 0.15 × 0.14 × 0.12 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 1946 independent reflections |
Radiation source: fine-focus sealed tube | 1524 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
phi and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→10 |
Tmin = 0.980, Tmax = 0.984 | k = −13→19 |
5265 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0729P)2] where P = (Fo2 + 2Fc2)/3 |
1946 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C4H12N2·2C5H3N2O4·4H2O | V = 1001.2 (3) Å3 |
Mr = 470.41 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3363 (13) Å | µ = 0.14 mm−1 |
b = 16.246 (3) Å | T = 291 K |
c = 7.3930 (11) Å | 0.15 × 0.14 × 0.12 mm |
β = 90.812 (3)° |
Bruker SMART APEX CCD diffractometer | 1946 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1524 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.984 | Rint = 0.051 |
5265 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.41 e Å−3 |
1946 reflections | Δρmin = −0.23 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1506 (3) | 0.78226 (15) | 0.2962 (3) | 0.0267 (6) | |
C2 | 0.9861 (3) | 0.77149 (14) | 0.2216 (3) | 0.0233 (6) | |
C3 | 0.8727 (3) | 0.82885 (15) | 0.1741 (3) | 0.0256 (6) | |
H3 | 0.8827 | 0.8858 | 0.1785 | 0.031* | |
C4 | 0.7391 (3) | 0.78344 (14) | 0.1178 (3) | 0.0226 (5) | |
C5 | 0.5785 (3) | 0.81182 (15) | 0.0528 (3) | 0.0246 (6) | |
C6 | 0.6653 (4) | 0.51108 (17) | −0.0379 (5) | 0.0455 (8) | |
H6A | 0.7149 | 0.4999 | 0.0790 | 0.055* | |
H6B | 0.7496 | 0.5242 | −0.1223 | 0.055* | |
C7 | 0.4237 (3) | 0.56416 (16) | 0.1024 (4) | 0.0380 (7) | |
H7A | 0.3509 | 0.6107 | 0.1070 | 0.046* | |
H7B | 0.4666 | 0.5548 | 0.2233 | 0.046* | |
N1 | 0.9196 (2) | 0.69726 (13) | 0.1933 (3) | 0.0266 (5) | |
H1 | 0.962 (3) | 0.6522 (18) | 0.220 (4) | 0.032* | |
N2 | 0.7696 (2) | 0.70254 (12) | 0.1296 (3) | 0.0262 (5) | |
N3 | 0.5556 (3) | 0.58226 (14) | −0.0224 (3) | 0.0399 (7) | |
H3A | 0.604 (4) | 0.6268 (19) | 0.020 (4) | 0.048* | |
H3B | 0.514 (4) | 0.5944 (18) | −0.130 (4) | 0.048* | |
O1 | 1.2097 (2) | 0.85001 (11) | 0.3144 (3) | 0.0454 (6) | |
O2 | 1.2193 (2) | 0.71272 (11) | 0.3390 (3) | 0.0360 (5) | |
H2 | 1.311 (4) | 0.7215 (17) | 0.394 (4) | 0.043* | |
O3 | 0.5431 (2) | 0.88609 (10) | 0.0779 (3) | 0.0360 (5) | |
O4 | 0.4901 (2) | 0.75870 (11) | −0.0188 (3) | 0.0358 (5) | |
O5 | 0.0107 (3) | 0.53912 (14) | 0.2765 (4) | 0.0528 (7) | |
H5A | −0.077 (5) | 0.510 (2) | 0.316 (5) | 0.063* | |
H5B | 0.093 (5) | 0.539 (2) | 0.346 (5) | 0.063* | |
O6 | 0.2621 (2) | 0.51492 (13) | 0.5325 (3) | 0.0476 (6) | |
H6C | 0.323 (4) | 0.472 (2) | 0.486 (5) | 0.057* | |
H6D | 0.320 (4) | 0.549 (2) | 0.556 (5) | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0215 (13) | 0.0285 (14) | 0.0299 (15) | 0.0002 (11) | −0.0059 (11) | 0.0006 (11) |
C2 | 0.0199 (12) | 0.0226 (13) | 0.0272 (14) | −0.0006 (10) | −0.0039 (10) | 0.0002 (10) |
C3 | 0.0205 (13) | 0.0193 (12) | 0.0369 (15) | −0.0020 (9) | −0.0056 (10) | −0.0016 (10) |
C4 | 0.0189 (12) | 0.0203 (12) | 0.0286 (14) | 0.0011 (10) | −0.0045 (10) | −0.0004 (10) |
C5 | 0.0159 (12) | 0.0228 (13) | 0.0351 (15) | −0.0025 (10) | −0.0040 (10) | 0.0030 (11) |
C6 | 0.0399 (17) | 0.0443 (18) | 0.052 (2) | −0.0078 (14) | 0.0024 (14) | −0.0050 (15) |
C7 | 0.0455 (17) | 0.0286 (15) | 0.0398 (17) | 0.0027 (12) | −0.0021 (14) | −0.0035 (12) |
N1 | 0.0191 (11) | 0.0186 (11) | 0.0417 (14) | 0.0025 (9) | −0.0092 (9) | 0.0022 (9) |
N2 | 0.0169 (10) | 0.0215 (11) | 0.0398 (13) | −0.0001 (8) | −0.0103 (9) | 0.0011 (9) |
N3 | 0.0616 (17) | 0.0210 (12) | 0.0370 (15) | −0.0144 (11) | −0.0069 (12) | −0.0007 (10) |
O1 | 0.0326 (11) | 0.0284 (11) | 0.0745 (16) | −0.0083 (8) | −0.0248 (10) | 0.0010 (10) |
O2 | 0.0195 (9) | 0.0284 (10) | 0.0597 (14) | −0.0004 (8) | −0.0183 (9) | 0.0030 (9) |
O3 | 0.0239 (10) | 0.0218 (10) | 0.0622 (14) | 0.0044 (8) | −0.0093 (9) | −0.0002 (9) |
O4 | 0.0221 (9) | 0.0282 (10) | 0.0566 (13) | −0.0002 (8) | −0.0167 (9) | −0.0048 (9) |
O5 | 0.0395 (12) | 0.0361 (12) | 0.0826 (19) | 0.0042 (10) | −0.0040 (12) | 0.0144 (11) |
O6 | 0.0345 (12) | 0.0334 (12) | 0.0748 (17) | −0.0035 (9) | −0.0015 (11) | −0.0107 (11) |
C1—O1 | 1.213 (3) | C6—H6B | 0.9700 |
C1—O2 | 1.304 (3) | C7—N3 | 1.476 (4) |
C1—C2 | 1.481 (3) | C7—C6i | 1.504 (4) |
C2—N1 | 1.342 (3) | C7—H7A | 0.9700 |
C2—C3 | 1.369 (3) | C7—H7B | 0.9700 |
C3—C4 | 1.395 (3) | N1—N2 | 1.333 (3) |
C3—H3 | 0.9300 | N1—H1 | 0.84 (3) |
C4—N2 | 1.341 (3) | N3—H3A | 0.88 (3) |
C4—C5 | 1.489 (3) | N3—H3B | 0.88 (3) |
C5—O4 | 1.248 (3) | O2—H2 | 0.87 (3) |
C5—O3 | 1.256 (3) | O5—H5A | 0.92 (4) |
C6—N3 | 1.480 (4) | O5—H5B | 0.85 (4) |
C6—C7i | 1.504 (4) | O6—H6C | 0.93 (3) |
C6—H6A | 0.9700 | O6—H6D | 0.76 (3) |
O1—C1—O2 | 125.7 (2) | H6A—C6—H6B | 108.0 |
O1—C1—C2 | 121.4 (2) | N3—C7—C6i | 109.4 (2) |
O2—C1—C2 | 112.9 (2) | N3—C7—H7A | 109.8 |
N1—C2—C3 | 106.9 (2) | C6i—C7—H7A | 109.8 |
N1—C2—C1 | 122.8 (2) | N3—C7—H7B | 109.8 |
C3—C2—C1 | 130.3 (2) | C6i—C7—H7B | 109.8 |
C2—C3—C4 | 105.2 (2) | H7A—C7—H7B | 108.2 |
C2—C3—H3 | 127.4 | N2—N1—C2 | 112.3 (2) |
C4—C3—H3 | 127.4 | N2—N1—H1 | 122.4 (18) |
N2—C4—C3 | 110.4 (2) | C2—N1—H1 | 125.1 (19) |
N2—C4—C5 | 119.6 (2) | N1—N2—C4 | 105.21 (19) |
C3—C4—C5 | 130.0 (2) | C7—N3—C6 | 111.1 (2) |
O4—C5—O3 | 126.1 (2) | C7—N3—H3A | 106 (2) |
O4—C5—C4 | 116.5 (2) | C6—N3—H3A | 113 (2) |
O3—C5—C4 | 117.5 (2) | C7—N3—H3B | 108 (2) |
N3—C6—C7i | 111.0 (2) | C6—N3—H3B | 110 (2) |
N3—C6—H6A | 109.4 | H3A—N3—H3B | 108 (3) |
C7i—C6—H6A | 109.4 | C1—O2—H2 | 110.5 (18) |
N3—C6—H6B | 109.4 | H5A—O5—H5B | 117 (3) |
C7i—C6—H6B | 109.4 | H6C—O6—H6D | 107 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5ii | 0.84 (3) | 1.93 (3) | 2.746 (3) | 167 (3) |
O2—H2···O4iii | 0.87 (3) | 1.65 (3) | 2.520 (2) | 175 (3) |
N3—H3A···O4 | 0.88 (3) | 2.36 (3) | 2.918 (3) | 121 (2) |
N3—H3A···N2 | 0.88 (3) | 2.01 (3) | 2.865 (3) | 162 (3) |
N3—H3B···O3iv | 0.88 (3) | 2.20 (3) | 2.999 (3) | 150 (3) |
O5—H5B···O6 | 0.85 (4) | 2.00 (4) | 2.831 (3) | 166 (3) |
O5—H5A···O6v | 0.92 (4) | 1.96 (4) | 2.833 (3) | 157 (3) |
O6—H6C···O3vi | 0.93 (3) | 1.85 (3) | 2.779 (3) | 173 (3) |
O6—H6D···O3vii | 0.76 (3) | 2.14 (3) | 2.858 (3) | 158 (4) |
C6—H6B···O5i | 0.97 | 2.53 | 3.348 (4) | 142 |
C7—H7A···O1viii | 0.97 | 2.53 | 3.091 (3) | 117 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) x+1, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2; (v) −x, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x, −y+3/2, z+1/2; (viii) x−1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H12N2·2C5H3N2O4·4H2O |
Mr | 470.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 8.3363 (13), 16.246 (3), 7.3930 (11) |
β (°) | 90.812 (3) |
V (Å3) | 1001.2 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.15 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.980, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5265, 1946, 1524 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.147, 1.10 |
No. of reflections | 1946 |
No. of parameters | 169 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.23 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.84 (3) | 1.93 (3) | 2.746 (3) | 167 (3) |
O2—H2···O4ii | 0.87 (3) | 1.65 (3) | 2.520 (2) | 175 (3) |
N3—H3A···O4 | 0.88 (3) | 2.36 (3) | 2.918 (3) | 121 (2) |
N3—H3A···N2 | 0.88 (3) | 2.01 (3) | 2.865 (3) | 162 (3) |
N3—H3B···O3iii | 0.88 (3) | 2.20 (3) | 2.999 (3) | 150 (3) |
O5—H5B···O6 | 0.85 (4) | 2.00 (4) | 2.831 (3) | 166 (3) |
O5—H5A···O6iv | 0.92 (4) | 1.96 (4) | 2.833 (3) | 157 (3) |
O6—H6C···O3v | 0.93 (3) | 1.85 (3) | 2.779 (3) | 173 (3) |
O6—H6D···O3vi | 0.76 (3) | 2.14 (3) | 2.858 (3) | 158 (4) |
C6—H6B···O5vii | 0.97 | 2.53 | 3.348 (4) | 141.7 |
C7—H7A···O1viii | 0.97 | 2.53 | 3.091 (3) | 116.8 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) x, −y+3/2, z+1/2; (vii) −x+1, −y+1, −z; (viii) x−1, −y+3/2, z−1/2. |
Acknowledgements
This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).
References
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
King, P., Clèrac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 42, 3492–3500. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, Z.-H. & Su, K.-M. (2007). Acta Cryst. E63, o4744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J. 7, 4431–4437. CrossRef PubMed CAS Google Scholar
Reviriego, F., Rodriguez-Franco, M. I., Navarro, P., Garcĺa-España, E., Liu-González, M., Verdejo, B. & Domènech, A. (2006). J. Am. Chem. Soc. 128, 16458–16459. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonding, as the strongest and most directional intermolecular force, has been intensively investigated in organic crystalline solids. The ligand, 3,5-pyrazoledicarboxylic acid, known both as a multiple proton donor and acceptor, has six potential hydrogen-bond sites involving both the nitrogen atoms of the pyrazole ring and all of the carboxylate O atoms. and it can form mono-, di- and trianionic ligand species through deprotonation (King et al. 2003; Pan et al. 2001).
We report here the synthesis and structure of piperazine-1,4-diium bis(2-carboxy-1H-pyrazole-4-carboxylate) tetrahydrate, as shown in Fig.1, which was obtained from a solution of 3,5-pyrazoledicarboxylic acid, Cd(NO3)2.4H2O and piperazine. Bond distances and angles are normal (Li & Su, 2007; Reviriego et al. 2006). The asymmetric unit of the title compound comprises one half of the piperazine-1,4-diium cation, which lies about an inversion centre, a 2-carboxy-1H-pyrazole-4-carboxylate anion and two water molecules. In the crystal structure molecules are interlinked by hydrogen bonds (Table 1 and Fig. 2). The 2-carboxy-1H-pyrazole-4-carboxylate anoins are interconnected with each other through the O2—H2···O4iii hydrogen bonds. The 2-carboxy-1H-pyrazole-4-carboxylate anions are connected with the piperazine-1,4-diium cations through the N3—H3A···O4, N3—H3A···N2, N3—H3B···O3iv and C7—H7A···O1viii hydrogen bonds to form the three-dimensional supramolecular framework.